JPS62223013A - Solid acid substance, production thereof and decomposition of hydrocarbon using said solid acid substance - Google Patents
Solid acid substance, production thereof and decomposition of hydrocarbon using said solid acid substanceInfo
- Publication number
- JPS62223013A JPS62223013A JP6458386A JP6458386A JPS62223013A JP S62223013 A JPS62223013 A JP S62223013A JP 6458386 A JP6458386 A JP 6458386A JP 6458386 A JP6458386 A JP 6458386A JP S62223013 A JPS62223013 A JP S62223013A
- Authority
- JP
- Japan
- Prior art keywords
- solid acid
- range
- weight
- atoms
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011973 solid acid Substances 0.000 title claims abstract description 47
- 239000000126 substance Substances 0.000 title claims abstract description 35
- 229930195733 hydrocarbon Natural products 0.000 title claims description 28
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000354 decomposition reaction Methods 0.000 title description 10
- 125000001183 hydrocarbyl group Chemical group 0.000 title 1
- 239000002253 acid Substances 0.000 claims abstract description 45
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 18
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 7
- 125000004434 sulfur atom Chemical group 0.000 claims abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 28
- 239000002131 composite material Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 150000004706 metal oxides Chemical class 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 239000012188 paraffin wax Substances 0.000 claims description 12
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 abstract description 29
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052681 coesite Inorganic materials 0.000 abstract description 8
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 8
- 229910052682 stishovite Inorganic materials 0.000 abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 abstract description 8
- 229910052905 tridymite Inorganic materials 0.000 abstract description 8
- 239000000377 silicon dioxide Substances 0.000 abstract description 7
- 229910052731 fluorine Inorganic materials 0.000 abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 5
- -1 compound metal oxide Chemical class 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 125000004429 atom Chemical group 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 23
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 20
- 238000001228 spectrum Methods 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- WGECXQBGLLYSFP-UHFFFAOYSA-N 2,3-dimethylpentane Chemical compound CCC(C)C(C)C WGECXQBGLLYSFP-UHFFFAOYSA-N 0.000 description 6
- BZHMBWZPUJHVEE-UHFFFAOYSA-N 2,3-dimethylpentane Natural products CC(C)CC(C)C BZHMBWZPUJHVEE-UHFFFAOYSA-N 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- 239000003930 superacid Substances 0.000 description 5
- CXOWYJMDMMMMJO-UHFFFAOYSA-N 2,2-dimethylpentane Chemical compound CCCC(C)(C)C CXOWYJMDMMMMJO-UHFFFAOYSA-N 0.000 description 4
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical compound CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 4
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Chemical compound CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 4
- AORMDLNPRGXHHL-UHFFFAOYSA-N 3-ethylpentane Chemical compound CCC(CC)CC AORMDLNPRGXHHL-UHFFFAOYSA-N 0.000 description 4
- VLJXXKKOSFGPHI-UHFFFAOYSA-N 3-methylhexane Chemical compound CCCC(C)CC VLJXXKKOSFGPHI-UHFFFAOYSA-N 0.000 description 4
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- SFRKSDZMZHIISH-UHFFFAOYSA-N 3-ethylhexane Chemical compound CCCC(CC)CC SFRKSDZMZHIISH-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- ZISSAWUMDACLOM-UHFFFAOYSA-N triptane Chemical compound CC(C)C(C)(C)C ZISSAWUMDACLOM-UHFFFAOYSA-N 0.000 description 2
- RLJALOQFYHCJKG-FVRNMFRHSA-N (1e,3e,6e,8e)-1,9-diphenylnona-1,3,6,8-tetraen-5-one Chemical compound C=1C=CC=CC=1\C=C\C=C\C(=O)\C=C\C=C\C1=CC=CC=C1 RLJALOQFYHCJKG-FVRNMFRHSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- LOTKRQAVGJMPNV-UHFFFAOYSA-N 1-fluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=C(F)C([N+]([O-])=O)=C1 LOTKRQAVGJMPNV-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- RMBFBMJGBANMMK-UHFFFAOYSA-N 2,4-dinitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O RMBFBMJGBANMMK-UHFFFAOYSA-N 0.000 description 1
- ALVZYHNBPIMLFM-UHFFFAOYSA-N 2-[4-[2-(4-carbamimidoylphenoxy)ethoxy]phenyl]-1h-indole-6-carboximidamide;dihydrochloride Chemical compound Cl.Cl.C1=CC(C(=N)N)=CC=C1OCCOC1=CC=C(C=2NC3=CC(=CC=C3C=2)C(N)=N)C=C1 ALVZYHNBPIMLFM-UHFFFAOYSA-N 0.000 description 1
- PFRYFZZSECNQOL-UHFFFAOYSA-N 2-methyl-4-[(2-methylphenyl)diazenyl]aniline Chemical compound C1=C(N)C(C)=CC(N=NC=2C(=CC=CC=2)C)=C1 PFRYFZZSECNQOL-UHFFFAOYSA-N 0.000 description 1
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006213 ZrOCl2 Inorganic materials 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 238000007700 distillative separation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- VXLFYNFOITWQPM-UHFFFAOYSA-N n-phenyl-4-phenyldiazenylaniline Chemical compound C=1C=C(N=NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 VXLFYNFOITWQPM-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000009840 oxygen flask method Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 229910021512 zirconium (IV) hydroxide Inorganic materials 0.000 description 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
発明の技術分野
本発明はZrO2−8102系の固体酸物質およびその
製造方法ならびにこの固体酸物質を用いた炭化水素の分
解方法に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a ZrO2-8102-based solid acid material, a method for producing the same, and a method for decomposing hydrocarbons using this solid acid material.
泣肌旦探生血互旦l旦旦且ヱ五皿里ゑ
ナフサに代表される石油系炭化水素化合物から、工業的
に有用な炭素数3〜4の留分を高収率で得ようとする試
みは古くからなされており、この際には固体酸触媒が有
用であることが知られている。Attempting to obtain industrially useful fractions with 3 to 4 carbon atoms in high yield from petroleum-based hydrocarbon compounds such as naphtha. Attempts have been made for a long time, and solid acid catalysts are known to be useful in this case.
また、固体酸触媒は炭化水素の異性化、アルキル化、脱
アルキル化などの種々の反応に用いられることが知られ
ている。このような固体酸を特徴づける性質の1つとし
て、固体酸の酸強度が挙げられ、反応によっては極めて
強い酸性を有する固体超強酸が求められる場合がある。Furthermore, solid acid catalysts are known to be used in various reactions such as isomerization, alkylation, and dealkylation of hydrocarbons. One of the characteristics that characterizes such solid acids is their acid strength, and depending on the reaction, a solid super strong acid having extremely strong acidity may be required.
このような固体超強酸としては、従来、SbF5などの
金属フッ化物をSiO2−At203金属酸化物に蒸着
させたもの(触媒21 (4)、220゜(H0)が9
79))、イオン交換樹脂とAlCl3を反応させたも
の(J、 Catalysis 46.266(H0)
が977)) 、CuSO4あるいはCuCl2とAl
Cl3とを混合したちのく触媒2ユ(4)。As such solid super strong acids, conventionally, metal fluorides such as SbF5 are deposited on SiO2-At203 metal oxides (catalyst 21 (4), 220° (H0) is 9
79)), reaction of ion exchange resin and AlCl3 (J, Catalysis 46.266 (H0)
977)), CuSO4 or CuCl2 and Al
2 units of Chinoku catalyst mixed with Cl3 (4).
233 (H0)が979) ) 、ZrO2、Fe2
o3などを硫酸で処理したもの(触媒22 (4)、
232゜(H0)が980))などが知られている。233 (H0) is 979) ), ZrO2, Fe2
o3 etc. treated with sulfuric acid (catalyst 22 (4),
232° (H0) is 980)), etc. are known.
これらの固体超強酸は、ZrO2あるいは接触すること
によって容易に分解し、再生することができず、また触
媒としての使用可能な温度範囲は極めて狭く、工業用触
媒としての応用は難かしいという問題点があった。These solid super strong acids are easily decomposed by contact with ZrO2 and cannot be regenerated, and the temperature range in which they can be used as catalysts is extremely narrow, making it difficult to apply them as industrial catalysts. was there.
