JPS62226450A - Photomagnetic recording medium - Google Patents
Photomagnetic recording mediumInfo
- Publication number
- JPS62226450A JPS62226450A JP6898886A JP6898886A JPS62226450A JP S62226450 A JPS62226450 A JP S62226450A JP 6898886 A JP6898886 A JP 6898886A JP 6898886 A JP6898886 A JP 6898886A JP S62226450 A JPS62226450 A JP S62226450A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- added
- composition
- medium
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 23
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 15
- -1 rare earth transition metal Chemical class 0.000 claims abstract description 13
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 11
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 7
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 230000005415 magnetization Effects 0.000 claims abstract description 4
- 150000003624 transition metals Chemical class 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 53
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000007423 decrease Effects 0.000 abstract description 8
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 34
- 239000000956 alloy Substances 0.000 description 34
- 239000010408 film Substances 0.000 description 23
- 239000010409 thin film Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 10
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 239000002131 composite material Substances 0.000 description 7
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 244000175448 Citrus madurensis Species 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 235000017317 Fortunella Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- IHZXTIBMKNSJCJ-UHFFFAOYSA-N 3-{[(4-{[4-(dimethylamino)phenyl](4-{ethyl[(3-sulfophenyl)methyl]amino}phenyl)methylidene}cyclohexa-2,5-dien-1-ylidene)(ethyl)azaniumyl]methyl}benzene-1-sulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 IHZXTIBMKNSJCJ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光磁気記録媒体の光磁気記録層の組成に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the composition of a magneto-optical recording layer of a magneto-optical recording medium.
光磁気メモリの研究は、1957年にMnB1薄膜上に
熱ペンを用いて記録全行い、その′、4!!き込み磁区
を磁気光学効果によって観察したのがその端緒であると
いわれている。その後のレーザの発展に刺激されて、
MnB1系の材料を中心として精力的な研究が行なわれ
てきたが、レーザ光源ならびにその利用技術が未成熟で
あったために実用化には至しかし、19−70年代にお
ける光情報処理関連技術の進展および非晶質希土類遷移
金属合金4膜に代表される新しい磁性f4膜材料の研究
が進み、GdFe、 TbFe、 DyFe、 GdC
oなどの合金モ寥膜が開発されてきた。これらの材料は
、一般は、一般に次のような特徴を有している。Research on magneto-optical memory began in 1957 when all recording was carried out using a hot pen on a MnB1 thin film, and 4! ! It is said to have its origins in the observation of injected magnetic domains using the magneto-optical effect. Inspired by the subsequent development of lasers,
Although intensive research has been carried out mainly on MnB1-based materials, the development of optical information processing-related technologies in the 1970s and 1970s prevented practical application because laser light sources and their utilization technology were immature. Research is progressing on new magnetic F4 film materials represented by four amorphous rare earth transition metal alloy films, including GdFe, TbFe, DyFe, and GdC.
Alloy membranes such as o have been developed. These materials generally have the following characteristics.
GdFe、 GdCjoなどの補償点記録用光磁気記録
媒体は、カー回転角(θk)がキュリ一点記録用光磁気
記録媒体に比較して大きに、光再生特性は優れているも
のの保磁力が小さく(数百エルステッド)1μm径程度
の微小ビットが安定に得られない。Compensation point recording magneto-optical recording media such as GdFe and GdCjo have a larger Kerr rotation angle (θk) than Curie single-point recording magneto-optical recording media, and although they have excellent optical reproduction characteristics, they have a small coercive force ( (several hundred oersteds) It is not possible to stably obtain minute bits with a diameter of about 1 μm.
また、 TbFe、 Dykeなどのキュリ一点記録用
光磁気記録媒体は、上述と逆に保磁力が大きく(数キロ
エルステッド)1μm径程度の微小ビット’に安定に得
ることが出来るものの、カー回転角が小さく光再生特性
があまり良くないなどの欠点を有していた。In addition, magneto-optical recording media for Currie single point recording such as TbFe and Dyke have a large coercive force (several kilo Oersteds) and can stably obtain minute bits with a diameter of about 1 μm, contrary to the above, but the Kerr rotation angle is It had drawbacks such as being small and having poor optical reproduction characteristics.
これらの2元合金薄膜の欠点?補うため、従来2つの方
法が試みられてきた。What are the drawbacks of these binary alloy thin films? To compensate, two methods have been tried in the past.
1)6元あるいは4元化する。列えば、2元のGdFe
とTbF’eの長所を生かし、欠点ヲ呻うGdTbFe
3元合金あるいはGdTbFeOo A元合金のよう
に多元化していく方法。(電信学研i、OPM2) 多
層構造化する方法。記録媒体に訪電体層を重ねて多重反
射によるカー効果の増大をはかる。1) Convert into 6 elements or 4 elements. If lined up, binary GdFe
GdTbFe takes advantage of TbF'e's strengths and moans about its shortcomings.
Methods of diversification such as ternary alloys or GdTbFeOo A-element alloys. (Delegraph Gakken i, OPM2) A method to create a multilayer structure. A current visitor layer is placed on the recording medium to increase the Kerr effect due to multiple reflections.
(工Kli:E Trans Magh MAG−16
(1980)1194)(S56、秋李応物学会予稿、
9 P−P−q (19s 1)12b)さらに近年で
は、G6.Tb、Dy等の重希土類金属だけを用いるの
ではなに、これら重希土類にNdやSmの軽希土類t−
添加することが試みられている。(Eng.Kli:E Trans Magh MAG-16
(1980) 1194) (S56, Aki Li Applied Physics Society Proceedings,
9 P-P-q (19s 1) 12b) More recently, G6. Rather than using only heavy rare earth metals such as Tb and Dy, light rare earth metals such as Nd and Sm are used in addition to these heavy rare earth metals.
Attempts have been made to add
このNa、sm添加は、Gd、 Tb、 Dy等を希釈
する効果があり、高価なTb、 Gd、 Dy等の便用
量七減らせることができる。さらにθにも少し大きくな
る。This addition of Na and sm has the effect of diluting Gd, Tb, Dy, etc., and can reduce the amount of expensive Tb, Gd, Dy, etc. in stool by 77%. Furthermore, θ becomes slightly larger.
従来技術で、問題点は少しずつ解決されてきた。 With conventional technology, the problems have been solved little by little.
つまり、カー回転角を大きくすることでキャリアを上げ
てc / Hの向上がはかられた。さらに軽希土類金属
(Nd、 sm )の添加で高価なTb、 Gd、Dy
等を減らせることが出来た。そしてθにも太きくなつた
ことによシ媒体のC/N (キャリアとノイズの比)も
大きくなった。In other words, by increasing the Kerr rotation angle, the carrier was raised and c/H was improved. Furthermore, by adding light rare earth metals (Nd, sm), expensive Tb, Gd, Dy
etc., could be reduced. As θ also became thicker, the C/N (ratio of carrier to noise) of the medium also increased.
