JPS62224602A - Production of sintered aluminum alloy forging - Google Patents
Production of sintered aluminum alloy forgingInfo
- Publication number
- JPS62224602A JPS62224602A JP6755486A JP6755486A JPS62224602A JP S62224602 A JPS62224602 A JP S62224602A JP 6755486 A JP6755486 A JP 6755486A JP 6755486 A JP6755486 A JP 6755486A JP S62224602 A JPS62224602 A JP S62224602A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- preform
- true density
- aluminum alloy
- density ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005242 forging Methods 0.000 title claims abstract description 29
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000843 powder Substances 0.000 claims abstract description 36
- 238000005245 sintering Methods 0.000 claims abstract description 23
- 239000012298 atmosphere Substances 0.000 claims abstract description 21
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 20
- 238000000465 moulding Methods 0.000 abstract description 11
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 25
- 229910045601 alloy Inorganic materials 0.000 description 19
- 239000000956 alloy Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 9
- 238000009864 tensile test Methods 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910000861 Mg alloy Inorganic materials 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001192 hot extrusion Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000007712 rapid solidification Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 229910007981 Si-Mg Inorganic materials 0.000 description 1
- 229910008316 Si—Mg Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
(産業上の利用分野)
本発明は、粉末冶金法による高温強度及び耐摩耗性に優
れたアルミニウム合金の製造方法に関するものである。
(従来の技術及び解決しようとする問題点)近年、急冷
凝固法によって多量の合金元素を添加したアルミニウム
合金粉末を原料とし、粉末冶金法によって耐摩耗性や高
温強度に優れたアルミニウム合金の製造の開発が活発化
している。この場合の成形加工法としては、熱間押出し
が一般的に用いられ、圧粉成形〜焼結〜コイニングの方
法は用いられていない。
アルミニウム合金粉末の焼結のためには、その表面に形
成されている酸化皮膜を破壊して焼結を促進させること
が必要である。多量の合金元素を含有した合金粉末は硬
さが高いため、通常の圧粉成形〜焼結〜コイニングの方
法では焼結が十分でなく優れた特性が得られない。しか
し、熱間押出しでは、押出し時の塑性流動によって粉末
が変形すると共に酸化皮膜が破壊されて焼結が十分に進
行し優れた特性を有する成形体が得られる。
このように、熱間押出しの方法は、急冷凝固法による粉
末のような硬質粉を加熱軟化した状態で塑性変形させて
酸化皮膜を破壊し、焼結を促進させる方法として優れて
いる。しかし、N ear N etShape(!線
形状に近づける)加工でないため、機械部品等に仕上げ
るためには切削、鍛造等の二次加工が必要であり、その
ための加工コストが高い。
或いは材料歩留が低いために材料コストが高い等の欠点
がある。また、押出方向に平行と直角の方向とで機械的
性質が異なる。いわゆる異方性のために、適用可能な機
械部品形状に制約が生ずる等の問題もある。
この点を改善する成形加工法として、熱間鍛造法が考え
られ、既に特開昭60−145349号にその方法が提
案されている。上記公報で提案されている方法の要点は
、A Q −(10〜20)%5i−(2〜12)%F
eのAQ合合金粉末口はそれに(1−12)%Cuと(
0,1〜3)3Mgを添加したA’ Q合金粉末を冷間
静水圧プレス成型又は金型成型によって真密度比95%
以上のプリフォームを作成した後、該プリフォームを2
50℃〜550℃に加熱し、金型内で鍛造することを特