及用五旦旬
本発明は上記のような従来技術に伴なう問題点を解決し
ようとするものであって、極めて強い酸強度を有すると
ともに水分と接触しても容易には超強酸点が分解せず、
しかも触媒としての使用可能な温度範囲が広く、したが
って工業用触媒としての広範な用途が期待される新規な
固体酸物質を提供することを目的としている。The present invention is intended to solve the problems associated with the prior art as described above. without disassembling,
Moreover, it is an object of the present invention to provide a novel solid acid substance that can be used as a catalyst in a wide temperature range and is therefore expected to have a wide range of uses as an industrial catalyst.
また本発明の別の目的は、上記のような新規な固体酸物
質の製造方法を提供することにある。Another object of the present invention is to provide a method for producing the above-mentioned novel solid acid substance.
さらにまた別の本発明の目的は、上記のような新規な固
体酸物質を触媒として用いた炭化水素の分解方法を提供
することを目的としている。Yet another object of the present invention is to provide a method for decomposing hydrocarbons using the above-described novel solid acid substance as a catalyst.
発明の概要
本発明に係る新規な固体酸物質は、(xZro 2 ・
ysi02>・zF−ms
〔式中、xとyはZrO2とS i 02のモル数を示
し、x/Vの値はZr/Siの原子数比を示す。Summary of the Invention The novel solid acid material according to the present invention has (xZro 2 ・
ysi02>・zF-ms [In the formula, x and y represent the number of moles of ZrO2 and Si02, and the value of x/V represents the atomic ratio of Zr/Si.
また2およびmは各々(xZrO−’y’5i02 >
の重量に対するF原子の重量%およびS原子の重量%を
示す。そしてx/yは99.910.’1〜10/90
であり、ZG、to、1〜10であり、mは0.01〜
5の範囲におる。〕で示される複合金属酸化物であって
、酸強度(HO>が−8,2以下の強酸点を有している
ことを特徴としている。In addition, 2 and m are each (xZrO−'y'5i02 >
The weight % of F atoms and the weight % of S atoms are shown relative to the weight of . And x/y is 99.910. '1~10/90
, ZG, to, 1 to 10, and m is 0.01 to
In the range of 5. It is a composite metal oxide represented by ], and is characterized by having a strong acid point with an acid strength (HO> of -8.2 or less).
この固体酸物質は、x線回折法およびX線光電子分光法
で測定すると、ZrO2−8i02の複合金属酸化物と
は明らかに異なった新規な物質であることがわかる。When this solid acid substance is measured by x-ray diffraction and x-ray photoelectron spectroscopy, it is found that it is a new substance that is clearly different from the composite metal oxide of ZrO2-8i02.
また本発明に係る上記の新規な固体酸である複合金属酸
化物の製造方法は、xZro2・ySiO2で示される
複合金属酸化物を300〜800℃の温度においてSF
6で処理することを特徴としている。Further, the method for producing the above-mentioned composite metal oxide, which is a novel solid acid, according to the present invention includes a method of manufacturing a composite metal oxide represented by xZro2.ySiO2 by SF at a temperature of 300 to 800°C.
It is characterized by processing at 6.
ざらに本発明に係る炭化水素の分解方法は、上記のよう
な新規な固体酸物質の存在下に、炭素数が5〜10のパ
ラフィンまたは該パラフィンを主成分として含む炭化水
素[これらを炭化水素(a)と呼ぶ]を反応させて炭素
数3〜4のパラフィンを主成分とする低級脂肪族炭化水
素(b)を製造することを特徴としている。Roughly speaking, the method for decomposing hydrocarbons according to the present invention comprises decomposing paraffins having 5 to 10 carbon atoms or hydrocarbons containing said paraffins as a main component [these are hydrocarbons] in the presence of the novel solid acid substance as described above. (a)] to produce a lower aliphatic hydrocarbon (b) whose main component is paraffin having 3 to 4 carbon atoms.
本発明により得られる上記式(XZrO2・ySi02
>・zF−mSで示される固体酸物質は、極めて強い酸
強度を有するとともに水分と接触しても容易には強酸点
が分解せず、しかも触媒としての使用可能な温度範囲が
広い。The above formula (XZrO2・ySi02
A solid acid substance represented by >.zF-mS has extremely strong acid strength, strong acid sites do not easily decompose even when it comes into contact with moisture, and the temperature range in which it can be used as a catalyst is wide.
また炭素数5〜10のパラフィンを含む炭化水素(a)
を上記固体酸物質の存在下に反応させると炭素数3〜4
のパラフィンを主成分とする低級脂肪族炭化水素が高収
率で得られる。Hydrocarbons (a) containing paraffins having 5 to 10 carbon atoms
When reacted in the presence of the above solid acid substance, the carbon number is 3 to 4.
Lower aliphatic hydrocarbons whose main component is paraffin can be obtained in high yield.
発明の詳細な説明
以下本発明に係る新規な固体酸物質およびその製造方法
ならびにこの固体酸物質を触媒として用いた炭化水素の
分解反応について具体的に説明する。DETAILED DESCRIPTION OF THE INVENTION The novel solid acid substance of the present invention, its manufacturing method, and the hydrocarbon decomposition reaction using this solid acid substance as a catalyst will be specifically described below.
匹生扱豊亘里虞
本発明に係る新規な固体酸物質は、(xZrO□・yS
iO 2) −zF−msで示されるZrO2−8i0
2系複合金属酸化物であって、酸強度(H0)が−8,
2以下、場合によっては−12,7以下の超強酸点を有
している。前記式中、xとyはZrO2と5i02のモ
ル数を示し、x/yの値はZr/Siの原子数比を示す
。また2およびmは各々(xZrO2・ySiO2)の
重信に対するF原子の重量%およびS原子の重量%を示
す。The novel solid acid substance according to the present invention is (xZrO□・yS
iO2) -zF-ms ZrO2-8i0
A two-system composite metal oxide with an acid strength (H0) of -8,
It has a super strong acid point of 2 or less, and in some cases -12.7 or less. In the above formula, x and y represent the number of moles of ZrO2 and 5i02, and the value of x/y represents the atomic ratio of Zr/Si. Further, 2 and m represent the weight percent of F atoms and the weight percent of S atoms, respectively, with respect to the weight of (xZrO2.ySiO2).
そしてX/Vは99.910.1〜10/90であり、
2は0.1〜10でおり、mは0.01〜5の範囲にあ
る。なお、本明細書においては、本発明に係わる固体酸
物質中でのFおよびSの割合については固体酸物質全体
を平均した値で示している。この複合金属酸化物におい
ては、ZrとSiの原子比(Zr/Si)はX/Vで示
されるが、本発明では該値は99.910.1〜10/
90の範囲にあり、この中では90/10〜50150
の範囲にあることが好ましい。このような(xZrO2
・ySiO2)−zF−mSで示される本発明の固体酸
物質は、後述するようにZrO2−8io2の複合酸化
物をS「6で処理することによって得られるため、固体
の表面においてはFおよびSの濃度は前記した範囲の割
合よりも通常は高くなっているものと考えられる。And X/V is 99.910.1 to 10/90,
2 is in the range of 0.1 to 10, and m is in the range of 0.01 to 5. Note that in this specification, the proportions of F and S in the solid acid material according to the present invention are shown as average values for the entire solid acid material. In this composite metal oxide, the atomic ratio of Zr and Si (Zr/Si) is expressed as X/V, but in the present invention, this value is 99.910.1 to 10/V.
Within the range of 90, 90/10 to 50150
It is preferable that it is in the range of . Such (xZrO2
The solid acid substance of the present invention represented by ySiO2)-zF-mS is obtained by treating a ZrO2-8io2 complex oxide with S6 as described later, so F and S are present on the surface of the solid. It is considered that the concentration of is normally higher than the ratio within the above-mentioned range.
