[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62211605A - Submarine optical repeater housing - Google Patents

Submarine optical repeater housing

Info

Publication number
JPS62211605A
JPS62211605A JP5368286A JP5368286A JPS62211605A JP S62211605 A JPS62211605 A JP S62211605A JP 5368286 A JP5368286 A JP 5368286A JP 5368286 A JP5368286 A JP 5368286A JP S62211605 A JPS62211605 A JP S62211605A
Authority
JP
Japan
Prior art keywords
optical
lens
submarine
pressure
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5368286A
Other languages
Japanese (ja)
Inventor
Haruo Okamura
岡村 治男
Koji Harada
原田 耕治
Iwao Kitazawa
北沢 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5368286A priority Critical patent/JPS62211605A/en
Publication of JPS62211605A publication Critical patent/JPS62211605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • G02B6/4428Penetrator systems in pressure-resistant devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To contrive improvement of the connection workability and the reliability, and to realize miniaturization of the titled repeater housing by executing the final connection of a submarine optical cable and a submarine optical repeater circuit, by a lens connector which has been provided on a feedthrough part. CONSTITUTION:An optical lens 19 is connected to the tip of an optical fiber which has been connected by an assembly cable 10 which becomes a feeding line to a submarine optical repeater circuit 12, and an optical assembly cable 11 which becomes an optical signal line, and also, an optical lens 23 is connected to the tip of an optical fiber 22 which has been led out of a submarine optical cable, and a pressure tight and airtight structure by solder is performed to the lens 19. The circuit 12 and the submarine optical cable are connected by forming then integrally in one body with a feedthrough 8 or an optical feedthrough 8a, or providing adjacently an optical connector part 15, or a light and feed connector part 16, and butting the end faces of the lens 19 and 23. As a result, the time required for connecting the cable and the repeater is shortened, and the surplus length of the fiber is shortened, therefore, a rupture accident caused by bending is obviated, and the reliability of a transmission line is improved.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は小型にして接続作業性、信頼性に優れた海底光
中継器きょう体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a submarine optical repeater housing which is small in size and has excellent connection workability and reliability.

(従来技術とその問題点) 第1図(a)は従来の海底光中継器きょう体であって、
1は海底光ケーブル、2は海底光ケーブル引留装置、3
は自在継手部、4はテールケーブル接続部、5はテール
ケーブル、7は端面板、8はフィードスル、10は給電
線アセンブリケーブル、11は光アセンブリケーブル、
12は海底光中継器回路、13は耐圧シリンダ、14は
クッションである。
(Prior art and its problems) Figure 1(a) shows a conventional submarine optical repeater housing,
1 is a submarine optical cable, 2 is a submarine optical cable retention device, 3
is a universal joint part, 4 is a tail cable connection part, 5 is a tail cable, 7 is an end plate, 8 is a feedthrough, 10 is a feeder assembly cable, 11 is an optical assembly cable,
12 is a submarine optical repeater circuit, 13 is a pressure-resistant cylinder, and 14 is a cushion.

このような構造であるため、海底光ケーブル1と海底光
中継器回路12との電気的、光学的接続は、テールケー
ブル5をテールケーブル接続部4で相    。
Because of this structure, electrical and optical connections between the submarine optical cable 1 and the submarine optical repeater circuit 12 are made by connecting the tail cable 5 to the tail cable connection part 4.

互に接続して達成する。ここで、テールケーブル5は、
内部に複数本の光ファイバを収納した耐圧金属殻を絶縁
ポレエチレンで被覆する構造を基本としている。従って
、テールケーブル接続部4の接続に際しては、 (イ)光ファイバを相互に融着接続、 (O)耐圧金属殻を接続、 (ハ)ポレエチレンを溶着、 の三段階の作業が必要であり、全工程に約8時間と極め
て長時間を要する欠点があった。
Achieve by connecting with each other. Here, the tail cable 5 is
The basic structure is a pressure-resistant metal shell that houses multiple optical fibers and is covered with insulating polyethylene. Therefore, when connecting the tail cable connection part 4, three steps are required: (a) fusion splicing of optical fibers to each other, (o) connection of pressure-resistant metal shells, and (c) welding of polyethylene. There was a drawback that the entire process required an extremely long time, approximately 8 hours.