徴とする高耐熱、耐摩耗性アルミニウム合金の製造方法
である。しかし、該提案ではブリスター(熱処理過程で
の異常膨張現象)発生や機械的特性劣化の原因となる水
素ガスを主とする含有ガスの低減が図れず、また含有ガ
スの低減策については何等開示していない。
本発明の目的は、アルミニウム合金粉末の熱間鍛造加工
法において、ブリスターの発生を抑制し、機械的特性の
安定した鍛造材料を得る方法を提供せんとするものであ
る。
(問題点を解決するための手段)
本発明者等は、アルミニウム合金粉末を原料とし、熱間
鍛造法によって優れた特性を有する該成形体を製造する
ための一連の研究において、熱間鍛造後の成形体にブリ
スターが発生したり、或いは熱間鍛造のままの状態では
その機械的特性のバラつきが大きいという問題に直面し
た。この問題を解決するために鋭意検討を行った結果、
ブリスターや機械的特性のバラつきの原因は成形体中に
含有される水素ガスを主とする多量のガス成分であるこ
とを究明した。
そこで、本発明者等は、前記問題点を解決するためアル
ミニウム合金粉末成形体の脱ガス方法を詳細に検討した
結果、アルミニウム合金粉末を成形して真密度比70〜
95%のプリフォームを作成した後にこれを真空又は不
活性ガス雰囲気中で焼結し、引き続いて熱間鍛造を行え
ば、含有ガス量は5cc/lOOgAQ以下となってブ
リスターや機械的特性のバラつきが減少し、更に含有ガ
ス量がその範囲であれば熱間鍛造後に再焼結を行うこと
によって機械的特性が熱間鍛造のままの状態より改善で
きることを見い出し、本発明に至ったものである。
すなわち1本発明に係るアルミニウム合金焼結鍛造品の
製造方法は、アルミニウム合金粉末を成形して真密度比
70〜95%のプリフォームを作り、該プリフォームを
450〜550℃の真空又は不活性雰囲気中で焼結後、
200〜550℃での鍛造によって95%以上の真密度
比とし、更にその後450〜550℃の温度で再焼結し
、全ガス量が5cc/100g−AQ以下にせんとする
ものである。更に好ましい態様としては、アルミニウム
合金粉末が重量比でSi:10.0〜30.0%と。
Fe:1.0〜15.Q%、Mn:1.0〜15.0%
及びNi:1.0〜15.0%のうち1種又は2種以上
(2種以上の場合は合計で1.0〜15.0%)と、更
に必要に応じてCu: 0 、5〜5.0%及びMg:
0.2〜3.0%のうちの1種又は2種を含み、残部が
実質的に不可避的不純物を含むAflからなる組成のも
のを対象とするものである。
以下に、本発明を実施例に基づいて詳細に説明する。
本発明で使用するアルミニウム合金粉末は、組成上特に
制限されるものではないが、一般に高温強度、耐摩耗性
、低熱膨張率等の諸特性を要求される部材に使用するも
のが多いので、AQ−5i系、AQ−Si−Mg系、A
Q−8i−Cu系−AQ−S i −Cu −M g系
、及びこれらの合金にFe。
Mn、Ni等の重金属を添加したもの、更には、Cr、
Mo、 Go、Ti、Zr、■、Zn等を添加したも
のであっても良い。
アルミニウム合金粉末の成形性は粉末の硬度によって著
しく異なる。第1図は大気アトマイズ法によって製造し
た100メツシユ以下の6061合金粉末及びAfl−
20%5i−3%Cu−1%Mg合金粉末を金型成型に
によって30φ×15tmanのプリフォームを作成し
た時の真密度比と成形圧の関係を示したものである。一
般に高合金組成のものほど密度は上がりにくくなる傾向
にある。
成形圧3 tonf / 0m2で6061合金は約8
4%の真密度比になるが、AQ−20%5L−3%Cu
−1%Mg合金は約67%の真密度比である。真密度
比が70%以下であるとプリフォームのコーナ一部が欠
ける等、ハンドリング上の問題がある。
真密度比が70%以上になれば、ハンドリング上のこの
ような問題はない。
しかし、真密度比を95%以上にするためには成形圧を
高める必要があり、大きなプレスを必要とするため設備
費が高価になる。この傾向は第1図から明らかなように
、高合金粉のような硬質粉末の場合に顕著である。また
、圧粉成形後の真密度比を95%以上とすることは、そ
の後の焼結工程における脱ガスを阻害するという問題が
ある。
真密度比が95%以上になると、成形体中に存在する空
孔の多くは閉鎖空孔(C1osed P ore)と
なるため、AQ合金粉末表面に形成されている酸化皮膜
の結晶水或いは付着、吸着水が加熱によって分離1発生
するガスの成形体外への逸脱が阻害され、焼結後の成形
体は多量のガスを含有していたり、或いはブリスターと
呼ばれる成形体表面のふくれが発生したりする問題があ
る。
第2図は、第1図に示した成形体を真空中で520″c
X1hr焼結し、その後直ちに、250℃に予熱した金
型にて大気中で8 tonf / cta”の圧力で鍛
造した成形体のガス量を測定した結果である。
第2図から明らかなように、圧粉成形後の真密度比が9
5%以上になると、ガス量は5cc/ 100&・AQ
より多くなる。圧粉成形後の真密度比が95%より低い
とガス量はいずれも5cc/ 100g−Alll以下
の値である。なお、これらの鍛造後の成形体を真空中で
520℃X 30 win再焼結したところ、ガス量が
5cc/100gAffより多いものはその表面にブリ
スターが発生し、ガス量が5cc/ 100g−A 1
1以下のものではブリスターの発生は認められなかった
。
また、第1表に、焼結雰囲気をAr、 N2又は大気と
し、それぞれの雰囲気で520℃X1hr焼結後、直ち
に前記と同様に鍛造した成形体のガス量を示す。なお、
試料はAQ−20%5i−3%Cu−1%Mg合金粉末
で、これを8ton/c♂の圧力で成形しく真密度比7
8〜80%)、焼結し、250℃に予熱した金型内で8
tonf / am2の圧力で鍛造したものである。
同表より、Ar、N、雰囲気では5CC/100g−A
Q以下のガス量であるが、大気中で焼結した成形体は5