本発明においては、(xZrO2 ・’y’S!02
)・ZF−msで示される固体酸物質においてZr/S
iの原子比が通常99.910.1よりも大きい場合に
は酸強度Hoの値が大きくなり酸強度は通常弱くなり、
またZr/3iの原子比が10/90以下・の場合にも
通常酸強度が弱くなることから、本発明ではZr/Si
の原子比(x/y)は前記範囲に定められる。In the present invention, (xZrO2 ・'y'S!02
)・ZF-ms In the solid acid material, Zr/S
When the atomic ratio of i is usually larger than 99.910.1, the value of acid strength Ho increases and the acid strength usually becomes weaker.
In addition, when the atomic ratio of Zr/3i is 10/90 or less, the acid strength usually becomes weak, so in the present invention, Zr/Si
The atomic ratio (x/y) of is set within the above range.
本発明では、本発明に係わる固体酸物質のZr1si、
FおよびSの含量は以下に示す方法を用いて行われる。In the present invention, Zr1si of the solid acid material according to the present invention,
The F and S contents are determined using the method shown below.
「、Sの分析:酸素フラスコ燃焼法による。``Analysis of S: by oxygen flask combustion method.
Zrの分析 :試料を酸で融解して硝酸溶液としてから
ICPプラズマ発光分
析による。Analysis of Zr: A sample is melted with acid to make a nitric acid solution, and then subjected to ICP plasma emission spectrometry.
Siの分析 :試料をアルカリ@解して水溶液となし、
ICPプラズマは発光
分析による。Analysis of Si: Dissolve the sample in alkali@ to make an aqueous solution,
ICP plasma is based on emission spectroscopy.
酸強度(ト1o )
上記式で示される新規な固体酸物質は、酸強度H−10
)が−8,2以下の強酸点を有しているが、酸強度(H
o >の測定は触媒且、(3)241゜(H0)が98
2)に記載されている方法によって行なった。具体的に
は以下のようにして行なう。塩化スルフリル302 C
I 220ccに粒状青色シリカゲル5gを入れ、1日
間放置して試薬を乾燥する。Acid strength (T1o) The novel solid acid substance represented by the above formula has an acid strength H-10
) has a strong acid point of -8.2 or less, but the acid strength (H
o> is measured when the catalyst and (3) 241° (H0) is 98
The method described in 2) was used. Specifically, it is performed as follows. Sulfuryl chloride 302C
Add 5 g of granular blue silica gel to 220 cc of I and leave it for one day to dry the reagent.
この乾燥された塩化スルフリル3ccを試験管にとり、
触媒をすぐ投入し液中に沈める。固体酸物質へpKa値
が既知のハメット指示薬の1%ベンゼン溶液を数滴入れ
、数回軽く振ってから静置して触媒表面の色の変化を観
察する。変化が明確でない場合は栓をして数時間放置し
て待つ。市販の1゜3.5−トリニトロベンゼン(pK
a−16,04)を用いる場合には該試薬は通常は水を
多く含むため、1%ベンゼン溶液を調製後シリカゲルを
投入して数日放置して乾燥してから、指示薬として使用
する。Take 3 cc of this dried sulfuryl chloride in a test tube,
Immediately add the catalyst and submerge it in the liquid. A few drops of a 1% benzene solution of a Hammett indicator with a known pKa value is added to the solid acid substance, shaken lightly several times, and left to stand to observe a change in color on the catalyst surface. If the change is not clear, close the stopper and leave it for several hours. Commercially available 1°3.5-trinitrobenzene (pK
When using a-16,04), the reagent usually contains a large amount of water, so after preparing a 1% benzene solution, silica gel is added and left to dry for several days before being used as an indicator.
本発明で固体酸物質の酸強度(+−10>を測定するの
に用いられたハメット指示薬とその1)Ka値との関係
を表1に示す。なお該指示薬を用いた1−(oの測定手
順については周知の方法に従って行なうことができる。Table 1 shows the relationship between the Hammett indicator used to measure the acid strength (+-10>) of a solid acid substance in the present invention and its 1) Ka value. Note that the procedure for measuring 1-(o using the indicator can be carried out according to a well-known method.
すなわちpK値の大きい指示薬からpKa値の小さい指
示薬を順に試料に加えて試料の色の変化を調べて試料の
有する最高の酸強度)−10を求める。たとえば指示薬
としての2,4−ジニトロトルエン(pKa=−13,
75)を酸性色に変色するが2,4−ジニトロフルオロ
ベンゼン(pKa=−14,52:塩基性色は無色rl
性色は黄色)を変色しない、すなわち酸性色を呈ざない
試料については、そのHoの値は−14,52<Ho
<−13,75の範囲にあるとされる。なおよく知られ
ているようにHOG、lKa値と近似的に等しい。That is, indicators with a large pK value and indicators with a small pKa value are added to the sample in order, and the change in color of the sample is examined to determine the highest acid strength (-10) of the sample. For example, 2,4-dinitrotoluene (pKa=-13,
75) to acidic color, but 2,4-dinitrofluorobenzene (pKa=-14,52: basic color is colorless rl
For samples that do not change color (natural color is yellow), that is, do not exhibit acidic color, the value of Ho is -14,52<Ho
It is said to be in the range <-13,75. As is well known, HOG is approximately equal to the lKa value.
表1 指示薬とそのpKa値
2−アミノ−5−アゾトルエン +2ベンゼンアゾ
ジフェニルアミン +1.5ジシンナマルアセトン
−3
アントラキノン −8,2p−ニトロト
ルエン −11,352,4−ジニトロ
トルエン −13,752,4−ジニトロフル
オロベンゼン −14,522、4,6−ドリニトロト
ルエン −15,60なお上記の酸強度(HO)の
値は、固体酸物質を測定直前に400〜600℃でN2
中で加熱した後、乾燥雰囲気下で室温まで冷却し直ちに
測定した値である。Table 1 Indicators and their pKa values 2-amino-5-azotoluene +2 benzeneazodiphenylamine +1.5 dicinnamal acetone
-3 Anthraquinone -8,2p-nitrotoluene -11,352,4-dinitrotoluene -13,752,4-dinitrofluorobenzene -14,522,4,6-dolinitrotoluene -15,60 Note that the above acid strength (HO ) value indicates that the solid acid material was heated to 400 to 600°C with N2 immediately before measurement.
This is a value measured immediately after heating in a dry atmosphere and cooling to room temperature in a dry atmosphere.
ところで本発明に係る(xZrO2− ysi02)
−zF・ms固体酸物質では、該固体酸物質中のZrと
Siとの原子比Zr/Siを変化させることによって、
固体酸としての酸強度(H0)が−10>が変化する。By the way, according to the present invention (xZrO2-ysi02)
-zF・ms In the solid acid material, by changing the atomic ratio Zr/Si of Zr and Si in the solid acid material,
The acid strength (H0) as a solid acid changes by -10>.
最も強い酸強度(H0)は、Zr/Si原子比が7/3
近辺で得られ、この場合には得られる(xZrO2−y
si02 )−zF−msの酸強度(HO)は−13,
75>Ho >−14,52にも達する。The strongest acid strength (H0) is when the Zr/Si atomic ratio is 7/3
In this case, (xZrO2-y
The acid strength (HO) of si02)-zF-ms is -13,
It also reaches 75>Ho>-14,52.
K1旦旦量
このような(xZro2−ysi02 )−zF・ms
で示される固体酸物質は、粉末X線回折スペクトル(X
RD)によって分析すると、xZro2・ysi02と
は明確に異なったスペクトルを有している。K1 weight like this (xZro2-ysi02)-zF・ms
The solid acid substance shown by has a powder X-ray diffraction spectrum (X
When analyzed by RD), it has a spectrum clearly different from xZro2/ysi02.
本発明に係る(xZro2・yS102)・zF−mS
(Zrと3iとの原子比7:3)のXRDの回折パター
ンを第1図に示し、また、XZrO2・yS ! 02
(Zrと3iとの原子比3ニア)のXRDの回折パ
ターンを第2図に示す。(xZro2・yS102)・zF-mS according to the present invention
The XRD diffraction pattern of (atomic ratio of Zr and 3i 7:3) is shown in Figure 1, and XZrO2.yS! 02
The XRD diffraction pattern of (atomic ratio of Zr and 3i of 3 near) is shown in FIG.
