[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6222089B2 - - Google Patents

Info

Publication number
JPS6222089B2
JPS6222089B2 JP54063469A JP6346979A JPS6222089B2 JP S6222089 B2 JPS6222089 B2 JP S6222089B2 JP 54063469 A JP54063469 A JP 54063469A JP 6346979 A JP6346979 A JP 6346979A JP S6222089 B2 JPS6222089 B2 JP S6222089B2
Authority
JP
Japan
Prior art keywords
temperature
slab
furnace
shielding plate
noise source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54063469A
Other languages
Japanese (ja)
Other versions
JPS55155218A (en
Inventor
Tooru Inochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6346979A priority Critical patent/JPS55155218A/en
Publication of JPS55155218A publication Critical patent/JPS55155218A/en
Publication of JPS6222089B2 publication Critical patent/JPS6222089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/70Passive compensation of pyrometer measurements, e.g. using ambient temperature sensing or sensing of temperature within housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は鉄鋼の熱延鋼板製造工程に先立つ加熱
炉内におけるスラブの表面温度の測定等比較的高
温の炉内被加熱物体の温度の測定に好適に利用で
きる炉内被加熱物体の表面温度測定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an in-furnace device that can be suitably used for measuring the temperature of objects to be heated in a relatively high-temperature furnace, such as measuring the surface temperature of a slab in a heating furnace prior to the manufacturing process of hot-rolled steel sheets. This invention relates to a method for measuring the surface temperature of a heated object.

前述した加熱炉において被加熱物体であるスラ
ブの表面温度を連続的にしかもなるべく正確に測
定したいという強い要請がある。
There is a strong demand for measuring the surface temperature of a slab, which is an object to be heated, continuously and as accurately as possible in the above-mentioned heating furnace.

すなわち、スラブの表面温度を正確に測定する
ことができると、スラブが所定の抽出温度に達し
た直後に炉から抽出し圧延工程に進めることが可
能となり、その結果熱管理を効率良く適確に行な
うことができ省エネルギーの観点からも極めて有
効であるからである。
In other words, if the surface temperature of the slab can be measured accurately, it will be possible to extract the slab from the furnace and proceed to the rolling process immediately after it reaches the predetermined extraction temperature, resulting in efficient and accurate heat management. This is because it is extremely effective from the viewpoint of energy saving.

ところが従来一般に行なわれている加熱炉内の
スラブの測温方法は熱電対を保護管内に収容し、
加熱炉内に突出させ、この熱電対によつて炉内雰
囲気温度を測定し、それによつて加熱炉の操業管
理を行なつている。従つてスラブの温度を直接測
定するものではないので正確な温度を測定してい
るとはいえない。そのため実際の操業では後工程
である圧延に支障をきたさないようにスラブの抽
出温度を所定温度より若干高めにとつたり、また
在炉時間を焼上り時間より充分長くとつたりして
いる。そのため必要以上の無駄なエネルギーを消
費していた。
However, the conventional method of measuring the temperature of a slab inside a heating furnace is to house a thermocouple in a protective tube.
The thermocouple is protruded into the heating furnace, and the temperature of the atmosphere inside the furnace is measured by the thermocouple, thereby controlling the operation of the heating furnace. Therefore, since the temperature of the slab is not directly measured, it cannot be said that the temperature is accurately measured. Therefore, in actual operation, the extraction temperature of the slab is set slightly higher than the predetermined temperature so as not to interfere with the subsequent rolling process, and the furnace time is set to be sufficiently longer than the baking time. As a result, more energy was wasted than necessary.

なおスラブに接触式温度計を直接接触させれば
スラブの温度を正確に測定することができる。し
かしスラブが加熱炉中を移動中に前記温度計を接
触させると温度計が摩耗させられるので、連続測
温には不適当である。そこで前述のような炉内雰
囲気温度の測定等によりスラブ温度を推定すると
いう方法によらざるを得ないというのが現状であ
る。
Note that the temperature of the slab can be accurately measured by bringing a contact thermometer into direct contact with the slab. However, if the thermometer is brought into contact with the slab while it is moving through the heating furnace, the thermometer will be worn out, making it unsuitable for continuous temperature measurement. Therefore, at present, there is no choice but to rely on a method of estimating the slab temperature by measuring the furnace atmosphere temperature as described above.