cc/100g−Al以上のガス量であり、再焼結によ
ってブリスターが発生した。
第1表
鍛造後の成形体の全ガス量
次に、AQ−20%5L−3%Cu−1%Mg合金粉末
を8 tonf / 0m2の成形圧で55X10x1
5mmのプリフォームを成形し、これを前記と同じ条件
で真空中で焼結を行った。焼結後直ちに250℃に予熱
した金型にて鍛造圧力を3〜12tonf/am”の範
囲で変えて大気中で鍛造を行った。
鍛造後の成形体より平行部5φx200III+1の引
張試験片を作成し、室温にて引張試験を行った。また、
鍛造後の成形体を真空中で520℃×30win再焼結
したものについても同様に引張試験を行った。なお、再
焼結後、475℃X1hr、WQ→175℃X8hrの
T6処理を施したものについても引張試験を行なった。
これらの結果を第3図に示す。
同図より、鍛造ままの状態の引張強さは、鍛造圧力が5
tonf / am2以下では低く、8tonf/C
m2以上になると上昇する。また、再焼結によって引張
強さは上昇するが、鍛造圧力が8 tonf / cm
2以上の場合にその傾向が顕著である。なお、鍛造圧力
が5 tonf / am2及び8tonf/aJの場
合の鍛造ままの真密度比は、それぞれ91%及び97%
であった。
上述のように、圧粉成形後の真密度比が70〜95%の
プリフォームを作成した後にこれを真空又は不活性雰囲
気中で焼結し、引き続いて熱間鍛造によって真密度比を
95%以上とすれば、含有ガス量は5cc/100g−
AQ以下となってブリスター発生や機械的特性のバラつ
きが減少し、更に含有ガス量がその範囲内であれば熱間
鍛造後に再焼結を行うことによって機械的特性が熱間鍛
造のままより改善できる。
次に、本発明の条件限定理由について説明する。
まず、AQ合金粉末を成形して得るプリフォームの真密
度比は70〜95%である。真密度比が70%より低い
と、プリフォームをハンドリングする際、コーナ一部が
欠ける等の問題がある。また、真密度比が95%よりも
高いと、本発明の特徴の1つである次工程の焼結工程に
おける脱ガスが阻害され、5cc/ 100g−A Q
以下のガス量の成形体が得られないだけでなく、いたず
らに大きな能力の成形プレスを必要とすることになり、
好ましくない。なお、プリフォームの成形には、金型成
形や冷間静水圧成形を用いることができる。
プリフォームの焼結は、450〜550℃の真空又は不
活性雰囲気中で行う。大気中では脱ガスが十分に進行せ
ず、5cc/ 100g−A Q以下のガス量の成形体
が得られない。このため、真空又は不活性雰囲気中で焼
結することが必要である。真空の場合、真空度は0.I
Torr以下、望ましくは0 、 OI Torr以下
にするのがよい。Ar、 Nzのような不活性雰囲気で
は、露点が一10℃以下、望ましくは一20℃以下にな
るように不活性雰囲気をコントロールするとよい。焼結
温度が450”Cより低いと焼結の進行が遅く、また、
アルミニウム酸化物表面に吸着した水分や結晶水を完全
に除去することができない。550℃より高いと焼結は
進行するものの組織の粗大化が生じ1機械的特性の劣化
が生ずるので好ましくない。
鍛造は、200〜550℃にて行い鍛造後の成形体の真
密度比を95%以上とする。鍛造によってAQ合金粉末
に十分な塑性変形を与え、その表面に形成されている酸
化皮膜を破壊して新生活性表面を現出させるためには、
AQ合金粉末を200℃以上に加熱し軟化させておくの
が好ましい。
このためには、プリフォームを200℃以上に保持する
だけでなく、鍛造用金型も200℃以上に加熱保持して
おくとよい。温度が550℃を超えると、組織の粗大化
が生じ機械的性質の劣化が生ずるので好ましくない、な
お、プリフォームの加熱は焼結時の加熱と兼ねるのが望
ましく、プリフォームの温度降下及び大気中にさらされ
ることによるガス量の増加を少なくするため、焼結炉か
ら取り出した後、直ちに鍛造することが望ましい。
もし、鍛造前のプリフォームの加熱を焼結時の加熱とは
別途に行うのであるならば、真空或いは不活性雰囲気中
で450〜550℃に加熱することが必要であり、炉か
ら取り出した後の配慮は前記と同じである。鍛造後の成
形体の真密度比が95%より低いと、機械的性質に劣る
ので好ましくな塾1゜
鍛造後の再焼結は450〜550℃で行う。再焼結の目
的は、鍛造時に生じた新生活性面の焼結を十分に行うた
めであり、このためには450’C以上で行う必要があ
る。550℃より温度が高いと組織の粗大化が生じ、機
械的性質が劣化するので、好ましくない、なお、再焼結
は大気中で行っても支障ないが、望ましくは真空或いは
不活性雰囲気が良い。再焼結の際、鍛造後の成形体のガ
ス量が5cc/100g−AQより多いと、ブリスター
が発生したり或いは機械的性質の劣化が生ずるため、再
焼結の本来の目的を達成することができ難くなる。
次に1本発明で使用するアルミニウム合金粉末の好まし
い組成について、その成分限定理由を説明する。
Siは10.0%未満では分散量が少なく、耐熱性や耐
摩耗性に及ぼす効果が不充分である。5i10%程度の
亜共晶領域では初晶Siは晶出せず、微細な共晶組織を
呈するものとなる。Si量が増すと共にSi初晶が晶出
するようになり、耐熱性や耐摩耗性が向上するようにな
る。しかしながら、Siが30%を超えるといかなる急
冷凝固法を採用して粉末化しても、粗大なSi初品が消
失し難くなる。急冷速度が103℃/see程度では初
晶Siを微細化するにはSi量を25%以下にするのが
望ましい。
したがって、Si含有量は10.0〜30.0%、好ま
しくは5i15.0〜25.0%とするのが良い。
Fe、Mn、Niは本合金においては重要な成分である
。Fe又はMn或いはNiはAQ中への溶解度が低く、
かつ拡散速度が遅いことを利用して微細な化合物として
分散品出させ高温強度を高める目的で添加する。
Fe、Mn、Niの添加量はそれぞれ1.0%〜15.