第1図に示した本発明に係る固体酸物質では、2θ=3
0’ 、50.5°、60°付近に第3図に示したZ
r 02 S i 02の複合酸化物には見られない
新たなピークが生じており、(xZro 2 ・ysi
02 ) −zF−mSはXZrO2・ys iQ2と
は構造的に異なっていることが示される。In the solid acid material according to the present invention shown in FIG. 1, 2θ=3
Z shown in Figure 3 near 0', 50.5°, and 60°
A new peak that is not seen in the complex oxide of r 02 Si 02 appears, and (xZro 2 ・ysi
02) -zF-mS is shown to be structurally different from XZrO2.ys iQ2.
すなわち、本発明において検討したところによると、Z
rO2S!02のS「6処理を受ける前の複合酸化物に
おいてはZrとSiの原子比(Zr/Si)が通常99
.910.1〜10/90の範囲では該複合酸化物のX
RDの回折パターンには顕著なピークは認められず、第
3図に示したのとほぼ同様の、結晶構造としては無定形
の、XRD回析パターンが得られろ。これに対してこの
ZrO2S!02の複合酸化物を5F6rffi理して
1qられる本発明に係わる(xZrO2・ysi02
)−zF−ms (Zr/Siの原子比は99.910
.1〜10/90)の固体酸物質ではそのXRD回析パ
ターンにおいて明瞭な強度の大きい回折ピークが2θ=
28°、300.31.4°、34°、35°、50’
、60℃の付近の位置に認められる。もっともこのX
RDスペクトルにおいてはZr/Siの原子比やSF6
の処理条件などの相異によっては回折ピークの相対強度
比が多少異なることはあるものの、比較的強度の強いピ
ークは前記したとほぼ同じ位置に現われる。このSF5
処理によって出現する新たな回折ピークはZrO2に帰
属されるものであり、これらのXRDスペクトルから、
ZrO2−3i02複合酸化物をSF6で処理すると、
該複合酸化物中でZrO2が準安定正方品系に近づくの
であろうと推測される。また本発明に係わる複合酸化物
中ではSiO2に帰属されるXRDのピークは通常認メ
ラレス、S「6処理シテもS i 02はZrO2とは
異なって結晶化していないと考えられた。That is, according to the present invention, Z
rO2S! The atomic ratio of Zr and Si (Zr/Si) in the composite oxide before undergoing the 02 S "6 treatment is usually 99.
.. In the range of 910.1 to 10/90, X of the composite oxide
No significant peaks were observed in the RD diffraction pattern, and an XRD diffraction pattern with an amorphous crystal structure almost similar to that shown in FIG. 3 was obtained. On the other hand, this ZrO2S! According to the present invention, 1q is obtained by processing the composite oxide of 02 with 5F6rffi (xZrO2・ysi02
)-zF-ms (The atomic ratio of Zr/Si is 99.910
.. 1 to 10/90), the XRD diffraction pattern shows a clear and strong diffraction peak with 2θ=
28°, 300.31.4°, 34°, 35°, 50'
, observed at a position around 60°C. However, this
In the RD spectrum, the Zr/Si atomic ratio and SF6
Although the relative intensity ratio of the diffraction peaks may differ somewhat depending on the processing conditions, relatively strong peaks appear at approximately the same positions as described above. This SF5
New diffraction peaks that appear due to the treatment are attributed to ZrO2, and from these XRD spectra,
When ZrO2-3i02 composite oxide is treated with SF6,
It is presumed that ZrO2 in the composite oxide approaches a metastable tetragonal system. In addition, in the composite oxide according to the present invention, the XRD peak attributed to SiO2 is normally melaless, and it was considered that SiO2 was not crystallized in the S6 treatment, unlike ZrO2.
なお本発明において行われたXRD分析は、以下に示す
条件のもとに、粉体試料を乾燥チッ素雰囲気で調製し又
該雰囲気下で測定した。In the XRD analysis performed in the present invention, a powder sample was prepared in a dry nitrogen atmosphere and measured under the conditions shown below.
V oltage : 40 kvCurr
ent : 100mACurrent
Full :QQQcpsTime Con5t
ant :0.5sec3 Cann1n(I S
I)eed : 4℃/min[) ivergenc
y : 1 / 2゜Receivinc+
5lit :0.15mX線 :C
uKα(H0)が,54A)XPS分析
また本発明に係る(xZrO2・ySiO2)−z「−
m3とZrO2−SiO2との差引よ、X線光電子分光
法(XPS)によっても示される。Voltage: 40kvCurr
ent: 100mA Current
Full: QQQcpsTime Con5t
ant:0.5sec3 Cann1n(I S
I) eed: 4℃/min [) ivergenc
y: 1/2゜Receivinc+
5lit: 0.15mX-ray:C
uKα(H0) is 54A)
The subtraction of m3 and ZrO2-SiO2 is also shown by X-ray photoelectron spectroscopy (XPS).
z ro2−s r o2をS[6で処理する前後のX
PSチャートを、Zrの3d電子について第4図に、「
のIs電子について第5図に、3iの2p電子について
第6図に、そしてOのIs電子について第7図に示す。z ro2-s r X before and after processing ro2 with S[6
The PS chart is shown in Figure 4 for 3d electrons of Zr.
The Is electrons of 3i are shown in FIG. 5, the 2p electrons of 3i are shown in FIG. 6, and the Is electrons of O are shown in FIG.
これらの図より、本発明に係る固体酸物質では、フッ素
原子の1S電了のスペクトルが検出されるとともに、ケ
イ素原子の2p電子の主スペクトルが1ないし2eV高
エネルギー側にシフトしていることがわかる。From these figures, it can be seen that in the solid acid material according to the present invention, the 1S electron spectrum of fluorine atoms is detected, and the main spectrum of 2p electrons of silicon atoms is shifted to the higher energy side by 1 to 2 eV. Recognize.
なお本発明においては、xPS分析は室温下に35〜8
0メツシユの試料を用いて、約1×10’Paの真空度
のもとにX線源としてMgKαまたはAIKαを用いて
行った。In addition, in the present invention, xPS analysis is performed at room temperature at 35 to 8
The experiment was carried out using a sample of 0 mesh under a vacuum of about 1×10'Pa using MgKα or AIKα as an X-ray source.
固 酸物 の調製方法
次に本発明に係る(xZrO2 ・yS i 02 )
・zF−msで示される固体酸物質の製造方法について
説明する。Method for preparing solid acid Next, according to the present invention (xZrO2 ・yS i 02 )
- A method for producing a solid acid substance represented by zF-ms will be explained.
本発明に係る上記のような固体酸物質は、通常の方法で
1qられるZ r02 S i 02で示される複合
金属酸化物を300〜a o o ’c好ましくは40
0〜700℃の温度においてSF6で処理することによ
り得られる。The above-mentioned solid acid substance according to the present invention contains a complex metal oxide represented by Z r02 S i 02 which is prepared by a normal method in a proportion of 300 to 40%.
Obtained by treatment with SF6 at temperatures between 0 and 700°C.
zrO2S!02で示される複合金属酸化物を得るには
、例えばzrO(NO3)2・2■20およびS i
(OC21−15> 4のアンモニア水による加水分解
によってそれぞれ得られるZr(OH)4とSi(OH
)4とを充分に混合し、次いで水洗した後濾過して乾燥
し、その後焼成することによって得られる。上記のZr
O(N03 ) 2−2820の変りにZrOCl2
・8H20を用いてもよく、また5i(OC2ト15)
4の代りに通常のシリカゲルを用いてもよい。zrO2S! In order to obtain the composite metal oxide represented by 02, for example, zrO(NO3)2.2■20 and Si
(Zr(OH)4 and Si(OH) obtained by hydrolysis of OC21-15>4 with aqueous ammonia, respectively)
) 4, and then washed with water, filtered and dried, and then calcined. Zr above
ZrOCl2 instead of O(N03) 2-2820
・8H20 may be used, and 5i (OC2 to 15)
Ordinary silica gel may be used instead of 4.