そのため連続測温に適している放射測温法が着
目され、種々の提案がなされている。しかし加熱
炉内を移動する物体の表面温度の測定については
解決されるべき種々の問題が残されている。これ
等の問題を第1図を参照して説明する。第1図は
炉とスラブと放射測温計の位置関係を示す略図で
ある。加熱炉3中のスラブ1は炉3の内壁方向か
らの放射熱により加熱される。加熱炉3内のスラ
ブ1は紙面に直角の方向に順次搬送されているも
のとする。放射測温計4は、スラブ表面の放射を
光学系4aにより変換素子4b上にもたらして放
射エネルギーに対応する出力を得るものである。
4cは光軸を包囲する筒である。
Therefore, attention has been paid to the radiation thermometry method, which is suitable for continuous temperature measurement, and various proposals have been made. However, various problems remain to be solved regarding the measurement of the surface temperature of objects moving within a heating furnace. These problems will be explained with reference to FIG. FIG. 1 is a schematic diagram showing the positional relationship between a furnace, a slab, and a radiation thermometer. The slab 1 in the heating furnace 3 is heated by radiant heat from the direction of the inner wall of the furnace 3. It is assumed that the slabs 1 in the heating furnace 3 are sequentially transported in a direction perpendicular to the plane of the paper. The radiation thermometer 4 brings radiation from the slab surface onto a conversion element 4b using an optical system 4a to obtain an output corresponding to the radiation energy.
4c is a cylinder surrounding the optical axis.

スラブ1は周囲から加熱されるのであるから周
囲温度T3の方がスラブ温度よりT1よりもはるか
に高い。したがつて周囲からの放射エネルギーが
何等かの理由により前記変換素子4bに達する
と、その影響は大きい。この周囲からのまわりこ
みを迷光雑音成分といつている。
Since the slab 1 is heated from the surroundings, the ambient temperature T 3 is much higher than the slab temperature T 1 . Therefore, if radiant energy from the surroundings reaches the conversion element 4b for some reason, its influence will be significant. This interference from the surroundings is called the stray light noise component.

またスラブ表面は酸化を伴ない粗面となつてい
るから周囲からの迷光は拡散的反射により放射測
温計に容易に入射する。スラブ表面が拡散的反射
をすることから迷光の出所を特定し、定量化する
ことは困難である。
Furthermore, since the slab surface is rough with oxidation, stray light from the surroundings easily enters the radiation thermometer due to diffuse reflection. Due to the diffuse reflection of the slab surface, it is difficult to identify and quantify the source of stray light.

この迷光雑音を極力少なくするため、あるいは
迷光雑音の影響を定量化するために種々の提案が
行なわれている。例えば本出願又は特公昭53−
47713号、発明の名称炉内物体の測温方法および
装置において炉内に迷光を遮蔽するための遮蔽機
構を設けることを提案している。この遮蔽機構は
第1図に示した筒4cの下端にスラブ1に対向す
る円板を付加したような形状のものである。この
遮蔽機構は水冷されており、それ自体大きな放射
エネルギーを放出しないので遮蔽機構からの放射
がスラブ1の表面で反射されて測温計の指示に影
響を与えるという問題はない。
Various proposals have been made to reduce this stray light noise as much as possible or to quantify the influence of stray light noise. For example, this application or Japanese Patent Publication No. 53-
No. 47713, title of the invention, proposes providing a shielding mechanism for shielding stray light in the furnace in a method and apparatus for measuring the temperature of objects inside the furnace. This shielding mechanism has a shape in which a disk facing the slab 1 is added to the lower end of the cylinder 4c shown in FIG. This shielding mechanism is water-cooled and does not itself emit a large amount of radiant energy, so there is no problem of radiation from the shielding mechanism being reflected on the surface of the slab 1 and affecting the readings of the thermometer.

しかし加熱炉の場合炉内の温度は通常1000℃以
上の高温であり、スラブの温度も同様に高温であ
るから、スラブの炉内移動速度が小さいときは、
スラブ表面がかなり長い時間、比較的低温の遮蔽
板に対面させられ冷却され、外乱の問題が生じ
る。また水漏れ等の故障が大事故を招く可能性が
ある。
However, in the case of a heating furnace, the temperature inside the furnace is usually over 1000℃, and the temperature of the slab is also high, so when the moving speed of the slab inside the furnace is low,
The slab surface faces a relatively cold shield for a considerable period of time and is cooled, creating disturbance problems. Furthermore, malfunctions such as water leaks may lead to major accidents.

本発明の目的は放射測温における前記諸問題を
解決し、精度の高い連続測温を可能とする炉内物
体の表面温度測定方法を提供することにある。
An object of the present invention is to provide a method for measuring the surface temperature of an object in a furnace, which solves the above-mentioned problems in radiation temperature measurement and enables continuous temperature measurement with high accuracy.