0%(但し、2種以上の場合は合計で1.0〜15゜0
%)が適当である。Fe、Mn又はNi添加量が1.0
%未満では高温強度や耐摩耗性に及ぼす効果が認められ
ず、15%を超えた場合には硬さや耐摩耗性が却って低
くなり、成形体を作った場合には材質が脆くなる傾向が
ある。
本合金例におけるAQ金合金は必要に応じてCuやMg
を添加しても良い。CuやMgはA12合金において時
効硬化性を付与して材質を強化する成分として広く使用
されており、適正な添加量はCuは0.5〜5.0%、
Mgは0.2〜3.0%の範囲である。本合金例におい
ても溶体化処理温度での固溶限度内の範囲でCuやMg
を添加することは材質を強化するのに有効である。
本合金例においては高温強度を改善する目的で、更にC
r、Mo、Go、Ti、Zr、V、Zn、Li等を少量
添加することは何ら支障はない、しかし添加量があまり
多くなると成分管理、溶解温度の上昇など製造上の問題
が生じてくる。
(実施例)
次に1本発明の一実施例について説明する。
大気アトマイズ法によって製造した第2表に示す組成の
100メツシユ以下のAQ合金粉末を用いて、 8 t
onf / Cm 2の圧力で金型成形を行い、55X
10X15mmのプリフォームを得、真密度比を求めた
。次に、これらのプリフォームを0゜01 Torr以
下の真空及び露点−20℃以下のAr及びN2雰囲気で
520’CX1hr焼結し、その後焼結炉より取り出し
て直ちに、250℃に加熱保持した金型にて8 ton
f / am”の圧力で大気中で鍛造した。鍛造した成
形体は、真密度比を求めた後、露点−20℃以下のN2
雰囲気で520℃X30w1n再焼結した。再焼結後の
成形体について、ガス分析及び引張試験を行った。
ガス分析は、真空溶融抽出法(ステンレスパイプ使用)
により行った。
引張試験は平行部5φX200ma+の試験片を用い、
室温及び200℃で行い、Nα11〜14は再焼結のま
ま供試し、Nal〜10はT6処理して供試した。なお
、引張試験には、比較のためA390.0合金の金型鋳
造材(T6処理材)についても実施した。
これらの結果を第2表にまとめて示すが1本発明の方法
によれば、高温強度に優れたAQ合金焼結鍛造品が得ら
れることが明らかである。
なお、一部のものについては鍛造ままの状態で引張試験
を行ったが、ガス量が5 cc/ 100g−A Q以
下と低くブリスターも発生していなかったため、引張強
度のバラツキは小さかった。(Industrial Application Field) The present invention relates to a method for producing an aluminum alloy with excellent high-temperature strength and wear resistance using a powder metallurgy method. (Prior art and problems to be solved) In recent years, aluminum alloy powder with high wear resistance and high temperature strength has been manufactured using powder metallurgy using aluminum alloy powder to which a large amount of alloying elements have been added by rapid solidification. Development is becoming more active. As a forming method in this case, hot extrusion is generally used, and methods of compacting, sintering, and coining are not used. In order to sinter aluminum alloy powder, it is necessary to destroy the oxide film formed on its surface to promote sintering. Since the alloy powder containing a large amount of alloying elements has high hardness, the ordinary method of compacting, sintering, and coining does not sufficiently sinter the powder and cannot provide excellent properties. However, in hot extrusion, the powder is deformed by plastic flow during extrusion and the oxide film is destroyed, so that sintering progresses sufficiently and a molded body with excellent properties is obtained. As described above, the hot extrusion method is excellent as a method for plastically deforming hard powder, such as powder obtained by the rapid solidification method, in a heated and softened state to destroy the oxide film and promote sintering. However, since it is not a N ear Net Shape (approximate to a linear shape) processing, secondary processing such as cutting and forging is required to finish it into a machine part, and the processing cost for this is high. Alternatively, there are drawbacks such as high material cost due to low material yield. Furthermore, the mechanical properties are different between parallel and perpendicular directions to the extrusion direction. There are also problems such as restrictions on the shape of applicable mechanical parts due to so-called anisotropy. A hot forging method has been considered as a forming method to improve this point, and this method has already been proposed in JP-A-60-145349. The key points of the method proposed in the above publication are AQ - (10-20)%5i-(2-12)%F
The AQ alloy powder mouth of e has (1-12)% Cu and (
0,1~3) A'Q alloy powder with 3Mg added is cold isostatically pressed or molded to a true density ratio of 95%.
After creating the above preform, change the preform to 2
This is a method for producing a highly heat-resistant and wear-resistant aluminum alloy, which is characterized by heating to 50°C to 550°C and forging in a mold. However, this proposal fails to reduce the amount of contained gas, mainly hydrogen gas, which causes blistering (abnormal expansion phenomenon during heat treatment process) and deterioration of mechanical properties, and does not disclose any measures to reduce contained gas. Not yet. An object of the present invention is to provide a method for suppressing the occurrence of blisters in a hot forging process for aluminum alloy powder and obtaining a forged material with stable mechanical properties. (Means for Solving the Problems) In a series of studies to produce a compact having excellent properties using aluminum alloy powder as a raw material, the present inventors discovered that after hot forging, We encountered problems such as blistering occurring in the molded product, or large variations in mechanical properties in the hot forged state. As a result of intensive study to solve this problem,
It was determined that the cause of blisters and variations in mechanical properties was the large amount of gas components, mainly hydrogen gas, contained in the molded product. Therefore, in order to solve the above-mentioned problems, the present inventors investigated in detail a method for degassing aluminum alloy powder compacts, and as a result, they formed aluminum alloy powders with a true density ratio of 70 to 70.