本発明では、SF6処理に供されるZrO2−3!02
で示される複合金属酸化物を得る方法としては前記方法
に限られず通常知られている共沈法、含浸法などを用い
て調製しても差し支えない。In the present invention, ZrO2-3!02 subjected to SF6 treatment
The method for obtaining the composite metal oxide represented by is not limited to the above method, but may be prepared using commonly known coprecipitation methods, impregnation methods, etc.
なおZrと31との原子比は、前述のとおり99.91
0.1〜10/90好ましくは90/10〜50150
である。このZrO2−SiO2で示される複合金属酸
化物は、300〜800℃好ましくは400〜700℃
の温度でSF6によって処理されるが、このSF6によ
る処理に先立って、上記の処理温度またはそれ以上の温
度でZrO2−3i 02複合金属酸化物を加熱真空排
気することが好ましい。The atomic ratio of Zr and 31 is 99.91 as mentioned above.
0.1-10/90 preferably 90/10-50150
It is. This composite metal oxide represented by ZrO2-SiO2 is heated at a temperature of 300 to 800°C, preferably 400 to 700°C.
However, prior to the treatment with SF6, the ZrO2-3i02 composite metal oxide is preferably heated and evacuated at the above treatment temperature or higher.
ZrO2S i 02複合金属酸化物をS「6で処理す
る際、処理温度が300’C未満であると、得られる(
xZrO2・ySiO2)・7F・msに超強酸点が生
じにくいため好ましくなく、一方800℃を越えると、
同様に得られる(xzro2’ySI02 >−z[−
msに超強酸点が生じにくいため好ましくない。When treating the ZrO2Si02 composite metal oxide with S'6, if the treatment temperature is less than 300'C, the obtained (
xZrO2・ySiO2)・7F・ms is unfavorable because it is difficult to form superacid sites; on the other hand, if it exceeds 800℃,
Similarly obtained (xzro2'ySI02 >-z[-
This is not preferable because super strong acid sites are difficult to form in ms.
ここでxZrO−ysi02複合金属酸化物をSF6で
処理する際の処理温度と酸強度(H0)が−10)との
関係および処理温度と該酸化物に導入されるFおよびS
のilとの関係を表2に示す。Here, we will discuss the relationship between the treatment temperature and acid strength (H0) of -10) when xZrO-ysi02 composite metal oxide is treated with SF6, and the relationship between the treatment temperature and the F and S introduced into the oxide.
Table 2 shows the relationship between il and il.
用いたZ r 02 S i 02中のZrとSiと
の原子比は7/3であり、焼成温度は600℃である。The atomic ratio of Zr to Si in the Z r 02 S i 02 used was 7/3, and the firing temperature was 600°C.
炭化水素の分解方法
次に本発明に係る(xZrO2・ySi02)・ZF−
msで示される固体酸物質を触媒として用いた炭化水素
の分解反応について説明する。Hydrocarbon decomposition method Next, (xZrO2・ySi02)・ZF− according to the present invention
A hydrocarbon decomposition reaction using a solid acid substance represented by ms as a catalyst will be explained.
本発明に係る炭化水素の分解反応は、上記のような(x
ZrO2 ・VS!02 >−zF−mSで示される固
体酸物質の存在下に、炭素数が5〜10のパラフィンま
たは該パラフィンを主成分として含む炭化水素(これら
を炭化水素(a)と呼ぶ)を反応させて、炭素数3〜4
のパラフィンを主成分として含む低級脂肪族炭化水素(
これらを炭化水素(b)と呼ぶ)を製造することを特徴
としている。The hydrocarbon decomposition reaction according to the present invention is as described above (x
ZrO2・VS! In the presence of a solid acid substance represented by 02>-zF-mS, a paraffin having 5 to 10 carbon atoms or a hydrocarbon containing the paraffin as a main component (these are called hydrocarbons (a)) are reacted. , carbon number 3-4
Lower aliphatic hydrocarbons containing paraffin as the main component (
These are characterized by producing hydrocarbons (referred to as hydrocarbons (b)).
本発明の接触反応において原料として用いられる炭化水
素(a>は、炭素数が5〜10のパラフィンまたはこの
パラフィンを主成分として含有する炭化水素でおる。こ
のような炭素数5〜10のパラフィンとしては、n−ペ
ンタン、2−メチルブタン、n−ヘキサン、3−メチル
ペンタン、2゜2−ジメチルブタン、2,3−ジメチル
ブタン、n−ヘプタン、2−メチルヘキサン、3−メチ
ルヘキサン、3−エチルペンタン、2,2−ジメチルペ
ンタン、2.3−ジメチルペンタン、2.4−ジメチル
ペンタン、2,2,3−トリメチルブタン、n−オクタ
ン、3−エチルヘキサン、2゜5−ジメチルヘキサン、
ノナン、デカンなどが具体的に例示されるが、この中で
はn−ヘキサン、3−メチルペンタン、2,3−ジメチ
ルブタン、n−へブタン、2−メチルヘキサン、3−メ
チルヘキサン、3−エチルペンタン、2,2−ジメチル
ペンタン、2.3−ジメチルペンタン、2,4−ジメチ
ルペンタンが好ましく用いられる。The hydrocarbon (a> used as a raw material in the catalytic reaction of the present invention is a paraffin having 5 to 10 carbon atoms or a hydrocarbon containing this paraffin as a main component. As such a paraffin having 5 to 10 carbon atoms) is n-pentane, 2-methylbutane, n-hexane, 3-methylpentane, 2゜2-dimethylbutane, 2,3-dimethylbutane, n-heptane, 2-methylhexane, 3-methylhexane, 3-ethyl Pentane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,2,3-trimethylbutane, n-octane, 3-ethylhexane, 2゜5-dimethylhexane,
Specific examples include nonane and decane, among which n-hexane, 3-methylpentane, 2,3-dimethylbutane, n-hebutane, 2-methylhexane, 3-methylhexane, 3-ethyl Pentane, 2,2-dimethylpentane, 2,3-dimethylpentane, and 2,4-dimethylpentane are preferably used.
本発明では前記パラフィンを単独あるいは2種以上混合
して、接触的に分解することができるだけでなく、この
ようなパラフィン以外にたとえばシクロヘキサン、シク
ロヘキセン、ベンゼン、デカリン、テトラリン、ヘキセ
ン、オクテンなどのアロマティック成分、ナフテン成分
およびオレフィン成分などの他の炭化水素を含み、炭素
数5〜10のパラフィンの含有口が通常30重母%以上
である炭化水素混合物も原料として使用することができ
る。このような炭化水素混合物原料としては、原油の蒸
留分離あるいは接触分解などによって得られる沸点範囲
が通常30〜130℃の範囲にある軽質ナフサなどを例
示できる。In the present invention, it is possible not only to catalytically decompose the above-mentioned paraffins singly or in combination of two or more types, but also to decompose aromatic substances such as cyclohexane, cyclohexene, benzene, decalin, tetralin, hexene, and octene in addition to such paraffins. Hydrocarbon mixtures containing other hydrocarbons such as naphthenic components, naphthenic components, and olefinic components, and in which the content of paraffins having 5 to 10 carbon atoms is usually 30% or more, can also be used as raw materials. Examples of such hydrocarbon mixture raw materials include light naphtha, which is obtained by distillative separation or catalytic cracking of crude oil and whose boiling point range is usually in the range of 30 to 130°C.
このような反応は、通常公知の気相接触反応装置を用い
て、以下のような条件下に行なわれる。Such a reaction is usually carried out using a known gas phase catalytic reaction apparatus under the following conditions.
反応は通常100〜600 ’C1好ましくは200〜
600℃の範囲の温度で行なわれる。反応温度が100
’C未満であると十分な転化率が得られないので好まし
くなく、一方600℃を越えると後述するC1.C2の
留分の生成が増加するため好ましくない。The reaction is usually 100 to 600'C1, preferably 200 to
It is carried out at a temperature in the range of 600°C. reaction temperature is 100
If it is less than C1, it is not preferable because a sufficient conversion rate cannot be obtained, while if it exceeds 600C, C1. This is not preferable because the production of C2 fraction increases.