しかしながら実用化を目前にしてs O/ N fも
う少し大きくする必要性がでてきた。つまり現在のC/
Nは50 dB程度であり実用できるレベルではるる
が、製品のバラツキ等の余裕tみれば55dBぐらいは
必要となってくる。そこでC/ Nの向上には2つの手
段が考えられ、1つはθkをより−j−大キくシキャリ
アレベルを大きくする方法である。しかし、θには現在
、キューリー@度との関係で、これ以上大きくすること
は無理である。そして、もう1つの手段がノイズレベル
全低減化させることである。However, as the practical application approaches, it becomes necessary to increase s O/N f a little more. In other words, the current C/
N is about 50 dB, which is at a practical level, but considering the margin t for product variations, about 55 dB is required. Therefore, two methods can be considered to improve the C/N. One is to increase θk by -j- to increase the carrier level. However, it is currently impossible to increase θ any further due to its relationship with Curie@degrees. Another means is to completely reduce the noise level.
そこで本発明はこのような問題点全解決するもので、そ
の目的とするところは、媒体から発生するノイズレベル
?低減し、信号強度は出来るだけ低減させずに、信号と
ノイズの比((!/N ) ’e大きく出来る材料(媒
体〕?提供するところにある。The present invention is intended to solve all of these problems, and its purpose is to reduce the noise level generated from the medium. The goal is to provide a material (medium) that can increase the signal-to-noise ratio ((!/N) without reducing the signal strength as much as possible).
本発明の光磁気記録媒体は、磁化の向きが膜面に垂直で
上向きか下向きかの2値をとる非晶質光磁気記録層に、
光を照射し記録・再生・消去を行う光磁気記録媒体にお
いて、非晶質光磁気記録層の主たる組成である希土類遷
移金属に、B、Ge。The magneto-optical recording medium of the present invention has an amorphous magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward.
In a magneto-optical recording medium that performs recording, reproduction, and erasing by irradiating light, B and Ge are added to the rare earth transition metals that are the main composition of the amorphous magneto-optical recording layer.
Sr、Siのうち少なくとも1種類以上の元素全添加し
次に示す組成及び不純物からなることを%徴とする。The percentage indicates that at least one element among Sr and Si is completely added and the composition and impurities are as shown below.
(希土類遷移金属)too−a (EwGexGryS
iz )aOくα≦15at%、0<W≦1
、≦Y≦1 .0≦Y≦1
、
W+X+Y+z= 1
〔作用〕
従来の媒体であるG4Fe、 TbF’e、 DyF’
e、 GdO。(Rare earth transition metal) too-a (EwGexGryS
iz)aOkuα≦15at%, 0<W≦1, ≦Y≦1. 0≦Y≦1, W+X+Y+z=1 [Operation] Conventional media G4Fe, TbF'e, DyF'
e, GdO.
などの希土類遷移金属合金薄膜は、本来は非晶質である
ため、媒体ノイズの原因となる結晶粒界は存在しないと
考えられる。しかし、これら希土類遷移金属薄膜の電子
線回折像を見ると完全な非晶質には見られないにもかか
わらず、実際は不明瞭ながらもリングが観察されている
。これは、とりもなおさず膜中の一部は結晶化あるいは
結晶化に近い状態になっているものと思われる。さらに
、HoCo膜?高分解能成子顕微鏡で見た場合、確かに
結晶化が一部存在している様子が観察されている。(J
、App4Vo1.57. AI、 15Aprit1
985)そこで、本発明によれば、希土類J移金属に、
B、 Ge、Sr、Siのうち少なくとも1種類以上の
元素全添加することにより、従来の媒体よりも非晶化全
より一層進め媒体からのノイズが少なくなり、0/Ni
大きくできるものである。Rare-earth transition metal alloy thin films such as these are originally amorphous, so it is thought that there are no grain boundaries that cause media noise. However, when looking at the electron beam diffraction images of these rare earth transition metal thin films, although they are not completely amorphous, rings are actually observed, although they are unclear. This seems to be because a part of the film is crystallized or in a state close to crystallization. Furthermore, HoCo membrane? When viewed using a high-resolution Seiko microscope, it is observed that some crystallization does exist. (J
, App4Vo1.57. AI, 15Aprit1
985) Therefore, according to the present invention, in the rare earth J-transfer metal,
By adding at least one element among B, Ge, Sr, and Si, the noise from the medium is further reduced than that of conventional media, and the noise from the medium is reduced.
It can be made bigger.
〔実施例1〕
第1図は本発明による。 IJdDyE’eOO合金薄
膜にGet添加した場合のC/ Nの組成依存性ケ示し
た図である。さらに、第2図はカー回転角のPA71&
:依存性の図であり、基板側から測定したものである。[Example 1] FIG. 1 is according to the present invention. FIG. 3 is a diagram showing the composition dependence of C/N when Get is added to an IJdDyE'eOO alloy thin film. Furthermore, Figure 2 shows the Kerr rotation angle of PA71&
: Dependency diagram, measured from the substrate side.
媒体の作製にはスパッタ法ケ用い、基板は1.6μmピ
ッチ、溝深さ700Aのpc基板ケ用いた。ターゲット
はNaDyFe(3oの合金ターゲットにGeのチップ
全配し、DCマグネットロンスパッタにより族1嘆した
。成膜条件は、初期真空度I X 10”−’TOrr
以下まで排気した後、Ar圧f 2 mTorrにし、
100Wのパワーである。さらにターゲットの組成は次
のもの?用いた。A sputtering method was used to produce the medium, and a PC board with a pitch of 1.6 μm and a groove depth of 700 A was used. The target was NaDyFe (all Ge chips were placed on a 3O alloy target, and the film was formed by DC magnetron sputtering. The film forming conditions were an initial vacuum of I
After exhausting the air to below, set the Ar pressure to f 2 mTorr,
It has a power of 100W. Furthermore, what is the composition of the target? Using.
(Ndo、is Dy O,7B )zs (F
130.5 0Oo、5)tt 3℃ %媒体の構造
を第3図に示す。4けpc基叛、5は窒化アルミニウム
と窒化シリコンの複合膜1000A、6がNdDyFe
CoGe膜400Aで、7は膜化00Aニウムと窒化シ
リコンの複合膜1000Aである。(Ndo, is Dy O,7B)zs (F
130.5 0Oo, 5)tt 3°C% The structure of the medium is shown in FIG. 4 PC base, 5 is aluminum nitride and silicon nitride composite film 1000A, 6 is NdDyFe
In the CoGe film 400A, 7 is a composite film 1000A of 00A nium film and silicon nitride.