After creating a 95% preform, if it is sintered in a vacuum or an inert gas atmosphere and then hot forged, the gas content will be less than 5cc/lOOgAQ, which will prevent blisters and variations in mechanical properties. It was discovered that the mechanical properties can be improved compared to the hot forged state by resintering after hot forging if the amount of gas contained is within this range, and the present invention was developed based on this discovery. . That is, 1. The method for producing an aluminum alloy sintered forged product according to the present invention is to mold aluminum alloy powder to make a preform with a true density ratio of 70 to 95%, and to heat the preform in a vacuum at 450 to 550°C or in an inert state. After sintering in the atmosphere,
The true density ratio is made to be 95% or more by forging at 200 to 550°C, and then resintered at a temperature of 450 to 550°C to reduce the total gas amount to 5 cc/100 g-AQ or less. In a more preferred embodiment, the aluminum alloy powder has a weight ratio of Si: 10.0 to 30.0%. Fe: 1.0-15. Q%, Mn: 1.0-15.0%
and Ni: 1.0 to 15.0%, one or two or more (in the case of two or more, the total is 1.0 to 15.0%), and further Cu: 0, 5 to 1, if necessary. 5.0% and Mg:
The object is a composition containing one or two of 0.2 to 3.0% of Afl, with the remainder substantially containing unavoidable impurities. The present invention will be explained in detail below based on examples. Although the aluminum alloy powder used in the present invention is not particularly limited in terms of composition, it is generally used for members that require various properties such as high temperature strength, wear resistance, and low coefficient of thermal expansion. -5i series, AQ-Si-Mg series, A
Fe in Q-8i-Cu series-AQ-S i -Cu-Mg series and alloys thereof. Those to which heavy metals such as Mn and Ni are added, as well as Cr,
It is also possible to add Mo, Go, Ti, Zr, ■, Zn, etc. The formability of aluminum alloy powder varies significantly depending on the hardness of the powder. Figure 1 shows 6061 alloy powder of 100 mesh or less and Afl-
This figure shows the relationship between the true density ratio and the molding pressure when a 30φ×15tman preform was created by molding a 20%5i-3%Cu-1%Mg alloy powder. Generally, the higher the alloy composition, the more difficult it is to increase the density. At a molding pressure of 3 tonf/0 m2, 6061 alloy is approximately 8
Although the true density ratio is 4%, AQ-20%5L-3%Cu
-1% Mg alloy has a true density ratio of about 67%. If the true density ratio is less than 70%, there will be problems in handling, such as part of the corner of the preform being chipped. If the true density ratio is 70% or more, there will be no such problem in handling. However, in order to increase the true density ratio to 95% or more, it is necessary to increase the molding pressure and a large press is required, resulting in high equipment costs. As is clear from FIG. 1, this tendency is remarkable in the case of hard powders such as high alloy powders. Furthermore, setting the true density ratio after compaction to 95% or more has the problem of inhibiting degassing in the subsequent sintering process. When the true density ratio becomes 95% or more, most of the pores existing in the compact become closed pores (C1osed pores), so crystal water or adhesion of the oxide film formed on the surface of the AQ alloy powder, When the adsorbed water is separated by heating, the escape of the generated gas to the outside of the molded body is inhibited, and the molded body after sintering may contain a large amount of gas, or a bulge called a blister may occur on the surface of the molded body. There's a problem. Fig. 2 shows the molded body shown in Fig. 1 being 520cm
These are the results of measuring the amount of gas in a compact that was sintered for 1 hour and then immediately forged in the atmosphere at a pressure of 8 tonf/cta in a mold preheated to 250°C.As is clear from Figure 2. , the true density ratio after compaction is 9
When it is 5% or more, the gas amount is 5cc/100&・AQ
Become more. When the true density ratio after powder compaction is lower than 95%, the gas amount is less than 5cc/100g-All. In addition, when these forged compacts were re-sintered in a vacuum at 520°C x 30win, blisters were generated on the surface of those with a gas amount greater than 5cc/100gAff, and the gas amount was 5cc/100gAff. 1
No blistering was observed when the number was 1 or less. Further, Table 1 shows the gas amount of a molded body which was forged in the same manner as described above immediately after sintering at 520° C. for 1 hr in each atmosphere, with the sintering atmosphere being Ar, N2 or air. In addition,
The sample was AQ-20%5i-3%Cu-1%Mg alloy powder, which was molded at a pressure of 8 tons/c♂ and the true density ratio was 7.
8-80%), sintered in a mold preheated to 250°C.
It is forged at a pressure of tonf/am2. From the same table, 5CC/100g-A in Ar, N, atmosphere
The amount of gas is less than Q, but the molded body sintered in the atmosphere has 5
The amount of gas was more than cc/100g-Al, and blisters were generated due to resintering. Table 1 Total gas amount of compact after forging Next, AQ-20%5L-3%Cu-1%Mg alloy powder was mixed into 55X10x1 at a molding pressure of 8 tonf/0m2.