本発明では原料の炭化水素(a)は予熱器を通して反応
器に所定量送入されるが、この場合の送入量としては常
温、常圧でこの原料が液体の場合には、送入量を液空間
速度(LH3V:Liquid 1lourlySpa
ce Velocity >で表示して、通常はこの値
が0.01〜10hr−1、好ましくは0.1〜5hr
−1の範囲にある。またガス空間速度(G l−I
S V )で表示した場合には、通常10〜10.0O
Ohr−1、好ましくは100〜1,0OOh−の範囲
にある。In the present invention, the raw material hydrocarbon (a) is fed into the reactor in a predetermined amount through a preheater. Liquid hourly space velocity (LH3V: Liquid 1lourlySpa
ce Velocity>, and this value is usually 0.01 to 10 hr-1, preferably 0.1 to 5 hr.
-1 range. Also, the gas hourly space velocity (G l-I
When expressed as SV), it is usually 10 to 10.0O
Ohr-1, preferably in the range 100 to 1,000h-.
反応の圧力に関しては、通常は大気圧下で実施されるが
、必要に応じて適宜加圧して実施することもできる。本
発明では反応を行なうに当たって、窓器内に窒素などの
不活性ガスを適宜の1必要に応じて同伴することも出来
る。Regarding the pressure of the reaction, it is usually carried out under atmospheric pressure, but it can also be carried out under appropriate pressure if necessary. In the present invention, when carrying out the reaction, an inert gas such as nitrogen may be brought into the window as appropriate.
反応器を出た反応生成物は、冷却後ガス生成物と液生成
物に分離したのち、それぞれガスクロマトグラフィーに
よって分析される。The reaction products exiting the reactor are cooled and separated into gas and liquid products, which are each analyzed by gas chromatography.
本発明に係る(xZrO2−ysi02 )−z「・〜
3を触媒として用いて、炭素数が5〜10の炭化水素(
a)を反応させると、ブタン、ペンタンおよびプロパン
が高選択率で生成し、しかも原料である炭化水素(a)
の転化率も極めて高い値を示す。(xZrO2-ysi02)-z"・~
Hydrocarbons having 5 to 10 carbon atoms (
When a) is reacted, butane, pentane and propane are produced with high selectivity, and the raw material hydrocarbon (a)
The conversion rate of is also extremely high.
発明の効果
本発明によりjqられる上記式XZrO2・’i/31
02 ・Z F −m、5で示される固体酸物質は、極
めて強い酸強度を有するとともに水分と接触しても容易
には超強酸点が分解せず、しかも触媒としての使用可能
な温度範囲が広い。Effects of the Invention According to the present invention, the above formula XZrO2·'i/31 is jq
The solid acid substance represented by 02 ・Z F -m, 5 has extremely strong acid strength, the super strong acid point does not decompose easily even when it comes into contact with moisture, and the temperature range in which it can be used as a catalyst is limited. wide.
また炭素数5〜10のパラフィンを含む炭化水素(a)
を上記固体酸物質の存在下に反応させると炭素数3〜4
のパラフィンを主成分とする低級脂肪族炭化水素が高収
率で得られる。Hydrocarbons (a) containing paraffins having 5 to 10 carbon atoms
When reacted in the presence of the above solid acid substance, the carbon number is 3 to 4.
Lower aliphatic hydrocarbons whose main component is paraffin can be obtained in high yield.
以下本発明を実施例によって具体的に説明するが、本発
明はこれら実施例に限定されるものではない。EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.
亙凰■ユ
ZrO(NO3)2 ’2H20の112.39(0,
42mo l >を11の蒸溜水に溶かし、これにNH
3水を加えて溶液のDIを8〜10としてZr(OH)
4を得た。一方Sl (OC2H5)447)37、
5 g (0,18mol)をCN3 0 H50
0ccに溶かしこれにNH3水を加えて5i(Otl)
4を得た。これら2つのゲルをそのまま混合し、ざらに
30分間室温で攪拌した。これらの混合されるゲルを充
分に水洗した後濾過し、混線機で1時間混練した後、1
00℃で15時間乾燥した。乾燥後得られた粉末を35
〜80メツシユに分級し、600 ’Cで3時間空気中
で焼成し、ZrO2−SiO2複合酸化物を調製した。亙凰■ゆうZrO(NO3)2 '2H20の112.39(0,
42 mol> was dissolved in distilled water of step 11, and NH
3 Add water and set the DI of the solution to 8 to 10 to Zr(OH)
I got 4. On the other hand, Sl (OC2H5)447)37,
5 g (0.18 mol) of CN30H50
Dissolve in 0cc and add NH3 water to 5i (Otl)
I got 4. These two gels were mixed directly and stirred roughly for 30 minutes at room temperature. These mixed gels were thoroughly washed with water, filtered, kneaded in a mixer for 1 hour, and then
It was dried at 00°C for 15 hours. The powder obtained after drying was
It was classified into ~80 meshes and calcined in air at 600'C for 3 hours to prepare a ZrO2-SiO2 composite oxide.
このZrO□−8i02複合酸化物2びを石英製の反応
管に充填し、600℃で1時間真空排気処理した後、一
旦室温まで冷却後常圧になるまでS「6ガスを導入した
。この状態で反応管を600℃まで加熱し1時間保持し
た。その後反応管の系内をN2置換した後600 ’C
で1時間真空排気を行なった。This ZrO□-8i02 composite oxide 2 was filled into a quartz reaction tube, and the tube was vacuum-exhausted at 600°C for 1 hour. After cooling to room temperature, S 6 gas was introduced until the pressure reached normal pressure. The reaction tube was heated to 600°C and held for 1 hour.Then, the inside of the reaction tube was replaced with N2, and then heated to 600'C.
Vacuum evacuation was performed for 1 hour.
得られた(ZrO2 ”5i02 >” F”S中のF
およびSを測定し、また比表面積を測定した結果を表−
3に示す。またSF6で処理する前のZrO2−SiO
2の比表面積をも表−3に示す。Obtained (ZrO2 “5i02 >”F”F in S
The table below shows the results of measuring S and S as well as the specific surface area.
Shown in 3. Also, ZrO2-SiO before treatment with SF6
The specific surface area of 2 is also shown in Table 3.
またSF6で処理する前の2rO□−8io2の比表面
積をも表−3に伴わせて示す。ざらにこの物質の酸強度
(H0)が−10)を明細書に説明した方法により指示
薬法で測定したところ、−13,75>1−to>−1
4,52であり、この物質が固体超強酸であることが示
される。なお得られた物質中のZrと3iとの原子比は
、原料配合比かられかるように7=3である。Table 3 also shows the specific surface area of 2rO□-8io2 before treatment with SF6. Roughly, the acid strength (H0) of this substance (-10) was measured by the indicator method according to the method explained in the specification, and it was found to be -13,75>1-to>-1.
4,52, indicating that this material is a solid superacid. The atomic ratio of Zr and 3i in the obtained substance was 7=3 as seen from the raw material blending ratio.
衷凰■ユ
Zr:3i:の原子比を7=3から9:1に変えた以外
は、実施例1と全く同様に行なった。得られた物質中の
FおよびSならびに比表面積を測定して表−3に示す。The same procedure as in Example 1 was carried out except that the atomic ratio of Zr:3i: was changed from 7=3 to 9:1. F and S in the obtained substance and specific surface area were measured and shown in Table 3.
またこの物質の酸強度(Ho )を実施例1と同様にし
て測定した。Further, the acid strength (Ho) of this material was measured in the same manner as in Example 1.
X凰五ユ
Zr:Si:の原子比を7:3から1=1に変えた以外
は、実施例1と全く同様に行った。得られた物質中のF
およびSならびに比表面積を測定した結果を表−3に示
す。またこの物質の酸強度(t−10>を実施例1と同
様にして測定した。The same procedure as in Example 1 was carried out except that the atomic ratio of Zr:Si: was changed from 7:3 to 1=1. F in the obtained substance
Table 3 shows the results of measuring S and specific surface area. Further, the acid strength (t-10>) of this material was measured in the same manner as in Example 1.