ここでNdDyFe0oGe 膜f91化アルミニウム
と窒化シリコンの複合膜でサンドイッチしたのは、媒体
の長期信頼性全槽すのが目的であり、本発明に対して本
質内意1禾會持たない。The purpose of sandwiching the NdDyFeOoGe film with a composite film of aluminum oxide and silicon nitride is to ensure long-term reliability of the medium, and has no inherent meaning with respect to the present invention.
まず第1図全説明する。媒体の沓き込み、読み出し条件
は、Write Power 3mW、 ReaaPo
wer 1mW。First, we will explain the entire diagram in Figure 1. The media loading and reading conditions are Write Power 3mW, ReaaPo
wer 1mW.
バイアス磁場4000s 、周波数1MHz、&M速2
.5m/ scc 、 ハンド幅30KHzである。1
はキャリア((3)で、2がキャリアとノイズの比(C
/N )。Bias magnetic field 4000s, frequency 1MHz, &M speed 2
.. 5m/scc, hand width 30KHz. 1
is the carrier ((3), and 2 is the carrier to noise ratio (C
/N).
6はノイズ(N)である。この図から、 C!/NはG
eの添加量が8 at%ぐらいまで増加している( 9
dBの向上)。もう少し詳しく見ると、キャリアレベ
ルは変わらないが、ノイズレベルが小さくなったためC
/ Nが犬きくなったものである。さらにGoの添加量
を増やすと、ノイズレベルは変化しないものの、キャリ
アレベルが小さくなっていくためC/Nは減少していく
ことがわかる。しかしGeの添加量が15atX以下で
あればN(LD7FeCOだけ(Go添加なし)の媒体
のO/Nより大きくすることが出来る。一方、第2図か
ら、カー回転角(θk)のGe添加量依存性と、キャリ
アのGe添加量依存性が同じであることがわかる。つま
りθにはGe添加8 at%までは変化がなに、8at
%を超えると減少している。同、ここに示したカー回転
角は、NdDyFeoo本来のカー回転角ではなに、窒
化アルミニウムと窒化シリコンの複合膜によりエンハン
スされて大きくなったものである。当然ながら、誘電体
膜でエンハンスしない場合の傾向も全く同じである。6 is noise (N). From this figure, C! /N is G
The amount of e added has increased to about 8 at% (9
dB improvement). If you look a little more closely, you can see that although the carrier level remains the same, the noise level has decreased, so C
/ N has become dog-like. It can be seen that when the amount of Go added is further increased, the C/N decreases because the carrier level decreases, although the noise level does not change. However, if the amount of Ge added is less than 15 at It can be seen that the dependence on the amount of Ge added to the carrier is the same.In other words, there is no change in θ up to 8 at% Ge addition.
If it exceeds %, it is decreasing. Similarly, the Kerr rotation angle shown here is not the original Kerr rotation angle of NdDyFeoo, but is enhanced and increased by the composite film of aluminum nitride and silicon nitride. Naturally, the tendency is exactly the same when no enhancement is made with a dielectric film.
以上のことから、 NdDyFe0OKGo f添加す
ることにより、媒体のノイズレベル金減少させ相対的に
O/ N i増力nさせ得ることがわかった。From the above, it has been found that by adding NdDyFe0OKGo, it is possible to reduce the noise level of the medium and relatively increase the O/Ni power.
尚、ここではNdDyFe0Oの合金ターゲットの組成
が(Ndo、es D7o、J2a (Fe O,5Q
□ o、s h2 at%のもの全周いたが、これ以外
の組成比のターゲット?使用しても同様の効果?示す。In addition, here, the composition of the alloy target of NdDyFe0O is (Ndo, es D7o, J2a (Fe O, 5Q
□ There were o, s h2 at% targets all around, but are there targets with other composition ratios? Will it have the same effect if I use it? show.
具体的には矢の組成比のものである。Specifically, the composition ratio is that of an arrow.
(N(io、o+ D7o、es )is (F
eo、a COo、s )yi at %(N
d4D7+、s ) 211 (Fe@、@ OOo、
z )72 at%(N(io4D7o、s )am
(F’eo、* COo、5)tz at %
(Ndo、zs D7o、ys )+s (F13
0.l Coo、5)ss at X(N(io、
es D7o、ti )go (F13 o、s
Co o、s )so at X(Ndo、1s
D7o、yi)xi (Feo、1COo、5)is
atXさらに実験条件を詰めていくとNdDyFe0o
の合金ターゲットに対するGe添加効果がある組成は次
範囲であった。(N(io, o+ D7o, es ) is (F
eo, a COo, s )yi at %(N
d4D7+, s ) 211 (Fe@, @OOo,
z )72at%(N(io4D7o,s)am
(F'eo, * COo, 5) tz at %
(Ndo, zs D7o, ys)+s (F13
0. l Coo, 5) ss at X(N(io,
es D7o, ti ) go (F13 o, s
Co o,s ) so at X(Ndo, 1s
D7o, yi)xi (Feo, 1COo, 5)is
atX As we refine the experimental conditions further, NdDyFe0o
The composition having the effect of Ge addition to the alloy target was in the following range.
(Nd4D7+−t)m(F’s、−ncon)too
−rBa<t≦(14,10≦m≦40at%0≦n
≦1
当然ながら、Geの添力旧夜は全体の15at%まで効
果がある。(Nd4D7+-t)m(F's,-ncon)too
−rBa<t≦(14,10≦m≦40at%0≦n
≦1 Naturally, the addition of Ge is effective up to 15 at% of the total.
〔実施例2〕
次に、NdDyFθCo合金薄膜にBを添加した場合の
結果を示す。実験方法、媒体211#造等は実施例1と
同じである。父、用いたNdDyFe Co合金ターゲ
ットの組成も実砲例1と同じである。第4図が0/Nの
Bふ加に対する組成依存性の図で、第5図がσにのB添
加に対する組成依存性の図である。[Example 2] Next, the results when B was added to the NdDyFθCo alloy thin film are shown. The experimental method, the construction of the medium 211, etc. were the same as in Example 1. The composition of the NdDyFe Co alloy target used was also the same as in Actual Gun Example 1. FIG. 4 shows the composition dependence of 0/N on B addition, and FIG. 5 shows the composition dependence of σ on B addition.