A 5 mm preform was molded and sintered in vacuum under the same conditions as above. Immediately after sintering, forging was carried out in the air using a mold preheated to 250°C and changing the forging pressure in the range of 3 to 12 tonf/am. A tensile test piece with a parallel part of 5φ x 200III+1 was created from the forged compact. A tensile test was conducted at room temperature.
A tensile test was similarly conducted on the forged compact that was re-sintered in vacuum at 520°C x 30wins. After re-sintering, a tensile test was also conducted on the specimens which were subjected to T6 treatment at 475°C for 1 hr and WQ→175°C for 8 hr. These results are shown in FIG. From the same figure, the tensile strength of the as-forged state is determined by the forging pressure of 5.
tonf/am2 or less, low, 8tonf/C
It rises when it exceeds m2. Also, although the tensile strength increases by resintering, the forging pressure is 8 tonf/cm
This tendency is remarkable when the number is 2 or more. In addition, when the forging pressure is 5 tonf/am2 and 8 tonf/aJ, the as-forged true density ratio is 91% and 97%, respectively.
Met. As mentioned above, after creating a preform with a true density ratio of 70 to 95% after compaction, this is sintered in a vacuum or an inert atmosphere, and then hot forged to a true density ratio of 95%. If above, the amount of gas contained is 5cc/100g-
If the AQ is below, blistering and variations in mechanical properties will be reduced, and if the gas content is within this range, resintering after hot forging will improve the mechanical properties compared to hot forging. can. Next, the reason for limiting the conditions of the present invention will be explained. First, the true density ratio of a preform obtained by molding AQ alloy powder is 70 to 95%. If the true density ratio is lower than 70%, there will be problems such as part of the corner being chipped when handling the preform. In addition, if the true density ratio is higher than 95%, degassing in the next sintering process, which is one of the features of the present invention, will be inhibited, and the 5cc/100g-A Q
Not only would it not be possible to obtain a molded product with the gas amount below, but it would also require a molding press with an unnecessarily large capacity.
Undesirable. Note that mold molding or cold isostatic pressing can be used to mold the preform. Sintering of the preform is performed in a vacuum or inert atmosphere at 450-550°C. In the atmosphere, degassing does not proceed sufficiently, and a molded article having a gas amount of 5 cc/100 g-AQ or less cannot be obtained. For this reason, it is necessary to sinter in a vacuum or in an inert atmosphere. In the case of vacuum, the degree of vacuum is 0. I
Torr or less, preferably 0, OI Torr or less. In an inert atmosphere such as Ar or Nz, it is preferable to control the inert atmosphere so that the dew point is below 110°C, preferably below 120°C. If the sintering temperature is lower than 450"C, the sintering progresses slowly, and
Moisture and crystal water adsorbed on the surface of aluminum oxide cannot be completely removed. If the temperature is higher than 550°C, sintering will proceed, but the structure will become coarser and the mechanical properties will deteriorate, which is not preferable. Forging is performed at 200 to 550°C, and the true density ratio of the forged compact is 95% or more. In order to give sufficient plastic deformation to the AQ alloy powder by forging and destroy the oxide film formed on its surface to reveal a new active surface,
It is preferable to heat the AQ alloy powder to 200° C. or higher to soften it. For this purpose, it is preferable not only to maintain the preform at a temperature of 200° C. or higher, but also to heat and maintain the forging die at a temperature of 200° C. or higher. If the temperature exceeds 550°C, it is undesirable because the structure will coarsen and the mechanical properties will deteriorate. It is also desirable to heat the preform at the same time as heating during sintering, so that the temperature of the preform decreases and the atmosphere In order to reduce the increase in the amount of gas due to exposure to the inside, it is desirable to forge immediately after taking it out from the sintering furnace. If the preform before forging is heated separately from the heating during sintering, it is necessary to heat it to 450-550℃ in a vacuum or inert atmosphere, and after taking it out of the furnace. The considerations are the same as above. If the true density ratio of the compact after forging is lower than 95%, the mechanical properties will be poor, so resintering after forging is preferably carried out at 450-550°C. The purpose of resintering is to sufficiently sinter the new active surface generated during forging, and for this purpose it is necessary to perform the resintering at a temperature of 450'C or higher. If the temperature is higher than 550°C, the structure will coarsen and the mechanical properties will deteriorate, so it is not preferable.Although resintering can be carried out in the air without any problem, it is preferable to do it in a vacuum or in an inert atmosphere. . During resintering, if the gas amount in the forged compact is more than 5cc/100g-AQ, blisters will occur or mechanical properties will deteriorate, so it is difficult to achieve the original purpose of resintering. becomes difficult to do. Next, the reasons for limiting the preferred composition of the aluminum alloy powder used in the present invention will be explained. If Si is less than 10.0%, the amount of dispersion is small and the effect on heat resistance and abrasion resistance is insufficient. In a hypoeutectic region of about 10% 5i, primary Si cannot be crystallized and a fine eutectic structure is exhibited. As the amount of Si increases, primary crystals of Si begin to crystallize, resulting in improved heat resistance and wear resistance. However, if the Si content exceeds 30%, no matter what rapid solidification method is adopted for powdering, the coarse Si initial product becomes difficult to disappear. When the quenching rate is about 103° C./see, it is desirable to keep the amount of Si at 25% or less in order to refine the primary Si crystals. Therefore, the Si content is preferably 10.0 to 30.0%, preferably 15.0 to 25.0%. Fe, Mn, and Ni are important components in this alloy. Fe, Mn or Ni has low solubility in AQ,
It is added to take advantage of the slow diffusion rate to disperse the product as a fine compound and increase its high-temperature strength. The amounts of Fe, Mn, and Ni added are each 1.0% to 15%.