X塵I
Zr:Siの原子比を3ニアに変えた以外は、実施例1
と同様にした。1qられた物質中の「およびSならびに
比表面積を測定した結果を表−3に示す。またこの物質
の酸強度(+−10>を実施例1と同様にして測定した
。Example 1 except that the atomic ratio of X dust I Zr:Si was changed to 3 near
I did the same thing. Table 3 shows the results of measuring the S and specific surface area of the 1q substance. Also, the acid strength (+-10>) of this substance was measured in the same manner as in Example 1.
この表3より、Zr/Si原子比が7/3近辺では、酸
強度が−13,75以下という極めて強い超強酸点が(
xZrO2 ”y’s!02 >−zF・ms中に生じ
ていることがわかる。From this Table 3, it can be seen that when the Zr/Si atomic ratio is around 7/3, there is an extremely strong super acid site with an acid strength of -13.75 or less (
It can be seen that this occurs during xZrO2 ``y's!02 >-zF・ms.
実施例5
実施例1で19られたZr :3 iの原子比が7/3
である固体超強酸を触媒として用いて、以下のようにし
てn−ヘキサンの分解反応を行なった。Example 5 The atomic ratio of Zr:3i, which was 19 in Example 1, was 7/3
A decomposition reaction of n-hexane was carried out as follows using a solid super strong acid as a catalyst.
反応器としてガスクロに直結されたパルスリアクターを
用い、このパルスリアクターに触媒を100mg充填し
、反応圧を1に’j/ciGとしまた反応温度を200
℃として、n−ヘキサンを0.5μg供給して反応を行
なった結果を表4に示した。A pulse reactor directly connected to a gas chromatography system was used as a reactor, and the pulse reactor was filled with 100 mg of catalyst, the reaction pressure was set to 1'j/ciG, and the reaction temperature was set to 200
Table 4 shows the results of the reaction performed by supplying 0.5 μg of n-hexane.
反応生成物の分析およびn−ヘキサンの転化率は、パル
スリアクターに直結されたガスクロによって行なった。Analysis of the reaction products and conversion rate of n-hexane were performed by gas chromatography directly connected to the pulse reactor.
実施例6
実施例1で1qられたZr:3iの原子比が7/3でお
る固体超強酸を触媒として用いてn−ヘキサンの分解反
応を行うに先立って、パルスリアクターに充填された、
該触媒に0.5μgの水を10パルス600 ’Cで注
入して触媒をスチームと接触させた後、同温度で30分
間N2ガスを流してから反応を200’Cで行った結果
を表4に示した。本発明の固体酸物質は水と接触しても
触媒としての活性はほと/Vど変化しないことがわかる
。Example 6 Prior to carrying out a decomposition reaction of n-hexane using the solid super strong acid with an atomic ratio of Zr:3i of 7/3 obtained in Example 1 as a catalyst, a pulse reactor was filled with
Table 4 shows the results of injecting 0.5 μg of water into the catalyst at 600'C for 10 pulses, bringing the catalyst into contact with steam, flowing N2 gas at the same temperature for 30 minutes, and then carrying out the reaction at 200'C. It was shown to. It can be seen that the catalytic activity of the solid acid material of the present invention hardly changes even when it comes into contact with water.
X思[fi
実施例5において、反応温度を250’Cとした以外は
実施例5と同様にして、n−ヘキサンの分解反応を行な
った。In Example 5, the decomposition reaction of n-hexane was carried out in the same manner as in Example 5 except that the reaction temperature was 250'C.
結果を表4に示す。The results are shown in Table 4.
丈思■君
実施例5において、反応温度を300’Cとした以外は
実施例5と同様にして、n−ヘキサンの分解反応を行な
った。In Example 5, n-hexane was decomposed in the same manner as in Example 5 except that the reaction temperature was 300'C.
結果を表4に示す。The results are shown in Table 4.
ル校叢ユニュ
実施例5〜8において用いた触媒において、該触媒を得
るためのSF6処理を行わなかったZrO2−3i 0
2 (Zr/S i =7/3)を用いて該実施例と
同様にして反応を行ったが、この場合には反応しなかっ
た。In the catalysts used in Examples 5 to 8, ZrO2-3i 0 was not subjected to SF6 treatment to obtain the catalysts.
2 (Zr/S i =7/3), the reaction was carried out in the same manner as in the example, but no reaction occurred in this case.
X匹五旦ニュ旦
実施例1において、ZrO(NO3>2−2H20とS
i (QC2tl 5 ) 4とから得られたZrO
2S i 02複合酸化物を700’Cで2時間焼成し
た後、SF6ガスで600℃の温度で1時間処理してZ
rO2−3i02−F−3触媒を調製し、この固体超強
酸を用い反応温度を200℃、300′C1350’C
とした以外は実施例5と同様にして、n−ヘキサンの分
解反応を行なった。In Example 1, ZrO (NO3>2-2H20 and S
i (QC2tl 5 ) 4 and ZrO obtained from
Z
rO2-3i02-F-3 catalyst was prepared, and the reaction temperature was adjusted to 200°C and 300'C1350'C using this solid super acid.
The decomposition reaction of n-hexane was carried out in the same manner as in Example 5 except for the following.
結果を表5に示す。The results are shown in Table 5.
宋茄1口」しニエA
実施例1においてZ r O(NO3>2 ・2H20
と3!(OC2115>4とから得られたZrO2S!
02複合酸化物を600°Cで2時間焼成した後、SF
6ガスで500 ’Cの温度で1時間処理してZrO2
”S !02 ’ F ’S触媒を調製し、この固体超
強酸を用いて250℃、300 ’C1350℃とした
以外は、実施例5と同様にしてn−ヘキサンの分解反応
を行なった。In Example 1, Z r O (NO3>2 ・2H20
And 3! (ZrO2S obtained from OC2115>4!
After baking the 02 composite oxide at 600°C for 2 hours, SF
ZrO2 was treated with 6 gases at a temperature of 500'C for 1 hour.
A decomposition reaction of n-hexane was carried out in the same manner as in Example 5, except that a "S!02'F'S catalyst was prepared and the solid superacid was used at 250°C and 300'C1350°C.
結果を表6に示す。The results are shown in Table 6.
第1図及び第2図は(X Z r02 ・ys ! 0
2 )−zF−ms (x/y=7/3.3/7)の粉
末X線回折スペクトルであり、第3図はXZrO2・’
y’S ! 02 (x/y=7/3)のX線回折ス
ペクトルである。また第4図には、xZrO2・ysr
o のSF6処理前後のZr3d電子のX線光電子分
光法によるスペクトルを示し、第5図にはXZrO2”
ys ! 02のS「6処理前後のF1S電子のX線
光電子分光法によるスペクトルを示し、第6図にはXZ
rO2・ySiO2のSF6処理前後の5i2p電子の
X線光電子分光法によるスペクトルを示し、第7図には
XZrO2・ySiO2のSF6処理前後のOIS電子
のX線光電子分光法によるスペクトルを示す。Figures 1 and 2 are (X Z r02 ・ys ! 0
2)-zF-ms (x/y=7/3.3/7), and Figure 3 shows the powder X-ray diffraction spectrum of
y'S! 02 (x/y=7/3). Also, in Fig. 4, xZrO2・ysr
Fig. 5 shows the spectra of Zr3d electrons before and after SF6 treatment of
ys! The spectra of F1S electrons before and after the 02S6 treatment are shown by X-ray photoelectron spectroscopy.
The spectra of 5i2p electrons obtained by X-ray photoelectron spectroscopy before and after the SF6 treatment of rO2.ySiO2 are shown, and FIG. 7 shows the spectra of OIS electrons obtained by X-ray photoelectron spectroscopy before and after the SF6 treatment of XZrO2.ySiO2.