第4図の8がキャリア<C)、9がC/N、10がノイ
ズ(N[−示す。この図よりs C! / NはBの
添加量が8aJ%ぐらい゛まで増加している(10(L
Bの向上)。第418!i!1%第5図から、実施例1
と全く同様のことが言える。つまり、B(1)VJS加
にともなって媒体のノイズレベルが下がり、相対的に0
7 Nは向上する。そして、C/HのピークはBが8
at%近傍であり、Bが15at%iでの添加であれば
、NdDyFsCOだけ(B添加なし)の媒体のC/N
より大きくすることが出来る。In Fig. 4, 8 indicates carrier < C), 9 indicates C/N, and 10 indicates noise (N [-). From this figure, s C!/N increases to about 8aJ% with the amount of B added ( 10(L
Improvement of B). 418th! i! 1% From Figure 5, Example 1
The exact same thing can be said. In other words, as B(1) VJS is added, the noise level of the medium decreases and becomes relatively 0.
7 N will improve. And the C/H peak has B of 8
at%, and if B is added at 15at%i, the C/N of the medium with only NdDyFsCO (no B addition)
It can be made larger.
〔実施例5〕
次に、NdDyFe(3o合金薄膜にsr’(FA加し
た場合の結果を示す。実験方法、媒体構造、ターゲット
組成等は実施例1と同じである。第6図がC/HのSr
添加に対する組成依存性の図で、第7図がθにのSr添
加に対する組成依存性の図である。第6図の11がキャ
リア(C)、12がO/N、1’3がノイズ(N)k示
す。この図より、C/Nf’j:Srの脩加電が8at
%ぐらいまで増加している(8dBの向上)。第6図、
第7図から、実施例1と全く同様のことが百える。つま
り、Srの添加にともなって媒体のノイズレベルが下が
り1.相対的にO/Nは向上する。そして、C/Hのピ
ークはSrが8atX近傍であり、Srが15at%ま
での添加であれば、N(LD7fFθCOだけ(Sr添
加なし)の媒体のO/Nよシ大きくすることが出来る。[Example 5] Next, the results when sr' (FA was added to the NdDyFe (3o alloy thin film) are shown. The experimental method, medium structure, target composition, etc. are the same as in Example 1. Figure 6 shows C/ Sr of H
FIG. 7 is a diagram showing composition dependence on addition of Sr in θ. In FIG. 6, 11 is carrier (C), 12 is O/N, and 1'3 is noise (N). From this figure, the voltage applied to C/Nf'j:Sr is 8at
% (improvement of 8 dB). Figure 6,
As can be seen from FIG. 7, the same thing as in Example 1 can be seen. In other words, the noise level of the medium decreases with the addition of Sr.1. O/N is relatively improved. The peak of C/H is near 8atX of Sr, and if Sr is added up to 15at%, the O/N can be made larger than that of the medium containing only N(LD7fFθCO (no Sr addition)).
〔実施例4〕
次に、 NdDyF’eCo合金4膜にS’に4加した
場合の結果を示す。実験方法、媒体#It造、ターゲッ
ト組成等は実施例1と同じである。第8図がC/Nのa
r!加に対する組成依存性の図で、@9図がθにの81
添加に対する組成依存性の図である。[Example 4] Next, the results will be shown when 4 was added to S' in the NdDyF'eCo alloy 4 film. The experimental method, medium #It structure, target composition, etc. were the same as in Example 1. Figure 8 is C/N a
r! In the diagram of composition dependence on addition, @9 diagram is 81 for θ.
FIG. 3 is a diagram of composition dependence on addition.
第8図の14がキャリア(Cり、15がO/N。14 in Figure 8 is a carrier (C), 15 is O/N.
16がノイズ(N)t−示す。この図より、C/NはS
lの添加量が8atXぐらいまで増加している(7 d
Bの向上)。第8図、第9図から、実施例1と全く同様
のことが言える。つまり、Siの添加にともなって媒体
のノイズレベルが下がシ、相対的にC/Nは向上する。16 indicates noise (N)t-. From this figure, C/N is S
The amount of addition of l has increased to about 8 atX (7 d
Improvement of B). From FIGS. 8 and 9, the same thing as in the first embodiment can be said. In other words, the addition of Si lowers the noise level of the medium and relatively improves the C/N.
そして、O/NのピークはSlが8atX近傍でめジ、
slが15atXまでの添加でめれば、NdDyハ(3
oだけ(81市加なし)の媒体のO/Nより犬さくする
ことが出来る。And, the O/N peak is around 8atX, and
If sl is added up to 15atX, NdDy(3
It is possible to make it more compact than the O/N of the medium of only O (81 cities and Canada).
〔実施例5〕
さらに、 NdDyFeoO合金薄膜にBとGo
f添刀口した場合の結果を示す。BとGeの組成比は5
0:S Oat%である。実施方法、媒体構造、ターゲ
ット組成比等は実施例1と同じである。揖1oが、C/
NのB−Ge添加に対する組成依存性の図で、第11
図がθにのB−Ge添加に対する組成依存性の図である
。第10図の17がキャリア(0)、18がC/N11
97)E/イ、((N)’e示す。第18図、第11図
から実施例1と全く同様のことが言える。つまり、B−
G、の冷加にともなって媒体のノイズレベルが下がり相
対的にc7yは向上する( 9.5 dBの向上)。そ
して、C/ NのピークはB−Geが8 at%近傍で
あり、B−Geが15at、9≦までの添加でめれば、
NdDyFeoOだけ(B−Go、4力lなし)の媒体
のO/Nより人きくすることが出来る。[Example 5] Furthermore, B and Go were added to the NdDyFeoO alloy thin film.
The results are shown in the case of f-soeding. The composition ratio of B and Ge is 5
0:S Oat%. The implementation method, medium structure, target composition ratio, etc. are the same as in Example 1. I1o is C/
The 11th diagram shows the composition dependence of N on B-Ge addition.
The figure is a diagram showing the composition dependence of θ on B-Ge addition. 17 in Figure 10 is carrier (0), 18 is C/N11
97) E/I, ((N)'e is shown. From FIGS. 18 and 11, the same thing as in Example 1 can be said. In other words, B-
As G is cooled, the noise level of the medium decreases, and c7y relatively improves (improvement of 9.5 dB). And, the peak of C/N is around 8 at% of B-Ge, and if B-Ge is added at 15 at and 9≦, then
It can be more user-friendly than the O/N of a medium with only NdDyFeoO (B-Go, no 4 forces).
又、今回用いたB −Geの比は50:50at光のも
のであるが、BとGeがいかなる比のものでも本発明の
効果は同じである。さらに、B −Geだけでなに、B
−8r、 B−8i、 Ge−Br、 Ge−8iBr
−81,B−G6−Br、 B−Ge−8i、 Ge−
8r−81,B −Go−8r−131,t″添刀口し
たものでも何らさしつかえない、又それらの比率も任意
であることは言うまでもない。Further, although the ratio of B-Ge used this time is that of 50:50at light, the effect of the present invention is the same regardless of the ratio of B and Ge. Furthermore, what does B −Ge alone mean?