0% (However, in the case of two or more types, the total is 1.0~15゜0
%) is appropriate. Fe, Mn or Ni addition amount is 1.0
If it is less than 15%, no effect on high temperature strength or wear resistance will be observed, and if it exceeds 15%, the hardness and wear resistance will be rather low, and when a molded article is made, the material will tend to become brittle. . The AQ gold alloy in this alloy example contains Cu and Mg as necessary.
may be added. Cu and Mg are widely used in A12 alloy as ingredients that impart age hardenability and strengthen the material, and the appropriate amount of Cu to be added is 0.5 to 5.0%.
Mg ranges from 0.2 to 3.0%. In this alloy example as well, Cu and Mg can be contained within the solid solubility limit at the solution treatment temperature.
Adding is effective in strengthening the material. In this alloy example, in order to improve high-temperature strength, C
There is no problem in adding small amounts of r, Mo, Go, Ti, Zr, V, Zn, Li, etc. However, if the amount added is too large, manufacturing problems such as component control and increase in melting temperature will occur. . (Example) Next, an example of the present invention will be described. Using AQ alloy powder of 100 meshes or less and having the composition shown in Table 2 produced by the atmospheric atomization method, 8 t
Mold forming is carried out at a pressure of onf/Cm2, 55X
A 10×15 mm preform was obtained and the true density ratio was determined. Next, these preforms were sintered for 520'CX1 hr in a vacuum of 0°01 Torr or less and an Ar and N2 atmosphere with a dew point of -20°C or less, and then taken out of the sintering furnace and immediately heated and held at 250°C. 8 tons in mold
It was forged in the atmosphere at a pressure of "f/am". After determining the true density ratio, the forged compact was heated in N2 at a dew point of -20°C or lower.
It was re-sintered at 520°C x 30w1n in an atmosphere. A gas analysis and a tensile test were conducted on the molded body after resintering. Gas analysis uses vacuum melt extraction method (using stainless steel pipes)
This was done by The tensile test used a specimen with a parallel part of 5φ x 200ma+,
The test was conducted at room temperature and 200° C., and Nα11 to Nα14 were used as resintered samples, and Nα1 to Nα10 were tested after being subjected to T6 treatment. Note that the tensile test was also conducted on a mold cast material of A390.0 alloy (T6 treated material) for comparison. These results are summarized in Table 2, and it is clear that according to the method of the present invention, AQ alloy sintered forged products with excellent high-temperature strength can be obtained. In addition, some of the products were subjected to tensile tests in the as-forged state, but the gas amount was low at 5 cc/100 g-AQ or less, and no blisters occurred, so the variation in tensile strength was small.
(発明の効果)
以上詳述したように、本発明によれば、ブリスターの発
生や機械的材質のバラツキが著減し、安定した品質のア
ルミニウム合金焼結鍛造品を製造することができる。(Effects of the Invention) As described in detail above, according to the present invention, the occurrence of blisters and variations in mechanical materials are significantly reduced, and an aluminum alloy sintered forged product of stable quality can be manufactured.
第1図は成形圧と真密度比の関係を示す図、第2図は金
型成形体の真密度比と鍛造後成形体の全ガス量の関係を
示す図。
第3図は鍛造のまま及び再焼結後の引張強さと鍛造圧力
の関係を示す図である。
特許出願人 昭和電工株式会社
代理人弁理士 中 村 尚
第3図
11:’1 ’J /H,力 (モon/cm’)0
N ” ■
■ O莫烹産1’L (γ。ンFIG. 1 is a diagram showing the relationship between molding pressure and true density ratio, and FIG. 2 is a diagram showing the relationship between the true density ratio of a molded body and the total gas amount of the molded body after forging. FIG. 3 is a diagram showing the relationship between tensile strength and forging pressure as-forged and after resintering. Patent applicant Showa Denko K.K. Patent attorney Takashi Nakamura Figure 3 11:'1'J/H, force (moon/cm')0
N” ■
■ 1'L (γ.n) from Omofuo
Claims (1)
5%のプリフォームに対し、該プリフォームを450〜
550℃の真空又は不活性雰囲気中で焼結した後、20
0〜550℃の温度で鍛造して真密度比95%以上とし
、更にその後450〜550℃の温度で再焼結すること
を特徴とする高温強度と耐摩耗性に優れたアルミニウム
合金焼結鍛造品の製造方法。 2 前記アルミニウム合金粉末は、重量比にてSi:1
0.0〜30.0%と、Fe:1.0〜15.0%、M
n:1.0〜15.0%及びNi:1.0〜1500%
のうちの1種又は2種以上(但し、2種以上の場合には
合計で1.0〜15.0%)と、更に必要に応じてCu
:0.5〜5.0%及びMg:0.2〜3.0%のうち
の1種又は2種を含み、残部が実質的に不可避的不純物
を含むAlからなる組成である特許請求の範囲第1項記
載のアルミニウム合金焼結鍛造品の製造方法。[Claims] 1. True density ratio of aluminum alloy powder molded from 70 to 9
For 5% preform, the preform is 450 ~
After sintering in vacuum or inert atmosphere at 550 °C, 20
A sintered forged aluminum alloy with excellent high-temperature strength and wear resistance, characterized by forging at a temperature of 0 to 550°C to achieve a true density ratio of 95% or more, and then resintering at a temperature of 450 to 550°C. method of manufacturing the product. 2 The aluminum alloy powder has a weight ratio of Si:1
0.0-30.0%, Fe: 1.0-15.0%, M
n: 1.0-15.0% and Ni: 1.0-1500%
One or more of the following (however, in the case of two or more types, the total is 1.0 to 15.0%), and further Cu as necessary.