Claims (1)
・・・・・〔 I 〕〔式中、xとyはZrO_2とSi
O_2のモル数を示しx/yの値はZr/Siの原子数
比を示す。 またzおよびmは各々(xZrO_2・ySiO_2)
の重量に対するF原子の重量%およびS原子の重量%を
示す。そしてx/yは99.9/0.1〜10/90で
あり、zは0.1〜10であり、mは0.01〜5の範
囲にある。〕で示される複合金属酸化物であって、酸強
度(H_0)が−8.2以下の強酸点を有していること
を特徴とする、ZrO_2−SiO_2系固体酸物質。 2、ZrO_2−SiO_2複合金属酸化物を300〜
800℃の温度においてSF_6で処理することを特徴
とする、下記式[ I ]で示され酸強度(H_0)が−
8.2以下の強酸点を有するZrO_2−SiO_2系
固体酸物質の製造方法: 式(xZrO_2・ySiO_2)・zF・mS・・・
・・・〔 I 〕〔式中、xとyはZrO_2とSiO_
2のモル数を示し、x/yの値はZr/Siの原子数比
を示す。 またzおよびmは各々(xZrO_2・ySiO_2)
の重量に対するF原子の重量%およびS原子の重量%を
示す。そしてx/yは99.9/0.1〜10/90で
あり、zは0.1〜10であり、mは0.01〜5の範
囲にある。〕 3、炭素数5〜10のパラフィンまたは該パラフィンを
主成分として含む炭化水素(これらを炭化水素(a)と
呼ぶ)を下記式[I]で示されるZrO_2−SiO_
2系固体酸物質の存在化に反応させて、炭素数3〜4の
パラフィンを主成分とする低級脂肪族炭化水素(b)を
製造することを特徴とする、炭化水素(a)の分解方法
: 式(xZrO_2・ySiO_2)・zF・mS・・・
・・・〔 I 〕〔式中、xとyはZrO_2とSiO_
2のモル数を示し、x/yの値はZr/Siの原子数比
を示す。 またzおよびmは各々(xZrO_2・ySiO_2)
の重量に対するF原子の重量%およびS原子の重量%を
示す。そしてx/yは99.9/0.1〜10/90で
あり、zは0.1〜10であり、mは0.01〜5の範
囲にある。〕[Claims] 1. Formula (xZrO_2・ySiO_2)・zF・mS・
...[I] [In the formula, x and y are ZrO_2 and Si
It shows the number of moles of O_2, and the value of x/y shows the atomic ratio of Zr/Si. Also, z and m are each (xZrO_2・ySiO_2)
The weight % of F atoms and the weight % of S atoms are shown relative to the weight of . And x/y is in the range of 99.9/0.1 to 10/90, z is in the range of 0.1 to 10, and m is in the range of 0.01 to 5. ] A ZrO_2-SiO_2-based solid acid material, which is a composite metal oxide represented by the following formula and has a strong acid point with an acid strength (H_0) of -8.2 or less. 2. ZrO_2-SiO_2 composite metal oxide from 300 to
Characterized by treatment with SF_6 at a temperature of 800°C, the acid strength (H_0) is -
Method for producing ZrO_2-SiO_2-based solid acid material having a strong acid point of 8.2 or less: Formula (xZrO_2・ySiO_2)・zF・mS...
... [I] [In the formula, x and y are ZrO_2 and SiO_
The value of x/y indicates the atomic ratio of Zr/Si. Also, z and m are each (xZrO_2・ySiO_2)
The weight % of F atoms and the weight % of S atoms are shown relative to the weight of . And x/y is in the range of 99.9/0.1 to 10/90, z is in the range of 0.1 to 10, and m is in the range of 0.01 to 5. ] 3. Paraffin having 5 to 10 carbon atoms or a hydrocarbon containing the paraffin as a main component (these are referred to as hydrocarbons (a)) is ZrO_2-SiO_ shown by the following formula [I].
A method for decomposing hydrocarbons (a), which comprises producing lower aliphatic hydrocarbons (b) whose main component is paraffin having 3 to 4 carbon atoms by reacting with the presence of a 2-based solid acid substance. : Formula (xZrO_2・ySiO_2)・zF・mS...
... [I] [In the formula, x and y are ZrO_2 and SiO_
The value of x/y indicates the atomic ratio of Zr/Si. Also, z and m are each (xZrO_2・ySiO_2)
The weight % of F atoms and the weight % of S atoms are shown relative to the weight of . And x/y is in the range of 99.9/0.1 to 10/90, z is in the range of 0.1 to 10, and m is in the range of 0.01 to 5. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6458386A JPH0649568B2 (en) | 1986-03-22 | 1986-03-22 | Solid acid substance, method for producing the same, and method for decomposing hydrocarbon using the solid acid substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6458386A JPH0649568B2 (en) | 1986-03-22 | 1986-03-22 | Solid acid substance, method for producing the same, and method for decomposing hydrocarbon using the solid acid substance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62223013A true JPS62223013A (en) | 1987-10-01 |
JPH0649568B2 JPH0649568B2 (en) | 1994-06-29 |
Family
ID=13262407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6458386A Expired - Lifetime JPH0649568B2 (en) | 1986-03-22 | 1986-03-22 | Solid acid substance, method for producing the same, and method for decomposing hydrocarbon using the solid acid substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649568B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100441299C (en) * | 2005-11-15 | 2008-12-10 | 上海中远化工有限公司 | Zirconium dioxide loaded microsphere type silica gel superstrong acid catalyst |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101229946B1 (en) * | 2011-04-22 | 2013-02-05 | 주식회사 이엔 | Fabrication method of catalyst based on the nano-silica to decompose PFC gaseous from semiconductor process, and Catalyst based on the nano-silicate to decompose the PFC manufactured by the same |
-
1986
- 1986-03-22 JP JP6458386A patent/JPH0649568B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100441299C (en) * | 2005-11-15 | 2008-12-10 | 上海中远化工有限公司 | Zirconium dioxide loaded microsphere type silica gel superstrong acid catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH0649568B2 (en) | 1994-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100327891B1 (en) | Solid acid catalyst and process for preparing the same | |
JP2566814B2 (en) | Solid acid catalyst for hydrocarbon conversion and method for producing the same | |
DE69100463T2 (en) | Zeolitic catalyst and its application in the aromatization of C2-C4 hydrocarbons. | |
Prates et al. | Heterogeneous acid catalyst based on sulfated iron ore tailings for oleic acid esterification | |
JPS58208131A (en) | High silica zeolite beta and manufacture | |
EP1060791B1 (en) | Solid acid catalyst, method for preparing the same and reaction using the same | |
KR20160118268A (en) | Conversion of 2,3-butanediol to butadiene | |
JPS61263932A (en) | Method for isomerizing hydrocarbon | |
JP3989078B2 (en) | Method for producing solid acid catalyst | |
JPS62223013A (en) | Solid acid substance, production thereof and decomposition of hydrocarbon using said solid acid substance | |
JPS61153140A (en) | Production of solid acid catalyst | |
IT9020744A1 (en) | PROCEDURE FOR OLIGOMERIZING LIGHT OLEFINS | |
JP2610490B2 (en) | Solid acid catalyst for alkylation reaction | |
JP3730792B2 (en) | Hydrocarbon isomerization process | |
JPH0725547B2 (en) | Solid acid substance and method for producing the same | |
JP2601866B2 (en) | Solid acid catalyst for alkylation reaction | |
JPH0725546B2 (en) | Solid acid substance and method for producing the same | |
JP3922681B2 (en) | Hydrocarbon isomerization process and solid acid catalyst for isomerization | |
Schmidtmeyer et al. | Stoichiometric and nonstoichiometric Al P O catalysts: Studies with the probe molecule 2-methylcyclohexanol | |
JP2001070794A (en) | Solid acid catalyst containing platinum group metal component | |
Zaki et al. | A surface study of zirconia-based solid acids by Laser Raman spectroscopy of adsorbed pyridine | |
JPH1157478A (en) | Method for producing solid acid catalyst | |
JP6892187B2 (en) | Manufacturing method of conjugated diene | |
Shmachkova et al. | On the Effect of the Strength of Acid Sites in Heterogeneous Catalysts on the Activity in the Skeletal Isomerization of n-Butane | |
JPS6168138A (en) | Manufacture of solid acid catalyst |