-8r, B-8i, Ge-Br, Ge-8iBr
-81, B-G6-Br, B-Ge-8i, Ge-
8r-81, B -Go-8r-131, t'' There is no problem with the addition of a sword, and it goes without saying that the ratio thereof is also arbitrary.
次に非晶質光磁気記録層の組成がNdDyE’eC!o
以外の本発明全示す。Next, the composition of the amorphous magneto-optical recording layer is NdDyE'eC! o
The present invention is shown in its entirety except for the following.
〔実施例6〕
第12図は、本発明によるN1TbB’eCo合金薄膜
にGeケ添加した場合のO/ Hの組成依存性を示した
図でめる。第13図はカー回転角の組成依存性の図であ
り、基板側から測定したものである。媒体の作製方法、
条件、媒体構造等は実施例1と同じで、ターゲットはN
dTbFeoo合金ターゲットにGoのチップ上記して
いる。合金ターゲットの組成は次のものを用い乏。[Example 6] FIG. 12 is a diagram showing the composition dependence of O/H when Ge is added to the N1TbB'eCo alloy thin film according to the present invention. FIG. 13 is a graph showing the composition dependence of the Kerr rotation angle, measured from the substrate side. method for producing the medium;
The conditions, medium structure, etc. are the same as in Example 1, and the target is N.
A Go chip is shown above on a dTbFeoo alloy target. The composition of the alloy target is as follows.
(Nao、14Tb o、as )*vm (Fe o
、sa co 6.41) to、x at%第12図
の20がキャリア(0)、21がC/N22がノイズ(
N)k示す。この図よりO/ NはC)eの雄刃ufが
8at%ぐらいまで増加している(9dflの向上)。(Nao, 14Tb o, as )*vm (Fe o
, sa co 6.41) to, x at% In Fig. 12, 20 is carrier (0), 21 is C/N22 is noise (
N) Show k. From this figure, O/N shows that the male blade uf of C)e has increased to about 8 at% (improvement of 9 dfl).
第12図、第13図から、実施例1と全く同様のことが
言える。つまり、Geの添加にともなって媒体のノイズ
レベルが下がり、イ目対的にO/Nは向上する。そして
、C/HのピークはGeが8atX近傍であり、Geが
15atXまでの添カロであれば、 NdTbFeCo
だけ(Gθ添卯ンよし)の媒体のO/Nより大きくする
ことが出来る。From FIG. 12 and FIG. 13, the same thing as in Example 1 can be said. In other words, with the addition of Ge, the noise level of the medium decreases, and the O/N improves. Then, the peak of C/H is near 8atX for Ge, and if Ge is added up to 15atX, NdTbFeCo
The O/N of the medium can be made larger than that of the medium (with Gθ addition).
伺、ここではNdTbFeCoの合金ターゲットの組成
が(Ndo、sa Tbo、as ) *s、s (F
’e (1,i@ coo、tl ) vo宜at%の
もの金柑いたが、これ以外の組成比のターゲラ)t−使
用しても同様の効果全示す。A本釣には次の組;酸比の
ものである。Here, the composition of the NdTbFeCo alloy target is (Ndo, sa Tbo, as) *s, s (F
'e (1, i @ coo, tl) Although kumquats were used at % of kumquats, similar effects were obtained even if other composition ratios were used. The following group is used for A-line fishing: those with acid ratios.
(Nao、o+ Tbo、sa )z@(Fe o、*
OOo、i 、)y宜at%(Ndo4Tb o、s
ha (Feo、s COo、t )tt at%(
Nd0.41 Tbo、is )21 (Feo、z
C!Oo、5)tz at%(Ndo、zi Tbo、
ys )as (Feo、s 00o、s )am a
t %(N(io、zi Tbo、yi)to (Fe
o、s COo、s)go at%(Ndo、ziTl
)o、ys)si (f’eo、s COo、5)as
at y3さらに実験条件を詰めていくとNdTbF
eooの合金ターゲットに対するGe添加効果がある組
成は次の範囲であった。(Nao, o+ Tbo, sa)z@(Fe o, *
OOo,i,)yyiat%(Ndo4Tb o,s
ha (Feo, s COo, t )tt at%(
Nd0.41 Tbo, is )21 (Feo, z
C! Oo, 5) tz at% (Ndo, zi Tbo,
ys ) as (Feo, s 00o, s ) a
t%(N(io, zi Tbo, yi)to (Fe
o, s COo, s) go at% (Ndo, ziTl
)o,ys)si (f'eo,s COo,5)as
at y3 When the experimental conditions are further refined, NdTbF
The composition having the effect of adding Ge to the alloy target of eoo was in the following range.
(Ndz Tbt−z )m(1’el−nCon )
1116−0a(Z≦α5.10≦m≦40atX
O≦n≦1
当然ながら、Geの添加量は全体の15at%まで効果
がある。(Ndz Tbt-z)m(1'el-nCon)
1116-0a (Z≦α5.10≦m≦40atX O≦n≦1 Naturally, the amount of Ge added is effective up to 15 at% of the total.
さらに、Ge添加以外に、前述の実施例と同様、B、
Sr、 Si、 B−Ge、 B−8r、 B−8i、
Ge−8r、 Go −191、5r−8i、 B−
Ge−8r、 B−Go−8i、 Ge−8r−8i
。Furthermore, in addition to the addition of Ge, B,
Sr, Si, B-Ge, B-8r, B-8i,
Ge-8r, Go-191, 5r-8i, B-
Ge-8r, B-Go-8i, Ge-8r-8i
.
B−Ge−8r−817添加したものでも何らさしつか
えない、又それらの比率も任意であることは言うまでも
ない。It goes without saying that even those to which B-Ge-8r-817 is added are acceptable, and the ratio thereof is also arbitrary.
〔実施例7〕
8g14図は、本発明によるanlGdFeco合金薄
膜にGe全添加した場合のC/Hの組成依存性を示した
図である。第15図はカー回転角の組成依存性の図であ
り、基&側から測定したものである。媒体の作製方法、
条件、媒体構造等は実施例Gと同じで、ターゲットは8
mGaF3 Co合金ターゲットにGeのチップ金配し
ている。合金ターゲットの組成は次のもの金柑いた。[Example 7] Figure 8g14 is a diagram showing the composition dependence of C/H when all Ge is added to the anlGdFeco alloy thin film according to the present invention. FIG. 15 is a graph showing the composition dependence of the Kerr rotation angle, measured from the base & side. method for producing the medium;
The conditions, medium structure, etc. are the same as in Example G, and the target is 8.
Ge chips are placed on an mGaF3 Co alloy target. The composition of the alloy target was kumquat.
(Sm11.I GdO,@ ) 37(FeLSI
C00,@* )71 at%第14図の23がキャリ
ア(C)、24がC/N25がノイズ(N)’!に示す
。この図よりO/ NはGoの添加量が8 at ′)
6ぐらいまで増加している( 9 (LBの向上)。第
14図、第15図から、実施例1と全く同様のことが言
える。つまり、Geの添加にともなって媒体のノイズレ
ベルが下75fL相対的にc / Nは向上する。そし
て、C/HのピークはGeが8 at%近傍であり、G
eが15 at%までの添加であれば、BmGdFeO
oだけ(Go添加なし)の媒体のC/Nより大きくする
ことが出来る。(Sm11.I GdO, @ ) 37 (FeLSI
C00, @*)71 at% In Figure 14, 23 is carrier (C), 24 is C/N25 is noise (N)'! Shown below. From this figure, the amount of Go added in O/N is 8 at')
The noise level of the medium decreases by 75 fL with the addition of Ge. C/N is relatively improved.The C/H peak is near 8 at% Ge, and G
If e is added up to 15 at%, BmGdFeO
The C/N can be made larger than the C/N of the medium with only 0 (without Go addition).
向、ここではSmGdFeCoの合金ターゲツ゛トの組
成が(Smo、* G(i o、5)ty(Feats
C!0ats )73 at%のものを用いたが、これ
以外の組成比のターゲット全使用しても同様の効果勿示
す。具体的には次の組成比のものである。In this case, the composition of the SmGdFeCo alloy target is (Smo, *G(io,5)ty(Feats
C! 0 ats ) 73 at % was used, but the same effect can be obtained even if all targets with composition ratios other than this are used. Specifically, it has the following composition ratio.
(Smo、o 5Gda、1g ) 11 (Feo、
s cQ 11.1 ) tt at%(Sm11.4
G(1o、s)am (Fe、m0Oo、t)tta
t%(8mo4i Gdo、is )ts (F
eocooa、5)yt at %(Smo、xi
Gdo、ys)ti (Feo、1COo、5)as
at%(Smo、zsGdo、ys ) 26 (Fe
o、s C!Oo、s)go at X(Smo、1s
Gdo、ti)ss (re(、,100a、s) a
s at%さらに実験条件を詰めていくとSmGdFe
Coの合金ターゲットに対するGe添加効果がある組成
は次の範囲であった。(Smo, o 5Gda, 1g) 11 (Feo,
scQ 11.1) tt at% (Sm11.4
G(1o,s)am (Fe,m0Oo,t)tta
t% (8mo4i Gdo, is )ts (F
eocooa, 5) yt at % (Smo, xi
Gdo,ys)ti (Feo,1COo,5)as
at% (Smo, zsGdo, ys) 26 (Fe
o,s C! Oo, s) go at X(Smo, 1s
Gdo,ti)ss (re(,,100a,s) a
s at% When the experimental conditions are further refined, SmGdFe
The composition having the effect of adding Ge to the Co alloy target was in the following range.
(SmtGdt−t)m(Fet−n con ) t
oo−mo(z<o、s、 1o≦m≦40 at%0
≦n≦1
当然ながら、Geの添加量は全体の15at丸まで効果
がある。さらにGe添加以外に、前述の災施例と同様、
B、 Sr、 Si、 E−Ge、 B−8r、 B−
8i、 G。(SmtGdt-t)m(Fet-n con)t
oo-mo(z<o, s, 1o≦m≦40 at%0
≦n≦1 Naturally, the amount of Ge added is effective up to a total of 15 at. Furthermore, in addition to Ge addition, similar to the above-mentioned disaster example,
B, Sr, Si, E-Ge, B-8r, B-
8i, G.
−8r、Ge−8i、5r−81,B−Ge−8r、B
−Ge−8i。-8r, Ge-8i, 5r-81, B-Ge-8r, B
-Ge-8i.
G e−8r−8i、 B−G e−8r−8i ’I
f添加したものでも何らさしつかえない、又それらの比
率も任意であることは言うまでもない。G e-8r-8i, B-G e-8r-8i 'I
It goes without saying that there is no problem even if F is added, and the ratio thereof is also arbitrary.
同、本実施例はNdDyFe0o、 NdTbFe0o
、 SmGdFaCo、について述べたが、NdGdF
eCo、 SmDyFeCo。Similarly, in this example, NdDyFe0o, NdTbFe0o
, SmGdFaCo, but NdGdF
eCo, SmDyFeCo.
SmTbFe0o、 NbSmDyFeC!o、 Nd
SmTbFeCo等の重希土類金属と重希土類金属の合
金に遷移金嘱が入った組成であれば本発明の効果がある
。そして1本46明による実施例で用いた媒体F’に子
禎倣鋭にて観察した所、電子線回折像は全て完全なハロ
ーパターンであり、不明瞭なリングも観察されていない
。SmTbFe0o, NbSmDyFeC! o, Nd
The present invention is effective if the composition contains a transition metal in an alloy of heavy rare earth metals and heavy rare earth metals, such as SmTbFeCo. When the medium F' used in the example with one 46-light beam was observed with a mirror imager, all of the electron beam diffraction images were complete halo patterns, and no unclear rings were observed.
以上述べたように発明によれば、非晶質光出気記録層の
主たる組成である希土類遷移金属に、B。As described above, according to the invention, B is added to the rare earth transition metal that is the main composition of the amorphous optical recording layer.
Ge、 Br、 Siのうち少なくとも1種類以上の元
素を添加することにより媒体のノイズレベル全減少させ
ることが出来、O/Nの向上勿はかることが出来るもの
である。By adding at least one element among Ge, Br, and Si, the noise level of the medium can be completely reduced, and the O/N ratio can be improved.
伺、本実施例に示したものは、PC基版だけであるが、
PMMA、エポキシa4 if百等の樹脂基也全用いて
も何らさしつかえなに、さらにガラス基板に紫外線硬化
樹脂による溝を形成した基板、ガラス基板板そのものを
用いてもよい。又、媒体の構造は3層でも4層でもよに
、誘電体も窒化アルミニウムと窒化シリコンの複合膜以
外に、窒化アルミニウム単体膜、窒化シリコン単体膜、
5102.S10゜ZnS等を用いても何ら本発明をそ
こなうものでない。However, what is shown in this example is only a PC base version.
There is no problem in using a resin base such as PMMA or epoxy A4 IF, or a glass substrate with grooves made of ultraviolet curing resin or a glass substrate plate itself may be used. In addition, the structure of the medium may be three or four layers, and the dielectric material may be a composite film of aluminum nitride and silicon nitride, a single film of aluminum nitride, a single film of silicon nitride, or a single film of silicon nitride.
5102. Even if S10°ZnS or the like is used, the present invention will not be impaired in any way.
第1図は、 NdDyFe(!o合金薄膜にGe全添加
した場合のO/ Nの組成依存性の図。第2図はNdD
7F’θCO合金R膜にGei添加した場合のカー回転
角の組成依存性の図。第3図は媒体の構造図。
第4図はNdDyF’000合金薄膜にBを添加した場
合のC/ Nの組成依存性の図。第5図11i NdD
yFeC。
合金薄膜にBを添加した場合のカー回転角の組成依存性
の図。第6図はN(lD7F13 Co合金薄膜にSr
を添加した場合のO/Hの組成依存性の図。第7図はN
dD7FθOo合金薄膜にSrを添加した場合のカー回
転角の組成依存性の図。第8図はNdDyFeC0合金
薄膜に81を添加した場合のO/ Nの組成依存性の図
。第9図はNdDyFeoO合金薄膜に81全添加した
場合のカー回転角の組成依存性の図。
第10図はNdDyFe Co合金薄膜にB−Gei添
加した場合のO/ Nの組成依存性の図。第11図はN
dDyFeoo合金薄膜にB−Ge′(+−添加した場
合のカー回転角の組成依存性の図。第12図はNdTb
FeC0合金薄膜にGeを添加した場合のC/ Nの組
成依存性の図。第15因はNdTbFeCo合金薄膜に
Geを添加した場合のカー回転角の組成依存性の図。
8g14図はSmGdFeC!o合金薄膜にGekm加
した場合のC/ Nの組成依存性の図。第15図はSm
04F’eCO合金薄膜にGe全添加し念場合のカー回
転角の組成依存性の図である。
1・・・キャリア((3)
2・・・キャリアとノイズの比(G/N)3・・・ノイ
ズ(N)
4・・・PC基板
5・・・窒化アルミニウムと窒化シリコンの複合膜6−
NdDyFeCoGe膜
7・・・窒化アルミニウムと窒化シリコンの複合膜8・
・・キャリア(,0)
9・・・キャリアとノイズの比(0/N)10・・・ノ
イズ(N)
11・・・キャリア(c)
12・・・キャリアとノイズの比(a/N)13・・・
ノイズ(N)
14・・・キャリア(C)
15・・・キャリアとノイズの比(07M )16・・
・ノイズ(N)
17・・・キャリア(0)
18・・・キャリアとノイズの比(0/N )19・・
・ノイズ(N)
20・・・キャリア(c)
21・・・キャリアとノイズの比(C/ N )22・
・・ノイズ(、N)
23・・・キャリア(0)
24・・・キャリアとノイズの比(C/N )25・・
・ノイズ(N)
以上
竿 1 1’ffl
菫 2 II
ル4
1久 う リ凸
第S図
第E)図
’ I’
/!; SrW%ノ第7m
名S図
5” lo 6 、S、、、、%J¥ 1
第10図
第111
第12図
名13図Figure 1 shows the composition dependence of O/N when all Ge is added to the NdDyFe(!o alloy thin film. Figure 2 shows the composition dependence of
7 is a diagram showing the composition dependence of the Kerr rotation angle when Gei is added to the 7F'θCO alloy R film. Figure 3 is a structural diagram of the medium. Figure 4 shows the composition dependence of C/N when B is added to the NdDyF'000 alloy thin film. Figure 5 11i NdD
yFeC. FIG. 3 is a diagram showing the composition dependence of the Kerr rotation angle when B is added to the alloy thin film. Figure 6 shows N(LD7F13Co alloy thin film with Sr).
A diagram of the composition dependence of O/H when adding . Figure 7 is N
dA diagram showing the composition dependence of the Kerr rotation angle when Sr is added to the D7FθOo alloy thin film. Figure 8 is a diagram showing the dependence of O/N on the composition when 81 is added to the NdDyFeC0 alloy thin film. FIG. 9 is a diagram showing the composition dependence of the Kerr rotation angle when 81 is completely added to the NdDyFeoO alloy thin film. FIG. 10 is a diagram showing the composition dependence of O/N when B-Gei is added to a NdDyFeCo alloy thin film. Figure 11 is N
Figure 12 shows the composition dependence of the Kerr rotation angle when B-Ge' (+-) is added to the dDyFeoo alloy thin film.
A diagram of the composition dependence of C/N when Ge is added to a FeC0 alloy thin film. The 15th factor is a diagram showing the composition dependence of the Kerr rotation angle when Ge is added to the NdTbFeCo alloy thin film. 8g14 figure is SmGdFeC! A diagram of the composition dependence of C/N when Gekm is added to the o alloy thin film. Figure 15 shows Sm
FIG. 4 is a graph showing the composition dependence of the Kerr rotation angle when all Ge is added to the 04F'eCO alloy thin film. 1... Carrier ((3) 2... Carrier to noise ratio (G/N) 3... Noise (N) 4... PC board 5... Composite film of aluminum nitride and silicon nitride 6 −
NdDyFeCoGe film 7... Composite film of aluminum nitride and silicon nitride 8.
...Carrier (,0) 9...Ratio of carrier to noise (0/N) 10...Noise (N) 11...Carrier (c) 12...Ratio of carrier to noise (a/N) )13...
Noise (N) 14... Carrier (C) 15... Carrier to noise ratio (07M) 16...
・Noise (N) 17...Carrier (0) 18...Ratio of carrier to noise (0/N) 19...
・Noise (N) 20...Carrier (c) 21...Ratio of carrier to noise (C/N) 22・
...Noise (,N) 23...Carrier (0) 24...Ratio of carrier to noise (C/N)25...
・Noise (N) More than 1 1'ffl Violet 2 II Le 4 1 Ku Convex Figure S Figure E) Figure 'I'
/! ; SrW%ノ7m Name SFigure 5" lo 6 , S,...,%J\ 1 Figure 10 Figure 111 Figure 12 Name 13
Claims (3)
値をとる非晶質光磁気記録層に、光を照射し記録・再生
・消去を行う光磁気記録媒体において、前記非晶質光磁
気記録層の主たる組成である希土類遷移金属に、B、G
e、Sr、Siのうち少なくとも1種類以上の元素を添
加し次に示す組成及び不純物からなることを特徴とする
光磁気記録媒体。 (希土類遷移金属)_1_0_0_−_α(BwGex
SrySiz)α0<α≦15at%、0≦w≦1 0≦x≦1、 ≦Y≦1 0≦z≦1、 W+X+Y+Z=1(1) The direction of magnetization is perpendicular to the film surface and is either upward or downward.
In a magneto-optical recording medium in which recording, reproduction, and erasing is performed by irradiating light onto an amorphous magneto-optical recording layer that takes a value, B, G
1. A magneto-optical recording medium characterized in that it is doped with at least one element among e, Sr, and Si and has the following composition and impurities. (Rare earth transition metal)_1_0_0_-_α(BwGex
SrySiz) α0<α≦15at%, 0≦w≦1 0≦x≦1, ≦Y≦1 0≦z≦1, W+X+Y+Z=1
mのうちの少なくとも1種類以上の軽希土類金属と、G
d、Tb、Dyのうちの少なくとも1種類以上の重希土
類金属とを含むことを特徴とする特許請求の範囲第1項
記載の光磁気記録媒体。(2) The rare earth of the rare earth transition metals is Nd, S
at least one light rare earth metal of m;
2. The magneto-optical recording medium according to claim 1, further comprising at least one heavy rare earth metal selected from among d, Tb, and Dy.
Coのうちの少なくとも1種類以上を含むことを特徴と
する特許請求の範囲第1項記載の光磁気記録媒体。(3) The transition metal among the rare earth transition metals is Fe,
The magneto-optical recording medium according to claim 1, characterized in that it contains at least one type of Co.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6898886A JPS62226450A (en) | 1986-03-27 | 1986-03-27 | Photomagnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6898886A JPS62226450A (en) | 1986-03-27 | 1986-03-27 | Photomagnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62226450A true JPS62226450A (en) | 1987-10-05 |
Family
ID=13389551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6898886A Pending JPS62226450A (en) | 1986-03-27 | 1986-03-27 | Photomagnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62226450A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62262245A (en) * | 1986-05-07 | 1987-11-14 | Seiko Epson Corp | Magneto-optical recording medium |
JPS63214940A (en) * | 1987-03-04 | 1988-09-07 | Daicel Chem Ind Ltd | Magneto-optical recording medium |
WO1990011602A1 (en) * | 1989-03-28 | 1990-10-04 | Seiko Epson Corporation | Magnetooptical medium |
US6331338B1 (en) * | 1995-10-28 | 2001-12-18 | Samsung Electronics Co., Ltd. | Amorphous alloy of light rare earth-transition metal and semi-metal, magneto-optical recording layer made of the alloy, and magneto-optical disk adopting the layer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59108304A (en) * | 1982-12-14 | 1984-06-22 | Seiko Instr & Electronics Ltd | Optical magnetic recording medium |
JPS61196445A (en) * | 1985-02-27 | 1986-08-30 | Toshiba Corp | Photomagnetic disk |
JPS61196440A (en) * | 1985-02-25 | 1986-08-30 | Seiko Instr & Electronics Ltd | Photomagnetic recording medium |
JPS61246946A (en) * | 1985-04-23 | 1986-11-04 | Pioneer Electronic Corp | Photomagnetic recording medium |
JPS61253655A (en) * | 1985-05-02 | 1986-11-11 | Pioneer Electronic Corp | Photomagnetic recording medium |
JPS621151A (en) * | 1985-06-26 | 1987-01-07 | Ricoh Co Ltd | Photomagnetic recording medium |
JPS62165753A (en) * | 1986-01-16 | 1987-07-22 | Sumitomo Electric Ind Ltd | Magnetooptic recording medium |
-
1986
- 1986-03-27 JP JP6898886A patent/JPS62226450A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59108304A (en) * | 1982-12-14 | 1984-06-22 | Seiko Instr & Electronics Ltd | Optical magnetic recording medium |
JPS61196440A (en) * | 1985-02-25 | 1986-08-30 | Seiko Instr & Electronics Ltd | Photomagnetic recording medium |
JPS61196445A (en) * | 1985-02-27 | 1986-08-30 | Toshiba Corp | Photomagnetic disk |
JPS61246946A (en) * | 1985-04-23 | 1986-11-04 | Pioneer Electronic Corp | Photomagnetic recording medium |
JPS61253655A (en) * | 1985-05-02 | 1986-11-11 | Pioneer Electronic Corp | Photomagnetic recording medium |
JPS621151A (en) * | 1985-06-26 | 1987-01-07 | Ricoh Co Ltd | Photomagnetic recording medium |
JPS62165753A (en) * | 1986-01-16 | 1987-07-22 | Sumitomo Electric Ind Ltd | Magnetooptic recording medium |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62262245A (en) * | 1986-05-07 | 1987-11-14 | Seiko Epson Corp | Magneto-optical recording medium |
JPS63214940A (en) * | 1987-03-04 | 1988-09-07 | Daicel Chem Ind Ltd | Magneto-optical recording medium |
WO1990011602A1 (en) * | 1989-03-28 | 1990-10-04 | Seiko Epson Corporation | Magnetooptical medium |
US5667887A (en) * | 1989-03-28 | 1997-09-16 | Seiko Epson Corporation | Magneto-optical media |
US6331338B1 (en) * | 1995-10-28 | 2001-12-18 | Samsung Electronics Co., Ltd. | Amorphous alloy of light rare earth-transition metal and semi-metal, magneto-optical recording layer made of the alloy, and magneto-optical disk adopting the layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5883346A (en) | Photomagnetic recording medium | |
JPS62226450A (en) | Photomagnetic recording medium | |
JPH10124943A (en) | Magneto-optical recording medium and its production, reproducing method and reproduction device | |
JPH0519213B2 (en) | ||
JPS61246946A (en) | Photomagnetic recording medium | |
US5100741A (en) | Magneto-optic recording systems | |
US5710746A (en) | Magneto-optical recording medium and reading method with magnetic layers of different coercivity | |
US5903526A (en) | Magneto-optical recording medium having multiple magnetic layers | |
US5106704A (en) | Over write capable magnetooptical recording medium | |
JP2555245B2 (en) | Magneto-optical recording medium and manufacturing method thereof | |
JPS60243844A (en) | Photomagnetic recording medium | |
JP2805070B2 (en) | Thermomagnetic recording method | |
JP2658512B2 (en) | Magneto-optical recording medium and magneto-optical recording method | |
JPS62214537A (en) | Photomagnetic recording medium | |
JPH05198027A (en) | Magneto-optical recording medium | |
JPH0766579B2 (en) | Magneto-optical recording medium and manufacturing method thereof | |
KR930002168B1 (en) | Magneto-optic memory medium | |
JPS62172547A (en) | Photomagnetic recording medium | |
JPS61243977A (en) | Photomagnetic recording medium | |
JPS63148447A (en) | Thermomagneto-optical recording medium | |
JPS60101702A (en) | Recording method of photomagnetic recording medium | |
JPS6068607A (en) | Magnetic thin film recording medium | |
JPS59186155A (en) | Photomagnetic recording medium | |
JPS62285255A (en) | Magneto-optical recording medium | |
JPS61240456A (en) | Phtomagnetic recording medium |