前記目的を達成するために、本発明者は雑音成
分を完全に除去することは困難を伴なうので既知
の基準雑音源で不確定な迷光雑音をマスクすると
ともに定量化できる基準雑音の影響を除去すれば
被加熱物体の温度が得られることに着目した。す
なわち、本発明による炉内物体の測温方法は、炉
内の被測温物体の表面に対向して配置された遮蔽
板の中央開口部から得られる前記物体方向からの
放射エネルギーを放射温度計により測温する炉内
物体の表面温度測定方法において、前記遮蔽板を
既知高温度の基準雑音源とするとともに、前記基
準雑音源である遮蔽板により炉内壁方向から放射
温度計への放射雑音のまわり込みを遮断し、前記
放射温度計により得られる指示から前記基準雑音
源の寄与分を減算することにより被測温物体の表
面温度を得ることを特徴とするものである。
In order to achieve the above object, the inventors of the present invention masked the uncertain stray light noise with a known reference noise source, since it is difficult to completely remove the noise component, and at the same time, they masked the influence of the quantifiable reference noise. We focused on the fact that the temperature of the object to be heated can be obtained by removing it. That is, in the method for measuring the temperature of an object in a furnace according to the present invention, radiant energy from the direction of the object obtained from the central opening of a shielding plate placed opposite to the surface of the object to be measured in the furnace is used as a radiation thermometer. In a method for measuring the surface temperature of an object in a furnace, the shielding plate is used as a reference noise source at a known high temperature, and the shielding plate, which is the reference noise source, is used to measure radiation noise from the direction of the furnace inner wall to the radiation thermometer. The present invention is characterized in that the surface temperature of the object to be measured is obtained by blocking the interference and subtracting the contribution of the reference noise source from the indication obtained by the radiation thermometer.

以下図面等を参照して本発明方法をさらに詳し
く説明する。
The method of the present invention will be explained in more detail below with reference to the drawings and the like.

第2図は本発明方法を実施するための装置を示
す。第2図Aは平面的な略図である。先に第1図
に関連して説明した部分と共通の部分は同一の符
号を付してある。放射測温における測温誤差は放
射温度計の検出波長、温度等の関数であり、波長
に比例する。そこでこの実施例は放射温度計4の
検出波長λをできるだけ短く例えばλ=0.65λm
としてある。測温域が高いので前記波長でも充分
な感度が得られる。スラブ1の前記波長域での放
射率εは0.8程度であり変動は小さい。前述の
ように周囲温度T3は高くしかも燃焼状態によつ
て大きく変動するが、遮蔽板2によりまわり込み
を無視できる程度に阻止するようにしてある。こ
の遮蔽板2のスラブ1に対向する面が基準雑音源
を形成している。この遮蔽板5は炉内において自
然加熱されるのでスラブ1の温度より高い温度に
耐える耐熱性の秀れた材料を使用する。たとえば
シリコンカーバイド(SiC)は1400℃以上の耐熱
性をもち熱電導率は炭素に準じ、熱膨張率も小さ
く、その上機械加工ができるので、この遮蔽板2
の素材として利用できる。この放射率は公知のよ
うに0.8であるが表面を粗面化することにより
0.85程度にすることができる。
FIG. 2 shows an apparatus for carrying out the method of the invention. FIG. 2A is a schematic plan view. Parts common to those previously described in connection with FIG. 1 are given the same reference numerals. The temperature measurement error in radiation thermometry is a function of the detection wavelength, temperature, etc. of the radiation thermometer, and is proportional to the wavelength. Therefore, in this embodiment, the detection wavelength λ of the radiation thermometer 4 is made as short as possible, for example, λ=0.65λm.
It is as follows. Since the temperature measurement range is high, sufficient sensitivity can be obtained even at the above wavelengths. The emissivity ε 1 of the slab 1 in the wavelength range is about 0.8, and fluctuations are small. As mentioned above, the ambient temperature T 3 is high and fluctuates greatly depending on the combustion state, but the shielding plate 2 prevents the interference to a negligible extent. The surface of this shielding plate 2 facing the slab 1 forms a reference noise source. Since the shielding plate 5 is naturally heated in the furnace, a material with excellent heat resistance that can withstand temperatures higher than the temperature of the slab 1 is used. For example, silicon carbide (SiC) has a heat resistance of 1400℃ or more, has a thermal conductivity similar to that of carbon, has a small coefficient of thermal expansion, and can be machined, so this shielding plate 2
It can be used as a material. As is known, this emissivity is 0.8, but by roughening the surface,
It can be set to about 0.85.

この遮蔽板2の温度は下面に近接して埋め込ま
れた熱電対5により常時測定されている。放射温
度計4の出力および熱電対5の出力はそれぞれ
AD変換回路6,7を介して演算処理回路8に印
加される。
The temperature of this shielding plate 2 is constantly measured by a thermocouple 5 embedded close to the bottom surface. The output of radiation thermometer 4 and the output of thermocouple 5 are respectively
The signal is applied to the arithmetic processing circuit 8 via the AD conversion circuits 6 and 7.

演算処理回路8は後述する(12)式の演算処理を行
なつてスラブ1表面の黒体温度Eb(T1)を出力す
る。
The arithmetic processing circuit 8 performs the arithmetic processing of equation (12), which will be described later, and outputs the blackbody temperature Eb (T 1 ) of the surface of the slab 1.

次に式を用いて本発明方法の根底となる測温原
理を説明する。
Next, the temperature measurement principle underlying the method of the present invention will be explained using equations.

スラブ1の温度、放射率をそれぞれT1、ε
とする。基準雑音源である遮蔽板2の温度、放射
率をそれぞれT2、εとする。周囲空間壁は温
度T3の黒体空洞とみなす。
The temperature and emissivity of slab 1 are T 1 and ε 1, respectively.
shall be. The temperature and emissivity of the shielding plate 2, which is the reference noise source, are assumed to be T 2 and ε 2 , respectively. The surrounding space wall is considered as a black body cavity with temperature T 3 .

基準雑音源を円板とし、その半径をR、そのス
ラブとの間隔をHとする。スラブおよび基準雑音
源の表面は、いずれも拡散的反射面とみなせるか
ら各面からの単位面積あたりの実効放射エネルギ
ーをGi(i=1、2、3、)とすると一般に次式
が成り立つ、 Gi=εi・Eb(Ti)+(1−εi)〓〓GK・Fik
(1) ここでEb(Ti):温度Tiの黒体放射エネルギー FiK:面iから面kへの放射の到達割合を
表わす形態係数(ただしFjj=0、
j=1、2) 第2図に(1)式を適用すれば、次の諸式が得られ
る。
The reference noise source is a disk, its radius is R, and the distance between it and the slab is H. The surfaces of the slab and the reference noise source can both be regarded as diffuse reflection surfaces, so if the effective radiation energy per unit area from each surface is G i (i = 1, 2, 3,), the following formula generally holds: G i =εi・Eb(Ti)+(1−εi)〓〓GK・Fik
(1) Here, Eb(Ti): Blackbody radiation energy at temperature Ti FiK: View factor representing the proportion of radiation reaching surface from surface i to surface k (however, Fjj=0,
j=1, 2) By applying equation (1) to Figure 2, the following equations are obtained.

G1=ε・Eb(T1)+ (1−ε)(G2F12+G3F13) (2) G2=ε・Eb(T2)+ (1−ε)(G1F21+G3F23) (3) G3=Eb(T3) (4) (2)〜(4)式を整理してG1についてまとめると次
式になる。
G 1 = ε 1・Eb(T 1 )+ (1−ε 1 )(G 2 F 12 +G 3 F 13 ) (2) G 22・Eb(T 2 )+(1−ε 2 )( G 1 F 21 +G 3 F 23 ) (3) G 3 =Eb(T 3 ) (4) When formulas (2) to (4) are rearranged and summarized for G 1 , the following formula is obtained.

G1=ε/1−(1−ε)(1−ε)F1221・Eb(T1)+(1−ε)ε12/1−(1−ε)(
1−ε)F1221・Eb(T2) +(1−ε){F13+(1−ε)F2312}/1−(1−ε)(1−ε)F1221・Eb(T3
)(5) (5)式のG1は放射温度計による検出値を表わし
右辺第1項はスラブからのみかけの放射、第2項
は基準雑音源からの寄与、第3項は周囲からの迷
光雑音を示している。(5)式を次式のように書き直
す。
G 1 = ε 1 /1−(1−ε 1 )(1−ε 2 )F 12 F 21 ·Eb(T 1 )+(1−ε 12 F 12 /1−(1−ε 1 ) (
1- ε2 ) F12F21・Eb( T2 )+(1- ε1 ){ F13 +(1- ε2 ) F23F12 }/1- ( 1- ε1 ) (1-ε 2 ) F 12 F 21・Eb(T 3
)(5) G 1 in equation (5) represents the value detected by the radiation thermometer, the first term on the right side is the apparent radiation from the slab, the second term is the contribution from the reference noise source, and the third term is the contribution from the surroundings. Indicates stray light noise. Rewrite equation (5) as the following equation.