Mg: 0.5 to 5.0% and Mg: 0.2 to 3.0%. A method for producing an aluminum alloy sintered forged product according to scope 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6755486A JPS62224602A (en) | 1986-03-26 | 1986-03-26 | Production of sintered aluminum alloy forging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6755486A JPS62224602A (en) | 1986-03-26 | 1986-03-26 | Production of sintered aluminum alloy forging |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62224602A true JPS62224602A (en) | 1987-10-02 |
JPH0149765B2 JPH0149765B2 (en) | 1989-10-26 |
Family
ID=13348298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6755486A Granted JPS62224602A (en) | 1986-03-26 | 1986-03-26 | Production of sintered aluminum alloy forging |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62224602A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342344A (en) * | 1986-08-06 | 1988-02-23 | Honda Motor Co Ltd | Al alloy for powder metallurgy excellent in high temperature strength characteristic |
JPS63183148A (en) * | 1987-01-23 | 1988-07-28 | Sumitomo Electric Ind Ltd | Wear resistant al-si-mn sintered alloy |
JPH01201450A (en) * | 1987-10-28 | 1989-08-14 | Showa Denko Kk | Method for working wear-resistant aluminum alloy |
JPH0328336A (en) * | 1989-06-23 | 1991-02-06 | Showa Denko Kk | Manufacture of aluminum alloy powder sintered parts |
JP2002311187A (en) * | 2001-04-19 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | Production method for radioactive material storing member and billet for extrusion molding |
JP2010077475A (en) * | 2008-09-25 | 2010-04-08 | Sumitomo Electric Sintered Alloy Ltd | Aluminum sintered alloy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019245720A1 (en) * | 2018-06-20 | 2019-12-26 | Arconic Inc. | Aluminum alloys having iron, silicon, and manganese and methods for making the same |
-
1986
- 1986-03-26 JP JP6755486A patent/JPS62224602A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342344A (en) * | 1986-08-06 | 1988-02-23 | Honda Motor Co Ltd | Al alloy for powder metallurgy excellent in high temperature strength characteristic |
JPS63183148A (en) * | 1987-01-23 | 1988-07-28 | Sumitomo Electric Ind Ltd | Wear resistant al-si-mn sintered alloy |
JPH01201450A (en) * | 1987-10-28 | 1989-08-14 | Showa Denko Kk | Method for working wear-resistant aluminum alloy |
JPH0328336A (en) * | 1989-06-23 | 1991-02-06 | Showa Denko Kk | Manufacture of aluminum alloy powder sintered parts |
JP2002311187A (en) * | 2001-04-19 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | Production method for radioactive material storing member and billet for extrusion molding |
JP2010077475A (en) * | 2008-09-25 | 2010-04-08 | Sumitomo Electric Sintered Alloy Ltd | Aluminum sintered alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH0149765B2 (en) | 1989-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5561829A (en) | Method of producing structural metal matrix composite products from a blend of powders | |
US7767138B2 (en) | Process for the production of a molybdenum alloy | |
US20130071284A1 (en) | Titanium alloy complex powder containing copper powder, chromium powder or iron powder, titanium alloy material consisting of this powder, and process for production thereof | |
EP2333123B1 (en) | Method for forming hot and cold rolled high strength L12 aluminium alloys | |
US3902862A (en) | Nickel-base superalloy articles and method for producing the same | |
EP2325342B1 (en) | Hot compaction and extrusion of L12 aluminum alloys | |
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
JP5855435B2 (en) | α + β-type or β-type titanium alloy and method for producing the same | |
JPH068484B2 (en) | Article made from processable boron-containing stainless steel alloy and method of making the same | |
US5384087A (en) | Aluminum-silicon carbide composite and process for making the same | |
JP2546660B2 (en) | Method for producing ceramics dispersion strengthened aluminum alloy | |
JPS62224602A (en) | Production of sintered aluminum alloy forging | |
WO2012147998A1 (en) | α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME | |
JPH0234740A (en) | Heat-resistant aluminum alloy material and its manufacture | |
JPH0730418B2 (en) | Forming method of Ti-Al intermetallic compound member | |
JPH03285040A (en) | Manufacture of powder high speed steel | |
JPS62287041A (en) | Production of high-alloy steel sintered material | |
JP2003055747A (en) | Sintered tool steel and production method therefor | |
JPS62196306A (en) | Production of double layer tungsten alloy | |
JPH02259029A (en) | Manufacture of aluminide | |
JPH0635602B2 (en) | Manufacturing method of aluminum alloy sintered forgings | |
RU2624562C1 (en) | METHOD OF PRODUCING BILLETS FROM ALLOYS BASED ON INTERMETALLIDES OF Nb-Al SYSTEM | |
JPH06271901A (en) | Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof | |
JPH0688153A (en) | Production of sintered titanium alloy | |
JPH11269592A (en) | Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |