JPS62228102A - Remote displacement detector - Google Patents
Remote displacement detectorInfo
- Publication number
- JPS62228102A JPS62228102A JP6974686A JP6974686A JPS62228102A JP S62228102 A JPS62228102 A JP S62228102A JP 6974686 A JP6974686 A JP 6974686A JP 6974686 A JP6974686 A JP 6974686A JP S62228102 A JPS62228102 A JP S62228102A
- Authority
- JP
- Japan
- Prior art keywords
- displacement
- measured
- reflected
- corner cube
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 54
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims description 23
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は、遠隔位置にある物体の変位・振動等を光を
用いて検知する遠隔変位検知装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a remote displacement detection device that uses light to detect displacement, vibration, etc. of an object located at a remote location.
(従来の技術)
従来のこの種の遠隔変位検知装置としては、例えば第8
図に示すようなものがある。(Prior art) As a conventional remote displacement detection device of this type, for example,
There is something like the one shown in the figure.
すなわち、被測定物101に光源103が設けられ、こ
の光源103から照射された光をレンズ105を介して
光位置センサ107上に結1象させ、光照射方向の平行
移動方向の被測定物101の二次元位置変位を測定する
。That is, a light source 103 is provided on the object to be measured 101, and the light irradiated from the light source 103 is focused on the optical position sensor 107 through the lens 105, so that the object to be measured 101 in the parallel movement direction of the light irradiation direction is Measure the two-dimensional position displacement of.
ところで、このような従来の遠隔変位検知装置にあって
は、光源103は被測定物101側に設けられており、
光源103のエネルギー源が消耗したときは、被測定物
101は遠隔位置にありエネルギーを補給するのが困難
なため、被測定物101の変位を測定することができな
くなるという問題がある。By the way, in such a conventional remote displacement detection device, the light source 103 is provided on the side of the object to be measured 101,
When the energy source of the light source 103 is exhausted, there is a problem in that the displacement of the object 101 cannot be measured because the object 101 is located at a remote location and it is difficult to replenish energy.
(発明が解決しようとする問題点)
上記したように光源103を被測定物101側に設ける
と、光源103のエネルギー源が消耗したときは遠隔位
置にある物体の変位を検知することができない。(Problems to be Solved by the Invention) When the light source 103 is provided on the side of the object to be measured 101 as described above, when the energy source of the light source 103 is exhausted, the displacement of the object at a remote location cannot be detected.
この発明は、従来の遠隔変位検知装置の上記問題に着目
してなされたもので、被測定物に光源等のエネルギー源
を設けることなく簡単な構成で遠隔位置にある物体の変
位を検知することができる遠隔変位検知装置の提供を目
的とする。This invention was made by focusing on the above-mentioned problems of conventional remote displacement detection devices, and it is possible to detect the displacement of an object at a remote location with a simple configuration without providing an energy source such as a light source on the object to be measured. The purpose is to provide a remote displacement detection device that can perform
[発明の構成]
(問題点を解決するための手段)
この発明の遠隔変位検知装置は、ビーム状の光を照射す
る光源と、被測定物に設けられ前記ビーム状の光を受け
て平行に反射する反射体と、この反射体からの反射光の
平行移動方向の位置を検出する光位置検出手段とにより
構成される。[Structure of the Invention] (Means for Solving the Problems) The remote displacement detection device of the present invention includes a light source that irradiates a beam-shaped light, and a light source that is provided on an object to be measured and receives the beam-shaped light in a parallel manner. It is composed of a reflector that reflects light and a light position detection means that detects the position of the reflected light from the reflector in the parallel movement direction.
(作用)
この発明の遠隔変位検知装置においては、光源からビー
ム状の光を被測定物の反射体に照射覆ると、反射体から
照射光ど平行な反射光が反射され、光位置検出手段が反
射体からの反射光の平行移動方向の位置を検出する。(Function) In the remote displacement detection device of the present invention, when a beam-shaped light is irradiated from the light source onto the reflector of the object to be measured, parallel reflected light such as the irradiated light is reflected from the reflector, and the optical position detection means is activated. The position of the reflected light from the reflector in the parallel movement direction is detected.
(実施例)
以下図面に基づき、この発明の実施例を詳細に説明する
。(Example) Examples of the present invention will be described in detail below based on the drawings.
第1図は、この発明の第1の実施例に係わる遠隔変位検
知装置の概略図である。第1図において、反則体として
のコーナーキューブ1は図外の被測定物に装着され、被
測定物の動きに伴って移動する。コーナーキューブ1は
反射鏡に入射した光をこの入射光と平行に反射させる。FIG. 1 is a schematic diagram of a remote displacement sensing device according to a first embodiment of the present invention. In FIG. 1, a corner cube 1 as a contrarian is attached to an object to be measured (not shown), and moves along with the movement of the object to be measured. The corner cube 1 reflects the light incident on the reflecting mirror in parallel with the incident light.
また、測定器3には、例えばレーザ光線を照射する光源
5.ハーフミラ−7、レンズ9及び光位置検出手段とし
ての二次元光位置センサ11が配設されている。ハーフ
ミラ−7は光源5によるレーザ光線の照射方向に対して
45゛傾斜しており、レンズ9の光軸はレーザ光線の照
射方向に対して直交している。The measuring device 3 also includes a light source 5 that emits, for example, a laser beam. A half mirror 7, a lens 9, and a two-dimensional optical position sensor 11 as optical position detection means are provided. The half mirror 7 is inclined by 45 degrees with respect to the direction in which the laser beam is irradiated by the light source 5, and the optical axis of the lens 9 is orthogonal to the direction in which the laser beam is irradiated.
二次元光位置センサ11は、反射光と直交する方向すな
わち反射光の平行移動方向の平面を有している。The two-dimensional optical position sensor 11 has a plane in a direction perpendicular to the reflected light, that is, a parallel movement direction of the reflected light.
次に作用を説明する。Next, the action will be explained.
光源5から照射されたレーザ光線は、ハーフミラ−7で
反射されて被測定物に装着されたコーナーキューブ1に
入射する。コーナーキューブ1に入射した光は、この入
射光と平行な方向に反射されて測定器3に向かう。この
反射光は、測定器3のハーフミラ−7を透過し、レンズ
9によって二次元光位置センサ11上に像を結ぶ
二次元光位置センサ11上に結像される反射光の位置は
、コーナーキューブ1の位置によって変化する。二次元
光位置センサ11上の反射光の変位■はコーナーキュー
ブ1が光と直交する方向(平行移動方向)に移動した変
位量の2倍になる。A laser beam emitted from a light source 5 is reflected by a half mirror 7 and enters a corner cube 1 attached to an object to be measured. The light incident on the corner cube 1 is reflected in a direction parallel to this incident light and heads toward the measuring device 3. This reflected light passes through the half mirror 7 of the measuring instrument 3, and is focused on the two-dimensional optical position sensor 11 by the lens 9. The position of the reflected light focused on the two-dimensional optical position sensor 11 is determined by the corner cube. It changes depending on the position of 1. The displacement (2) of the reflected light on the two-dimensional optical position sensor 11 is twice the amount of displacement of the corner cube 1 in the direction perpendicular to the light (parallel movement direction).
すなわち、第2図に示すように、コーナーキューブ1が
光源5から照射されハーフミラ−7で反射された光とそ
の反射光とが同じ光軸上にある(a )位置からdだけ
移動した(b)位置では、反射光の変位量は2dとなる
。また、コーナーキューブ1が(a )位置から2d分
移動した(C)位置では、反射光の変位置は4dとなる
。しかも、二次元光位置センサ11上の反射光の変位量
は、コーナーキューブ1の光軸方向への移動やコーナー
キューブ1の傾き等とは無関係である。すなわち、第3
図に示すようにコーナーキューブ1が(a )位置から
は(b)位置に光軸方向に移動しても、二次元光位置セ
ンサ11上の反射光の位置は変化しない。また、第4図
に示すようにコーナーキュー11が(a )状態から(
b)状態に傾いても二次元先位’23 tフサ11上の
反射光の位置は変化しない。従って、二次元光位置セン
サ11上の反射光の変位1を半分とすることにより、被
測定物の光と直交する方向の変位量を検出することがで
きる。このように、被測定物の傾きや反射光の光軸方向
の変位によっては影響が与えられず、被測定物側に光源
を設けることなく簡単な樹造で被測定物の平行移動方向
の変位量を測定することができる。That is, as shown in Fig. 2, the corner cube 1 is moved by d from the position (a) where the light irradiated from the light source 5 and reflected by the half mirror 7 and the reflected light are on the same optical axis (b). ), the amount of displacement of the reflected light is 2d. Furthermore, at the position (C) where the corner cube 1 has moved by 2d from the position (a), the displacement position of the reflected light is 4d. Furthermore, the amount of displacement of the reflected light on the two-dimensional optical position sensor 11 is independent of the movement of the corner cube 1 in the optical axis direction, the inclination of the corner cube 1, and the like. That is, the third
As shown in the figure, even if the corner cube 1 moves in the optical axis direction from the position (a) to the position (b), the position of the reflected light on the two-dimensional optical position sensor 11 does not change. Also, as shown in FIG. 4, the corner cue 11 changes from the (a) state to (
b) The position of the reflected light on the two-dimensional front '23t beam 11 does not change even if it is tilted in the state. Therefore, by halving the displacement 1 of the reflected light on the two-dimensional optical position sensor 11, the amount of displacement in the direction perpendicular to the light of the object to be measured can be detected. In this way, the tilt of the object to be measured and the displacement in the optical axis direction of the reflected light are not affected, and the displacement in the parallel direction of the object to be measured can be adjusted using a simple wooden structure without providing a light source on the object to be measured. Amounts can be measured.
次に、他の実施例を、第1の実施例と同一の構成要素に
は同符号を附して説明する。Next, another embodiment will be described with the same reference numerals assigned to the same components as those in the first embodiment.
第5図は第2の実施例を示している。この実施例では、
測定器3が可動圧体13に設けられている。可動圧体1
3は上部が間数された基板15内に収納されている。可
動圧体13の底部にはボール17が回転可能に設けられ
、可動圧体13は基板15内を移動可能となっている。FIG. 5 shows a second embodiment. In this example,
A measuring device 3 is provided on the movable pressure body 13. Movable pressure body 1
3 is housed in a board 15 whose upper part is spaced. A ball 17 is rotatably provided at the bottom of the movable pressure body 13, and the movable pressure body 13 is movable within the substrate 15.
基板15の側壁19にはモータ21,23が設けられて
いる。Motors 21 and 23 are provided on the side wall 19 of the substrate 15.
モータ21と可動圧体13とは図外のボールねじで、モ
ータ23と可動圧体13とはボールねじ25で夫々連結
されている。可動圧体13は、モータ21を駆動させる
ことによりX方向(砥面と直交する方向)に、モータ2
3を駆動させることによりy方向(図中左右方向)に移
動する。The motor 21 and the movable pressure body 13 are connected by a ball screw (not shown), and the motor 23 and the movable pressure body 13 are connected by a ball screw 25, respectively. The movable pressure body 13 is moved by the motor 21 in the X direction (direction perpendicular to the abrasive surface) by driving the motor 21.
3 to move in the y direction (horizontal direction in the figure).
二次元光位置センサ13は二次元光位置検出回路27に
接続されている。二次元光位置検出回路27は制御信号
演算器29.31に分岐して接続されている。制御信号
演算器29はパワーアンプ33を介してモータ21に、
制御信号演算器31はパワーアンプ35を介してモータ
23に夫々接続されている。そして、第1の実−施例で
説明したように二次元光位置センサ13が検出した信号
は、二次元光位置検出回路27でx、y方向の変位の信
号に変換される。X方向の変位の信号は、制御信号演算
器29において例えばサーボ系でフィードバック制御で
きるように演算される。この演算された制御信号は、パ
ワーアンプ33で増幅されてモータ21を駆動させる。The two-dimensional optical position sensor 13 is connected to a two-dimensional optical position detection circuit 27. The two-dimensional optical position detection circuit 27 is branched and connected to a control signal calculator 29.31. The control signal calculator 29 sends signals to the motor 21 via the power amplifier 33,
The control signal calculators 31 are connected to the motors 23 via power amplifiers 35, respectively. As described in the first embodiment, the signal detected by the two-dimensional optical position sensor 13 is converted into a displacement signal in the x and y directions by the two-dimensional optical position detection circuit 27. The displacement signal in the X direction is calculated by the control signal calculator 29 so as to enable feedback control using, for example, a servo system. This calculated control signal is amplified by the power amplifier 33 and drives the motor 21.
一方、y方向の変位の信号は、X方向の変位の信号と同
様に、制御信号演算器31で演算されパワーアンプ35
で増幅されてモータ23を駆動させる。On the other hand, similarly to the displacement signal in the X direction, the displacement signal in the y direction is calculated by the control signal calculator 31 and sent to the power amplifier 35.
is amplified and drives the motor 23.
このような構成において、二次元光位置センサ11上の
反射光が所定位置に結像するように制御(Fi号演咋器
29.31で演算すると、可動圧体13は被測定物の光
と直交する方向の変位に追従して移動する。In such a configuration, the movable pressure body 13 is controlled so that the reflected light on the two-dimensional optical position sensor 11 forms an image at a predetermined position (calculated by the Fi type actuator 29.31). Moves by following the displacement in the orthogonal direction.
第6図は第3の実施例を示している。この実施例では、
二次元光位置検出回路27からのX方向の変位の信号は
低域フィルタ37を、y方向の変位の信号は低域フィル
タ39を介して制御信号演算器29.31で演算される
構成となっている。FIG. 6 shows a third embodiment. In this example,
The X-direction displacement signal from the two-dimensional optical position detection circuit 27 is processed by a low-pass filter 37, and the y-direction displacement signal is processed by a control signal calculator 29.31 via a low-pass filter 39. ing.
低域フィルタ37.39はx、y方向の信号の低周波成
分のみ通し高周波成分は遮断する。従って、可動圧体1
3は、被測定物の光と直交する方向の変位の低周波成分
のみに追従して移動する。 また、二次元光位置検出回
路27からのX方向の変位の信号は増幅器41を、y方
向の変位の信号は増幅器43を介して変位信号表示装置
45に供給されている。変位信号表示装置45は、被測
定物の変位を例えばオシロスコープ等の波形で表示し、
又はこの変位を記録する。The low-pass filters 37 and 39 pass only the low frequency components of the signals in the x and y directions and block the high frequency components. Therefore, the movable pressure body 1
3 moves by following only the low frequency component of the displacement in the direction perpendicular to the light of the object to be measured. Furthermore, the displacement signal in the X direction from the two-dimensional optical position detection circuit 27 is supplied to an amplifier 41, and the displacement signal in the y direction is supplied to a displacement signal display device 45 via an amplifier 43. The displacement signal display device 45 displays the displacement of the object to be measured in the form of a waveform, for example, on an oscilloscope.
Or record this displacement.
以上の構成によれば、可動圧体13を被測定物の低周波
成分の変位に追従させながら、高周波成分の変位(振動
)を変位信号表示装置45で測定することができる。こ
のため、被測定物が低周波数で大きく動き、二次元光位
置センサ11の観測範囲を脱するような場合でも、可動
圧体13をこの動きに追従させながら高周波成分の変位
を観測することができる。従って、例えば飛行曙や′#
星等の飛行物体の振動を、その動きに追従しながら観測
することができる。飛行物体にエネルギー源がない場合
でも、搭乗員の声等のエネルギー源でスピーカーコーン
を撮動させ、この振動をコーナーキュー77に伝達させ
れば、地上等の遠ll!地から搭乗員の音声情報を採取
することができる。また、同様にして、試作後の飛行物
体を風胴実験ではなく実際に試験飛行させながらその振
動の大きさくm幅)を検出することができる。According to the above configuration, the displacement (vibration) of the high frequency component can be measured by the displacement signal display device 45 while the movable pressure body 13 follows the displacement of the low frequency component of the object to be measured. Therefore, even if the object to be measured moves significantly at low frequencies and leaves the observation range of the two-dimensional optical position sensor 11, it is possible to observe the displacement of the high frequency component while making the movable pressure body 13 follow this movement. can. Therefore, for example, the dawn of flight or '#
It is possible to observe the vibrations of flying objects such as stars while following their movements. Even if the flying object does not have an energy source, if the speaker cone is moved using an energy source such as the voice of the crew member and this vibration is transmitted to the corner cue 77, it can be used even on the ground, etc. Crew voice information can be collected from the ground. In addition, in the same way, it is possible to detect the vibration magnitude (m width) while actually test flying a prototype flying object instead of conducting a wind cylinder experiment.
第7図は第4の実施例を示している。この実施例では、
測定器3は固定されている。そして、二次元光位置検出
回路27のx、y方向の変位の低周波成分は、反tA鏡
駆動装置47に供給されている。反1:)J 8M駆動
装置47は磁気軸受及び駆動装首で構成され、そのシャ
フト49に反射鏡51が取付けられている。反射鏡51
はハーフミラ−7側へ向いており、光源5から照射され
たレーザ光線はハーフミラ−7に反射された債、更に反
射鏡51で反射され被測定物に設けられたコーナーキュ
ーブ1に向かう。コーナーキューブ1がらの反射光は再
び反射鏡51で反射した後、ハーフミラ−7を透過しレ
ンズ9を介して二次元光位置セン!す11上に像を結ぶ
。FIG. 7 shows a fourth embodiment. In this example,
Measuring device 3 is fixed. The low frequency components of the displacement in the x and y directions of the two-dimensional optical position detection circuit 27 are supplied to the anti-tA mirror drive device 47. Opposite 1:) The J8M drive device 47 is composed of a magnetic bearing and a drive head, and a reflecting mirror 51 is attached to the shaft 49. Reflector 51
is directed toward the half mirror 7, and the laser beam irradiated from the light source 5 is reflected by the half mirror 7, further reflected by the reflecting mirror 51, and directed toward the corner cube 1 provided on the object to be measured. The reflected light from the corner cube 1 is reflected again by the reflecting mirror 51, and then transmitted through the half mirror 7 and transmitted through the lens 9 to a two-dimensional light position sensor! Form an image on Su11.
以上のような構成においては、反射鏡51を被測定物の
低周波成分の変位に追従させながら高周波成分の変位を
測定できるという第3の実施例の効果に加え、測定器3
全体を追従させるものではないのでイナーシャが減少し
、迅速かつ正確な制御をすることができる。また、非接
触支持と駆動機能を有する磁気軸受を使用したため、多
自由度を高精度で位置決めすることができる。In the above configuration, in addition to the effect of the third embodiment that the displacement of the high frequency component can be measured while making the reflecting mirror 51 follow the displacement of the low frequency component of the object to be measured, the measuring device 3
Since the entire system is not tracked, inertia is reduced, and quick and accurate control can be achieved. Furthermore, since a magnetic bearing with non-contact support and drive functions is used, it is possible to position with high precision in multiple degrees of freedom.
なお、第2の実施例及び第3の実施例のモータ21.2
3及びボールねじ25を磁気軸受としてもよく、この場
合、移動時の騒音を抑えることができる。Note that the motor 21.2 of the second embodiment and the third embodiment
3 and the ball screw 25 may be magnetic bearings, in which case noise during movement can be suppressed.
[発明の効果1
以上説明したように、この発明によれば、被測定物に光
源から照射された光を平行に反射する反射体を設け、測
定器側に反射体からの反射光の平行移動方向の位置を検
出する光位置検出手段を設けたため、被測定物側に光源
等のエネルギー源を設けることなく簡単な構成で遠隔位
置にある物体の変位を検出することができる。[Effect of the Invention 1] As explained above, according to the present invention, a reflector that reflects the light irradiated from the light source onto the object to be measured in parallel is provided, and the parallel movement of the reflected light from the reflector to the measuring instrument side is achieved. Since the optical position detection means for detecting the position in the direction is provided, the displacement of the object at a remote position can be detected with a simple configuration without providing an energy source such as a light source on the side of the object to be measured.
第1図はこの発明の第1の実施例に係わる遠隔変位検知
装置の概略図、第2図〜第4図は反射体たるコーナーキ
ューブの反射状態を示す図、第5図は第2の実施例の概
略図、第6図は第3の実施例の概略図、第7図は第4の
実施例の概略図、第8図は従来例に係わる遠隔変位検知
装置の概略図である。
1・・・コーナーキューブ(反射体)
5・・・光源
11・・・二次元光位置センサ(光位置検出手段)11
2 図
(a) (b)第3図
(Q) (b)第4図
第5図
第6110
第7図
第8図FIG. 1 is a schematic diagram of a remote displacement detection device according to a first embodiment of the present invention, FIGS. 2 to 4 are diagrams showing the reflection state of a corner cube serving as a reflector, and FIG. 5 is a diagram showing a second embodiment of the remote displacement detection device. FIG. 6 is a schematic diagram of the third embodiment, FIG. 7 is a schematic diagram of the fourth embodiment, and FIG. 8 is a schematic diagram of a conventional remote displacement detection device. 1... Corner cube (reflector) 5... Light source 11... Two-dimensional optical position sensor (light position detection means) 11
2 Figure (a) (b) Figure 3 (Q) (b) Figure 4 Figure 5 6110 Figure 7 Figure 8
Claims (1)
射する反射体と、 この反射体からの反射光の平行移動方向の位置を検出す
る光位置検出手段とを有することを特徴とする遠隔変位
検知装置。[Claims] A light source that irradiates a beam-shaped light, a reflector provided on an object to be measured that receives the beam-shaped light and reflects it in parallel, and a parallel movement direction of the reflected light from the reflector. 1. A remote displacement detection device comprising: an optical position detection means for detecting a position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6974686A JPS62228102A (en) | 1986-03-29 | 1986-03-29 | Remote displacement detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6974686A JPS62228102A (en) | 1986-03-29 | 1986-03-29 | Remote displacement detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62228102A true JPS62228102A (en) | 1987-10-07 |
Family
ID=13411672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6974686A Pending JPS62228102A (en) | 1986-03-29 | 1986-03-29 | Remote displacement detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62228102A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01263506A (en) * | 1988-04-14 | 1989-10-20 | Daiichi Denki Kk | Light amplification displacement sensor and position control device |
JPH0666518A (en) * | 1992-08-24 | 1994-03-08 | Hamamatsu Photonics Kk | Position detector |
JP2002541445A (en) * | 1999-04-06 | 2002-12-03 | レニショウ パブリック リミテッド カンパニー | Surface inspection device with optical sensor |
CN103471562A (en) * | 2013-09-09 | 2013-12-25 | 北京航天计量测试技术研究所 | Auto-collimation measurement method and device for long-distance dynamic contact ratio of quasi parallel light |
JP2017053772A (en) * | 2015-09-10 | 2017-03-16 | 公益財団法人鉄道総合技術研究所 | Displacement measuring device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58143436A (en) * | 1982-02-19 | 1983-08-26 | Sankyo Seiki Mfg Co Ltd | Optical information readout controller |
JPS58213203A (en) * | 1982-06-07 | 1983-12-12 | Fuji Electric Corp Res & Dev Ltd | Position detecting device of moving body |
JPS6021172A (en) * | 1983-07-15 | 1985-02-02 | Hitachi Ltd | Method for controlling cooling body of continuous casting device |
-
1986
- 1986-03-29 JP JP6974686A patent/JPS62228102A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58143436A (en) * | 1982-02-19 | 1983-08-26 | Sankyo Seiki Mfg Co Ltd | Optical information readout controller |
JPS58213203A (en) * | 1982-06-07 | 1983-12-12 | Fuji Electric Corp Res & Dev Ltd | Position detecting device of moving body |
JPS6021172A (en) * | 1983-07-15 | 1985-02-02 | Hitachi Ltd | Method for controlling cooling body of continuous casting device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01263506A (en) * | 1988-04-14 | 1989-10-20 | Daiichi Denki Kk | Light amplification displacement sensor and position control device |
JPH0666518A (en) * | 1992-08-24 | 1994-03-08 | Hamamatsu Photonics Kk | Position detector |
JP2002541445A (en) * | 1999-04-06 | 2002-12-03 | レニショウ パブリック リミテッド カンパニー | Surface inspection device with optical sensor |
JP4695762B2 (en) * | 1999-04-06 | 2011-06-08 | レニショウ パブリック リミテッド カンパニー | Surface inspection device with optical sensor |
CN103471562A (en) * | 2013-09-09 | 2013-12-25 | 北京航天计量测试技术研究所 | Auto-collimation measurement method and device for long-distance dynamic contact ratio of quasi parallel light |
JP2017053772A (en) * | 2015-09-10 | 2017-03-16 | 公益財団法人鉄道総合技術研究所 | Displacement measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101026611B1 (en) | Apparatus and Method for Determining Orientation Parameters of an Elongate Object | |
US6057967A (en) | Apparatus for extracting pattern features | |
US5128794A (en) | Scanning laser helmet mounted sight | |
US5172002A (en) | Optical position sensor for scanning probe microscopes | |
US5636013A (en) | Suspension assembly static attitude and distance measuring instrument | |
US3481672A (en) | F.m. laser contour mapper | |
EP1480006A3 (en) | Laser measurement apparatus | |
US6181422B1 (en) | Optical surface measurement apparatus and methods | |
JPH1114357A (en) | Automatic tracking device of surveying equipment | |
JPS62228102A (en) | Remote displacement detector | |
US3632215A (en) | Apparatus for determining the position coordinates of a point relative to a reference point | |
US6655215B2 (en) | Inverse corner cube for non-intrusive three axis vibration measurement | |
JPH10267624A (en) | Measuring apparatus for three-dimensional shape | |
JP2002054987A (en) | Three-dimensional laser doppler vibrograph | |
US6747267B1 (en) | Static attitude measurement system for head suspension assemblies | |
JPH0791930A (en) | Three-dimensional scanner | |
JPH02276908A (en) | Three-dimensional position recognizing device | |
CN116165673B (en) | Six-dimensional probe based on backward tracking | |
JPH02140608A (en) | Measuring instrument for surface shape | |
KR100284771B1 (en) | System for measuring the posture of a head slider of a hard disk drive | |
JPS6118962B2 (en) | ||
JPH09325007A (en) | Three-dimensional position and posture measuring apparatus | |
KR100351671B1 (en) | Stacked optical swing arm for measuring 6-degrees-of-freedom motions of hard disk drive slider | |
JP2755762B2 (en) | Remote displacement measuring device | |
JPS6348403A (en) | Displacement detecting device |