G1=εa・Eb(T1)+γa・Eb(T2)+η・Eb
(T3) (6) ただし εa=ε/1−(1−ε)(1−ε)F12
(7) γa=(1−ε)ε12/1−(1−ε)(1
−ε)F1221(8) η=(1−ε){F13+(1−ε)F2312
}/1−(1−ε)(1−ε)F1221(9) F13=F23=1−F12 (11) (6)式においてηをεa、γaに比較して非常に小
さくできれば右辺第3項を無視することができ
る。したがつてスラブの温度を次式から求めるこ
とができる。
G 1 = εa・Eb (T 1 ) + γa・Eb (T 2 ) + η・Eb
(T 3 ) (6) where ε a1 /1−(1−ε 1 )(1−ε 2 )F 12 F 2
1
(7) γa=(1-ε 12 F 12 /1-(1-ε 1 )(1
−ε 2 )F 12 F 21 (8) η=(1−ε 1 ) {F 13 +(1−ε 2 )F 23 F 12
}/1-(1-ε 1 )(1-ε 2 )F 12 F 21 (9) F 13 =F 23 =1−F 12 (11) In equation (6), if η can be made very small compared to ε a and γ a , the third term on the right side can be ignored. Therefore, the temperature of the slab can be determined from the following equation.

Eb(T1)=1/ε{G1−γa・Eb(T2) (12) なお(11)式の成立は次のように容易に理解でき
る。第2図のモデルで、F11+F12+F13=1、F11
=0であるからF13=1−F12となる。また遮蔽板
5の中央の開口部の径は約10mm、遮蔽板の径は
400mm程度とすれば、中央開口部の面積は無視し
得るものであり、相互反射は距離Hの半径Rの円
板間で行なわれると考えて良いから、F12=F21(10)
式の成立も同様に容易に理解できる。
Eb(T 1 )=1/ε a {G 1 −γ a・Eb(T 2 ) (12) The establishment of equation (11) can be easily understood as follows. In the model shown in Figure 2, F 11 +F 12 +F 13 = 1, F 11
= 0, so F 13 =1−F 12 . In addition, the diameter of the opening in the center of the shielding plate 5 is approximately 10 mm, and the diameter of the shielding plate is
If it is about 400 mm, the area of the central opening can be ignored and mutual reflection can be considered to occur between disks of radius R and distance H, so F 12 = F 21 (10)
The establishment of the equation is similarly easy to understand.

次に具体的数値を導入して(12)式を検討する。
H/R=0.05とすると各形態系数は下記のように
なる。
Next, we introduce specific numerical values and examine equation (12).
When H/R=0.05, each form series is as follows.

F12=F21=0.951 F13=F23=0.049 ε=ε=0.85として、これ等から(7)(8)(9)式
を計算すると下記(13)が得られる。
By setting F 12 =F 21 =0.951 F 13 =F 23 =0.049 ε 12 =0.85 and calculating equations (7), (8), and (9) from these, the following (13) is obtained.

すなわちη≪γa、εaが成立しており、(12)式
を用いてスラブの黒体温度Eb(T1)が得られるこ
とがわかる。
That is, it can be seen that η≪γa, εa hold, and the blackbody temperature Eb (T 1 ) of the slab can be obtained using equation (12).

なお本発明方法では雑音源である炉内壁方向か
らの迷光雑音の影響をさらに減少させるために次
の二つ対策が考えられる。
In addition, in the method of the present invention, the following two measures can be considered in order to further reduce the influence of stray light noise from the direction of the inner wall of the furnace, which is a noise source.

(1) H/Rをできるだけ小さくする。すなわち基
準雑音源である遮蔽板5の半径を大きくしスラ
ブ1にできるだけ近づける。これは遮蔽板の面
積を大きくし、迷光の侵入口の高さを小さくす
ることにより迷光を遮断することである。(10)式
においてF12を1に近づけることになり(11)式を
用いて(9)式のすべての形態係数をF12におきか
え、F12を1に近づけるとηが減少することが
わかる。なおHを極めて小さくすることは操業
上問題があるが近接させても基準雑音源はスラ
ブ1の温度と比較できる高温度であるから冷却
による外乱は生じない。
(1) Reduce H/R as much as possible. That is, the radius of the shielding plate 5, which is the reference noise source, is increased to be as close to the slab 1 as possible. This is to block stray light by increasing the area of the shielding plate and reducing the height of the stray light entrance. In Equation (10), F 12 is brought closer to 1. Using Equation (11), all view factors in Equation (9) are replaced with F 12 , and it can be seen that as F 12 approaches 1, η decreases. . Note that making H extremely small poses a problem in terms of operation, but even if they are placed close together, the reference noise source has a high temperature comparable to the temperature of the slab 1, so no disturbance will occur due to cooling.

(2) 基準雑音源の放射率εを1.0に近づける。
これは定性的にはまわり込んできた迷光の遮蔽
板5による吸収を高めることにより迷光の影響
を少くすることである。(9)式においてεを1
に近づけると分子は減少し分母が増大し、ηが
減少させられることがわかる。
(2) Bring the emissivity ε2 of the reference noise source close to 1.0.
Qualitatively, this is to reduce the influence of stray light by increasing the absorption of the stray light by the shielding plate 5. In equation (9), ε 1 is 1
It can be seen that as it approaches , the numerator decreases, the denominator increases, and η decreases.

次に実施例について本発明方法をさらに説明す
る。第3図は実操業中のスラブ加熱炉3中のスラ
ブ1の配置および本発明方法を実施する測温シス
テムの配置を示している。
The method of the present invention will now be further explained with reference to Examples. FIG. 3 shows the arrangement of the slab 1 in the slab heating furnace 3 during actual operation and the arrangement of the temperature measuring system for carrying out the method of the present invention.

測温の対象であるスラブ1の厚さ(t)は200
mm、幅(W)は約200mm、長さは約9000mmであ
る。基準雑音源である遮蔽板2の半径(R)は
200mm、開口部半径(d)は10mm、遮蔽板2とス
ラブ1の間隔(H)を10mmとした。この加熱炉は
炉壁に配置された多数の重油吹込口10から、重
油を吹き込みガスバーナ加熱を行なう形式のもの
である。このような加熱形式では炉壁の温度T3
の温度分布はかなり大きいと考えられる。スラブ
1、および遮蔽板2はこの壁面方向からの放射熱
により加熱される。スラブ1の表面にはPR熱電
対9を溶着し温度を実測し、その実測値と、本発
明方法によるスラブ温度指示との比較を行なつ
た。この実施例では放射測温計4の変換素子とし
て検波波長、λ=0.65μmのシリコン光電変換素
子を使用し、遮蔽板2の温度は前述した構成で常
時モニタし、スラブ1の放射率εは実効的に
0.86に設定して、前記(12)式に基づいてスラブ温度
指示を得た。
The thickness (t) of slab 1, which is the object of temperature measurement, is 200
mm, width (W) is approximately 200 mm, and length is approximately 9000 mm. The radius (R) of the shielding plate 2, which is the reference noise source, is
200 mm, the opening radius (d) was 10 mm, and the distance (H) between the shielding plate 2 and the slab 1 was 10 mm. This heating furnace is of a type in which heavy oil is blown into the furnace through a large number of heavy oil injection ports 10 arranged on the furnace wall and heated with a gas burner. In this type of heating, the temperature of the furnace wall T 3
The temperature distribution is considered to be quite large. The slab 1 and the shielding plate 2 are heated by the radiant heat from the direction of the wall surface. A PR thermocouple 9 was welded to the surface of the slab 1 to actually measure the temperature, and the measured value was compared with the slab temperature indication obtained by the method of the present invention. In this example, a silicon photoelectric conversion element with a detection wavelength of λ = 0.65 μm is used as the conversion element of the radiation thermometer 4, the temperature of the shielding plate 2 is constantly monitored with the above-mentioned configuration, and the emissivity of the slab 1 is ε 1 is effectively
0.86, and the slab temperature indication was obtained based on the above equation (12).

第4図にPR熱電対9の指示を横軸に、対応す
る本発明方法により得られた温度指示を縦軸に白
丸でプロツトして示してある。
In FIG. 4, the indication of the PR thermocouple 9 is plotted on the horizontal axis, and the corresponding temperature indication obtained by the method of the present invention is plotted on the vertical axis with white circles.

ガスバーナによる燃焼状態を大幅に変化させる
ことにより炉壁温度T3とスラブ温度T1を広範囲
に変化させて得たものである。
This was obtained by changing the furnace wall temperature T 3 and the slab temperature T 1 over a wide range by significantly changing the combustion state by the gas burner.

第4図からPR熱電対によるスラブ温度が900℃
から1250℃まで変化しても、本発明方法により得
られた温度は各測定点において±10℃の誤差内に
入つていることがわかる。なお第4図中黒丸で示
した点は基準雑音源の測定温度を示すものであ
る。このように基準雑音源の温度が変化しても、
それが既知である限り全く問題にならない。
From Figure 4, the slab temperature measured by the PR thermocouple is 900℃.
It can be seen that even when the temperature changes from 1250°C to 1250°C, the temperature obtained by the method of the present invention is within an error of ±10°C at each measurement point. Note that the points indicated by black circles in FIG. 4 indicate the measured temperature of the reference noise source. Even if the temperature of the reference noise source changes in this way,
As long as it is known, there is no problem at all.

次に比較のために他の実験例を示す。この実験
は遮蔽板2を除去し放射温度計4により磁性管1
1を通してスラブ1を覗くようにした他は、前記
実施例と全く同様な条件で行なわれたものであ
る。第6図にPR熱電対9の指示に対する放射測
温計4の指示を白丸で示してある。第6図から明
らかなように、スラブの真温度よりは、はるかに
高く、しかも極めてばらつきの大きい指示しか得
られていない。これは迷光雑音の影響によるもの
である。本発明方法により迷光雑音の影響は完全
に近く遮断されるので第4図に示すような秀れた
結果が得られる。
Next, another experimental example will be shown for comparison. In this experiment, the shielding plate 2 was removed and the magnetic tube 1 was measured using a radiation thermometer 4.
The experiment was carried out under exactly the same conditions as in the previous example, except that the slab 1 was looked through the lens 1. In FIG. 6, the indications of the radiation thermometer 4 relative to the indications of the PR thermocouple 9 are shown by white circles. As is clear from FIG. 6, the indications are much higher than the true temperature of the slab and have extremely large variations. This is due to the influence of stray light noise. By the method of the present invention, the influence of stray light noise is nearly completely blocked, so excellent results as shown in FIG. 4 can be obtained.

本発明方法は以上のように実施されるものであ
るから精度の高い非接触連続測温が可能となるほ
か以下のような数々の利点が得られる。
Since the method of the present invention is carried out as described above, it not only enables highly accurate non-contact continuous temperature measurement, but also provides the following numerous advantages.

まず原理がきわめて簡単で明解であるから容易
に理解され、現場での実施が容易である。
First, the principle is extremely simple and clear, making it easy to understand and implement in the field.

つぎに放射測温計の出力G1に(12)式に示すよう
な簡単な演算処理を行なえばよいので簡単システ
ムで実時間処理ができる。
Next, the output G 1 of the radiation thermometer can be subjected to simple arithmetic processing as shown in equation (12), so real-time processing can be performed with a simple system.

つぎに検出波長を短くすることができるから測
温計のセンサとして安価なシリコン光電変換素子
を用いることができる。
Next, since the detection wavelength can be shortened, an inexpensive silicon photoelectric conversion element can be used as the sensor of the thermometer.

以上詳しく説明した実施形態について、本発明
の範囲内で種々の変形を施すことができる。基準
雑音源の温度測定を埋設熱電対を用いる例を示し
たが、第7図に示すように小孔2aを設け表面反
射をなくして表面温度計により測温することも可
能である。また遮蔽板2を第8図に示すように円
筒キヤビテイ状にしてεを増加させるように構
成することも可能である。
Various modifications can be made to the embodiments described in detail above within the scope of the present invention. Although an example has been shown in which a buried thermocouple is used to measure the temperature of the reference noise source, it is also possible to measure the temperature with a surface thermometer by providing a small hole 2a to eliminate surface reflection, as shown in FIG. It is also possible to configure the shielding plate 2 to have a cylindrical cavity shape as shown in FIG. 8 so as to increase ε2 .

また基準雑音源の温度T2は炉内の自然加熱に
より得られる例について説明したが自体を積極的
に内部から加熱するとか、一定既知温度に保つた
めの温度制御を行なうことも可能である。
Furthermore, although we have described an example in which the temperature T 2 of the reference noise source is obtained by natural heating in the furnace, it is also possible to actively heat the reference noise source from within, or to perform temperature control to maintain it at a constant known temperature.

基準雑音源である遮蔽板2の素材としてシリコ
ンカーバイドを示したが、たとえばアルミナ、耐
熱鋼なども同様に使用できる。
Although silicon carbide is shown as the material for the shielding plate 2, which is the reference noise source, for example, alumina, heat-resistant steel, etc. can also be used.

また、本発明方法をスラブ加熱炉について詳し
く説明したが、スラブ加熱炉以外の高温炉にも同
様に適用できる。
Further, although the method of the present invention has been described in detail with respect to a slab heating furnace, it can be similarly applied to high-temperature furnaces other than slab heating furnaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉内物体の表面温度測定における問題
点を説明するための略図、第2図は本発明方法を
実施するための装置を示す原理図、第3図は本発
明による測温の実施例を示す配置図、第4図はそ
の測定結果を示すグラフ、第5図は基準雑音源を
用いない場合の測温の実験例を示す配置図、第6
図はその測定結果を示すグラフ、第7図は基準雑
音源の温度測定の変形例を示す斜視図、第8図は
遮蔽板の変形例を示す斜視図である。 1:スラブ、2:遮蔽板(基準雑音源)、3:
炉、4:放射温度計、4a:光学系、4b:変換
素子、4c:遮光筒、5:熱電対、6,7:AD
変換回路、8:演算処理回路、9:PR熱電対、
10:重油吹込口。
Fig. 1 is a schematic diagram for explaining problems in measuring the surface temperature of objects in a furnace, Fig. 2 is a principle diagram showing an apparatus for carrying out the method of the present invention, and Fig. 3 is an implementation of temperature measurement according to the present invention. A layout diagram showing an example; Figure 4 is a graph showing the measurement results; Figure 5 is a layout diagram showing an experimental example of temperature measurement without using a reference noise source;
The figure is a graph showing the measurement results, FIG. 7 is a perspective view showing a modification of the temperature measurement of the reference noise source, and FIG. 8 is a perspective view showing a modification of the shielding plate. 1: Slab, 2: Shielding plate (reference noise source), 3:
Furnace, 4: Radiation thermometer, 4a: Optical system, 4b: Conversion element, 4c: Shade tube, 5: Thermocouple, 6, 7: AD
Conversion circuit, 8: Arithmetic processing circuit, 9: PR thermocouple,
10: Heavy oil inlet.

Claims (1)

【特許請求の範囲】[Claims] 1 炉内の被測温物体の表面に対向して配置され
た遮蔽板の中央開口部から得られる前記物体方向
からの放射エネルギーを放射温度計により測温す
る炉内物体の表面温度測定方法において、前記遮
蔽板を既知高温度の基準雑音源とするとともに、
前記基準雑音源である遮蔽板により炉内壁方向か
ら放射温度計への放射雑音のまわり込みを遮断
し、前記放射温度計により得られる指示から前記
基準雑音源の寄与分を減算することにより被測温
物体の表面温度を得ることを特徴とする炉内物体
の表面温度測定方法。
1. In a method for measuring the surface temperature of an object in a furnace, the temperature of the object is measured using a radiation thermometer. , the shielding plate is used as a reference noise source of known high temperature, and
The shielding plate, which is the reference noise source, blocks radiation noise from entering the radiation thermometer from the direction of the inner wall of the furnace, and the contribution of the reference noise source is subtracted from the indication obtained by the radiation thermometer. A method for measuring the surface temperature of an object in a furnace, characterized by obtaining the surface temperature of a hot object.
JP6346979A 1979-05-22 1979-05-22 Measuring method of temperature of surface of object in furnace Granted JPS55155218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6346979A JPS55155218A (en) 1979-05-22 1979-05-22 Measuring method of temperature of surface of object in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6346979A JPS55155218A (en) 1979-05-22 1979-05-22 Measuring method of temperature of surface of object in furnace

Publications (2)

Publication Number Publication Date
JPS55155218A JPS55155218A (en) 1980-12-03
JPS6222089B2 true JPS6222089B2 (en) 1987-05-15

Family

ID=13230116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6346979A Granted JPS55155218A (en) 1979-05-22 1979-05-22 Measuring method of temperature of surface of object in furnace

Country Status (1)

Country Link
JP (1) JPS55155218A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983020A (en) * 1982-11-04 1984-05-14 Chino Works Ltd Temperature measuring device
JPS5983019A (en) * 1982-11-04 1984-05-14 Chino Works Ltd Temperature measuring device for body in heating furnace
DE3422590A1 (en) * 1984-06-18 1985-12-19 Mannesmann AG, 4000 Düsseldorf METHOD FOR PYROMETRIC TEMPERATURE MEASUREMENT
CN103411684B (en) * 2013-07-17 2016-04-06 中微半导体设备(上海)有限公司 Measure the method for film temperature in reaction chamber

Also Published As

Publication number Publication date
JPS55155218A (en) 1980-12-03

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
CA1166037A (en) Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
JPS6222089B2 (en)
JPS6059511B2 (en) Surface temperature measuring device for objects inside the furnace
JPS6160364B2 (en)
JPH0367137A (en) Surface temperatude controller
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
JPS634651B2 (en)
KR100293285B1 (en) Method of measuring surface temperature of slab by using skid button
Kreider et al. Lightpipe proximity effects on Si wafer temperature in rapid thermal processing tools
JPH02170023A (en) Measuring method for material temperature in continuous heating furnace
JP2005148043A (en) Method for evaluating heat transfer physical properties and radiant energy measuring device
KR20200095454A (en) Method and system for measuring the temperature of a moving strip
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
JPH04276527A (en) Thermometer in furnace
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
Zhukov et al. Innovative Technologies for Continuous Thermal Control of TPPs Boilers
Denisov Method of Mobile Heat-Resistant Screen Pyrometry
JPH0533330B2 (en)
KR20040056864A (en) Decision method of the position and the quantity of the temperature sensor and of the heating zone in a reheating furnace
IUCHI et al. Temperature measurement system of steel strips in a continuous annealing furnace
JPH0427496B2 (en)
JP2020067197A (en) Method for inspecting refractory of atmospheric furnace and method for producing reduced iron
JP3675087B2 (en) Method for measuring temperature distribution of dummy wafer and its surface