更に第1図(a)に示す位置でのテールケーブル接続の
ためには、両側のテールケーブル5を各々海底光中継器
きょう体の外部に引き出して、光フアイバ融着接続装置
に装着するため、各々約1−の余長が必要であり、接続
終了後にこの余長を収納するための空間がきょう体の内
部に不可欠である。
Furthermore, in order to connect the tail cable at the position shown in FIG. 1(a), the tail cables 5 on both sides are pulled out of the submarine optical repeater housing and attached to the optical fiber fusion splicing device. Each requires an extra length of about 1 -, and a space is essential inside the housing to accommodate this extra length after the connection is completed.

従って、きょう体の寸法が大型となる欠点もあった。Therefore, there was also a drawback that the size of the housing was large.

第1図(b)は従来の海底光中継器きょう体の別の例で
あって、4aは光フアイバ接続部、4bは耐圧ハウジン
グ、4cはポレエチレン被覆である。
FIG. 1(b) shows another example of a conventional submarine optical repeater housing, in which 4a is an optical fiber connection part, 4b is a pressure-resistant housing, and 4c is a polyethylene coating.

本図の例でもファイバ相互を光フアイバ接続部4aで融
着接続するに必要な余長を耐圧ハウジング4bの内部に
収容し、その外周全体を大型のポレエチレン被覆4Cで
絶縁する。このような構造では、特にポレエチレン被覆
4Cの溶着に長時間を要し、信頼性を確かめるための検
査の面積も広大となり、作業性が劣る。余長収納のため
、海底光中継器きょう体の全長が長くなることは第1図
(alの条件と同一である。
In the example shown in this figure, the extra length necessary for fusion-splicing the fibers with each other at the optical fiber connection portion 4a is housed inside the pressure-resistant housing 4b, and the entire outer periphery is insulated with a large polyethylene coating 4C. In such a structure, it particularly takes a long time to weld the polyethylene coating 4C, and the inspection area for confirming reliability is also large, resulting in poor workability. The overall length of the submarine optical repeater housing is increased to accommodate the extra length, which is the same as the conditions in Figure 1 (al).

(発明の目的) 本発明の目的は、海底光ケーブルと海底光中継器回路と
の最終接続をフィードスル部に設けたレンズコネクタで
行う構造を用いることにより、接続作業性の向上、信頼
性の向上および小型化を図った海底光中継器きょう体を
提供することにある。
(Objective of the Invention) The object of the present invention is to improve connection workability and reliability by using a structure in which the final connection between the submarine optical cable and the submarine optical repeater circuit is made by a lens connector provided in the feedthrough section. Another object of the present invention is to provide a submarine optical repeater housing that is miniaturized.

(発明の特徴) 本発明は、海底光中継器きょう体において、海底光中継
器回路に接続された光ファイバと海底光ケーブルから導
出された光ファイバの先端に各々レンズを接続し、海底
光中継器回路側レンズに耐圧、気密構造を施し、該海底
光中継器回路側レンズと海底光ケーブル側レンズ双方の
端面を突き合わせることにより前記海底光中継器回路と
海底光ケーブルを光学的に接続することを最も主要な特
徴とする。
(Features of the Invention) The present invention provides a submarine optical repeater housing in which lenses are connected to the tips of the optical fibers connected to the submarine optical repeater circuit and the optical fibers led out from the submarine optical cable. The circuit side lens has a pressure-resistant and airtight structure, and the end faces of both the submarine optical repeater circuit side lens and the submarine optical cable side lens are brought into contact with each other to optically connect the submarine optical repeater circuit and the submarine optical cable. Main characteristics.

従来の技術では、光フアイバ周辺に耐圧、気密構造を施
したのに対し、本発明では海底光中継器側レンズに耐圧
、気密構造を施している。また、従来の融着による接続
では、接続する双方の光ファイバに1n+程度の接続余
長を必要としたが、本発明ではコネクタ式接続であるた
め接続余長は数口程度で十分であることが異なる。
In the conventional technology, a pressure-resistant and air-tight structure is applied around the optical fiber, whereas in the present invention, a pressure-resistant and air-tight structure is applied to the submarine optical repeater side lens. In addition, conventional fusion splicing requires an extra connection length of about 1n+ for both optical fibers to be connected, but since the present invention uses a connector type connection, only a few extra connections are sufficient. are different.

また、ここでは本来10μ曽の細いファイバコア内を伝
播する光波面径を、レンズにより100倍以上に拡大し
た後、相互に接続している。従って、極限の精密加工技
術を駆使しても尚、残留する0、1μmオーダの加工誤
差を始め、動作中の温度変化。
Furthermore, here, the diameter of the light wavefront propagating within the thin fiber core, which is originally 10 μm, is expanded by a factor of 100 or more using a lens, and then the fibers are interconnected. Therefore, even with the most precise processing technology, there still remain processing errors on the order of 0.1 μm, as well as temperature changes during operation.

振動等に起因する突き合わせ面の軸ずれが生む接続光損
失は、ファイバコアを直接突き合わせる従来のコネクタ
に比べ大幅に抑制することができる。
Connecting optical loss caused by misalignment of the abutting surfaces due to vibration or the like can be significantly suppressed compared to conventional connectors in which fiber cores are directly abutted.

このようなレンズコネクタは、特に25年間もの長期に
亘り極限の低損失、安定を必要とする海底伝送路に適用
するのに最適なものである。
Such a lens connector is particularly suitable for application to submarine transmission lines that require extremely low loss and stability over a long period of 25 years.

(実施例) 以下本発明の実施例につき詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第2図は本発明の一実施例の概要を説明する図であって
、第2図(alは特許請求の範囲第1項記載の発明の一
実施例の概要、第2図(b)は特許請求の範囲第2項記
載の発明の一実施例の概要を示す。
FIG. 2 is a diagram illustrating an outline of an embodiment of the present invention, and FIG. An overview of an embodiment of the invention described in claim 2 is shown.

これらの図において、6は給電テールケーブル、6aは
光テールケーブル、8aは光フィードスル、9は給電線
フィードスル、10は給電線アセンブリケーブル、11
は光アセンブリケーブル、15は光コネクタ部、16は
光・給電コネクタ部である。図示されるように、フィー
ドスル8あるいは光フィードスル8aに隣接または一体
となって光コネクタ部15あるいは光・給電コネクタ部
16が設けられているため、先ず、ケーブル側ファイバ
と中継器回路のファイバをコネクタで接続することがで
きる。
In these figures, 6 is a feeder tail cable, 6a is an optical tail cable, 8a is an optical feedthrough, 9 is a feeder feedthrough, 10 is a feeder assembly cable, and 11
1 is an optical assembly cable, 15 is an optical connector section, and 16 is an optical/power supply connector section. As shown in the figure, since the optical connector part 15 or the optical/power supply connector part 16 is provided adjacent to or integrally with the feedthrough 8 or the optical feedthrough 8a, first, the fiber on the cable side and the fiber of the repeater circuit are connected to each other. can be connected with a connector.

従って、接続作業が簡単となり、接続のためのファイバ
余長もケーブル側に僅かにあれば良く、従って、余長収
納のための空間も極めて僅かでよい。
Therefore, the connection work becomes easy, and only a small amount of extra fiber length is required on the cable side for connection, and therefore, the space for storing the extra length is also very small.

第2図(alのようにケーブル引留装置2と耐圧シリン
ダ13とを直接屈曲部なく接続すればテールケーブルを
収容する空間を外圧から隔離することが可能であり、従
って、光テールケーブル6aでは特別に光ファイバを耐
圧保護する必要はない、光フアイバ心線をそのまま光テ
ールケーブルとする簡単な構造もとりうる。このとき、
給電線テールケーブル6及びそのフィードスル9を別途
膜ければよい。一方、第2図山)の如く、ケーブル引留
装置2と耐圧シリンダ13とを屈曲部3を介して接続す
る場合には、テールケーブル収容時間を外圧から融離す
ることができないので、光ファイバを耐圧保護する必要
がある。従って、耐圧保護のために用いる金属パイプを
給電系路としても利用するのが効率が良い、従って、こ
の場合には信号(光ファイバ)給電兼用のテールケーブ
ル5を用いるのが効果的である。この場合にも、光・給
電コネクタ部16をフィードスル8に隣接あるいは一体
として設置すれば、テールケーブル5の余長は短くて良
く、その結果ジヨイントリング13aは第1図(a)の
例と比較して短くすることが可能となり、海底光中継器
きょう体全長の短縮化を図ることができる。
If the cable retention device 2 and the pressure cylinder 13 are directly connected without any bends as shown in FIG. 2 (al), it is possible to isolate the space accommodating the tail cable from external pressure. It is not necessary to protect the optical fiber with pressure resistance, and a simple structure can be used in which the optical fiber core is used as an optical tail cable.In this case,
The feeder tail cable 6 and its feedthrough 9 may be coated separately. On the other hand, when connecting the cable anchoring device 2 and the pressure-resistant cylinder 13 via the bending part 3 as shown in Fig. 2, the tail cable accommodation time cannot be fused from external pressure, so the optical fiber is Must be pressure protected. Therefore, it is efficient to use the metal pipe used for voltage protection as a power supply path. Therefore, in this case, it is effective to use the tail cable 5 that also serves as a signal (optical fiber) power supply. In this case as well, if the optical/power supply connector section 16 is installed adjacent to or integrally with the feedthrough 8, the remaining length of the tail cable 5 can be shortened, and as a result, the joint ring 13a is This makes it possible to shorten the overall length of the submarine optical repeater casing.

第3図は第2図(b)に示した光・給電コネクタ部16
およびフィードスル8の一実施例の詳細図であって、5
はテールケーブル、18は光信号導入孔、19は光学レ
ンズ(A)、20は光学レンズ(A)のはんだによる気
密接合部、10は中継器回路への給電路となる給電線ア
センブリケーブル、11は同じく光信号路となる光アセ
ンブリケーブル、22は海底光ケーブルからの光ファイ
バ、23は光学レンズ(B)、24はレンズガイド機構
、25は耐圧金属殻(A)、26は絶縁ポレエチレン層
(A)、27はテールケーブルの耐圧パイプ、28は耐
圧金属殻(B)、29は絶縁ポレエチレン層(B)、3
0は耐圧接続構造、31はポレエチレン接続構造、32
は押え部品、33はテーパシールである。
Figure 3 shows the optical/power supply connector section 16 shown in Figure 2(b).
and a detailed view of one embodiment of the feedthrough 8,
18 is a tail cable, 18 is an optical signal introduction hole, 19 is an optical lens (A), 20 is an airtight joint of the optical lens (A) by soldering, 10 is a power feed line assembly cable that serves as a power feed path to the repeater circuit, 11 2 is an optical assembly cable that also serves as an optical signal path, 22 is an optical fiber from a submarine optical cable, 23 is an optical lens (B), 24 is a lens guide mechanism, 25 is a pressure-resistant metal shell (A), and 26 is an insulating polyethylene layer (A). ), 27 is the pressure-resistant pipe of the tail cable, 28 is the pressure-resistant metal shell (B), 29 is the insulating polyethylene layer (B), 3
0 is pressure-resistant connection structure, 31 is polyethylene connection structure, 32
3 is a holding part, and 33 is a taper seal.

このように、フィードスル部にレンズを用い、コネクタ
接続を行う構造を採用したことにより、以下の利点を期
待することが可能である。
In this way, by employing a structure in which a lens is used in the feedthrough portion and a connector is connected, the following advantages can be expected.

(11フイードスルとして、レンズの周囲を気密封止す
る構造であるため、従来技術の如く、脆弱な光ファイバ
を直接封止する構造に比べ、長期的安定性を期待するこ
とができる。即ち、フィードスル部に水圧が加わると、
内部への押込み力に対してはレンズ(A)19はその外
径より狭いファイバ導入孔の開口部で幾何学的に受は止
められているの才、レンズと周辺部との間隙を気密、水
密を保つために充填すれば充分である。
(11 Feedsle has a structure in which the periphery of the lens is hermetically sealed, so it can be expected to have long-term stability compared to a structure in which the fragile optical fiber is directly sealed as in the conventional technology. When water pressure is applied to the through part,
The lens (A) 19 has the advantage of being geometrically blocked by the opening of the fiber introduction hole, which is narrower than the outer diameter of the lens (A) 19, against the inward pushing force, and the gap between the lens and the peripheral area is kept airtight. It is sufficient to fill it to keep it watertight.

それに対し、ファイバ直接封止型では気密、水密を保つ
と同時にファイバが水圧によって押し込まれる力に抗す
るための機械的引止め力が要求される。気密、水密性と
機械的引止め力と云ういわば次元の異なる二種類の性能
を脆弱で細径なファイバの外周に対し直接実現するため
の構造は極めて微細、複雑となりしかもその性能を長期
に亘り安定に維持することは困難である。
On the other hand, the fiber direct sealing type requires a mechanical holding force to maintain airtightness and watertightness and at the same time to resist the force of pushing the fiber in by water pressure. The structure that directly achieves two different types of performance, airtightness, watertightness, and mechanical retention force, on the outer periphery of a fragile, small-diameter fiber is extremely fine and complex, and it is difficult to maintain its performance over a long period of time. It is difficult to maintain stability.

(2)光学的接続をコネクタにより行っているため、従
来の融着接続に比し作業性が向上し、更にファイバ余長
が極めて短くてよいので収納空間の減少によるきょう体
の小型化もできる。余長収納に伴いファイバを極限近く
にまで屈曲することも避は得るので伝送路の信頼度の向
上にも寄与できる。
(2) Optical connections are made using connectors, which improves workability compared to conventional fusion splicing.Furthermore, the extra length of the fiber can be extremely short, so the housing can be made smaller by reducing storage space. . Since it is possible to avoid bending the fiber close to the limit due to storing the excess length, it can also contribute to improving the reliability of the transmission line.

(3)コネクタとしてレンズ型を、用いているため、コ
ア径10μm程度の細いファイバを直接突き合わせるの
に比較して、外径数ミリメートルのレンズにより光の波
面を拡大して突き合わせる。
(3) Since a lens type connector is used, the wavefront of the light is enlarged using a lens with an outer diameter of several millimeters and compared to direct butting together of thin fibers with a core diameter of about 10 μm.

従って軸ずれによる接続損失が少ない。即ち極限の精密
加工技術でも尚、残る0、1ミクロンオーダの軸ずれが
生む接続光損失を効果的に抑圧することができる。
Therefore, there is less connection loss due to axis misalignment. That is, even with the most precise processing technology, it is possible to effectively suppress the connection optical loss caused by the remaining axis misalignment on the order of 0.1 micron.

尚、特許請求の範囲第1項記載の発明については、第3
図に示す実施例における耐圧構造(25,2B。
In addition, regarding the invention stated in claim 1, claim 3
The pressure-resistant structure (25, 2B) in the embodiment shown in the figure.

30)および絶縁構造(26,29,31)を省略した
形で光フィードスルを構成し、別途給電線フィードスル
9を設ければよい。これによって絶縁のための    
30) and the insulating structure (26, 29, 31) may be omitted, and the feeder feedthrough 9 may be provided separately. This allows for insulation
.

ポレエチレンモールドは簡単、小規模にできる。Polyethylene molding is easy and can be done on a small scale.

即ち、モールドは給電路の接続部に対して局部的に実行
するので、その近傍又は内部に熱履歴を嫌う光ファイバ
が介在することがなく安全で、しかもモールド時に溶融
するポレエチレンの総量も少なく設計できるので、モー
ルド所要時間を短縮できる等の利点がある。
In other words, since the molding is carried out locally at the connection part of the power supply line, there is no need for optical fibers that are sensitive to thermal history to be present near or inside the connection part, making it safe, and the design also reduces the total amount of polyethylene that melts during molding. Therefore, there are advantages such as being able to shorten the time required for molding.

(発明の効果) 以上説明したように、本発明は、海底光中継器きょう体
において、最大8000mの水深下で25年間の長期間
に亘り耐水圧強度、気密、水密特性を得るためにレンズ
を端面板に窓のように嵌め込んで隙間をシールするフィ
ードスル構造をとり、このレンズに対し、ケーブル側フ
ァイバ先端につけたレンズを嵌合するので、高信顛でし
かも加工誤差による接続光損失が従来のファイバ直接接
合型のコネクタと比べて少なく、ケーブルと中継器との
光学的接続に要する時間も従来の約1時間以上(6対接
続の場合)が数分程に短縮され得る。又、従来の融着接
続で不可欠であったファイバ余長(約2m)もコネクタ
接続のため数センチ程度と大幅に短縮できるので、余長
収納空間が節約でき、きょう体余長は2割以上の短縮が
可能となる。また、長い余長を狭い空間に収納するに伴
うファイバ曲げによるファイバの確率的破断の可能性を
無くすることができるので、伝送路の長期的安定性の向
上にも太き(寄与できるなど、極めて多方面に亘る大き
な利点がある。
(Effects of the Invention) As explained above, the present invention provides a lens for obtaining water pressure strength, airtightness, and watertightness for a long period of 25 years under water depths of up to 8000 m in a submarine optical repeater housing. It has a feedthrough structure that is fitted into the end plate like a window to seal the gap, and the lens attached to the end of the fiber on the cable side is fitted to this lens, which provides high reliability and eliminates connection optical loss due to processing errors. The time required for optical connection between a cable and a repeater can be reduced from more than an hour (in the case of 6-pair connection) to several minutes. In addition, the extra fiber length (approximately 2 m), which is essential for conventional fusion splicing, can be significantly shortened to a few centimeters due to the connector connection, which saves storage space for the extra fiber and reduces the extra length of the housing by more than 20%. can be shortened. In addition, since it is possible to eliminate the possibility of stochastic fiber breakage due to fiber bending caused by storing a long excess length in a narrow space, it is possible to improve the long-term stability of the transmission line. There are many great benefits in many areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alは従来の自在接続型の海底光中継器きょう
体側を示す縦断面略図、第1図(b)は従来の硬直型海
底光中継器きょう体側を示す縦断面図、第2図(a)は
本願の第1の発明の一実施例を示す縦断面図、第2図山
)は本願の第2の発明の一実施例を示す縦断面図、第3
図は第2図(b)の実施例の1部詳細構造を示す縦断面
図である。 1・・・海底光ケーブル、 2・・・海底光ケーブル引
留装置、 3・・・自在継手部、 4・・・テールケー
ブル接続部、  4a・・・光フアイバ接続部、4b・
・・耐圧ハウジング、 4c・・・ポレエチレン被覆、
 5・・・テールケーブル、 6・・・給電テールケー
ブル、6a・・・光テールケーブル、 7・・・端面板
、  8・・・フィードスル、  8a・・・光フィー
ドスル、 9・・・給電線フィードスル、 10・・・
給電線アセンブリケーブル、 11・・・光アセンブリ
ケーブル、 12・・・海底光中継器回路、 13・・
・耐圧シリンダ、 14・・・クッション、 15・・
・光コネクタ部、 16・・・光・給電コネクタ部、 
18・・・光信号導入孔、 19・・・光学レンズ(A
)、 20・・・気密接合部、 22・・・光ファイバ
、 23・・・光学レンズ(B)、 24・・・レンズ
ガイイド機構、 25・・・耐圧金属殻(A)、 26
・・・絶縁ポレエチレン層(A)、27・・・耐圧パイ
プ、 28・・・耐圧金属殻(B)、29・・・絶縁ポ
レエチレン層(B)、 30・・・耐圧接続構造、 3
1・・・ポレエチレン接続構造、 32・・・押え部品
、 33・・・テーパシール。
Figure 1 (al is a schematic vertical cross-sectional view showing the housing side of a conventional flexible submarine optical repeater; Figure 1 (b) is a vertical cross-sectional view showing the housing side of a conventional rigid submarine optical repeater; Figure 2 (a) is a longitudinal cross-sectional view showing an embodiment of the first invention of the present application, Fig. 2(a) is a longitudinal cross-sectional view showing an embodiment of the second invention of the present application,
The figure is a longitudinal cross-sectional view showing a part of the detailed structure of the embodiment shown in FIG. 2(b). DESCRIPTION OF SYMBOLS 1... Submarine optical cable, 2... Submarine optical cable retention device, 3... Universal joint part, 4... Tail cable connection part, 4a... Optical fiber connection part, 4b.
...Pressure housing, 4c...polyethylene coating,
5... Tail cable, 6... Power supply tail cable, 6a... Optical tail cable, 7... End plate, 8... Feedsle, 8a... Optical feedsle, 9... Supply Electric wire feedthrough, 10...
Power feed line assembly cable, 11... Optical assembly cable, 12... Submarine optical repeater circuit, 13...
・Pressure cylinder, 14... cushion, 15...
・Optical connector part, 16... Optical/power supply connector part,
18... Optical signal introduction hole, 19... Optical lens (A
), 20... Airtight joint part, 22... Optical fiber, 23... Optical lens (B), 24... Lens guide mechanism, 25... Pressure-resistant metal shell (A), 26
... Insulated polyethylene layer (A), 27... Pressure-resistant pipe, 28... Pressure-resistant metal shell (B), 29... Insulated polyethylene layer (B), 30... Voltage-resistant connection structure, 3
1... Polyethylene connection structure, 32... Holding part, 33... Taper seal.

Claims (2)

【特許請求の範囲】[Claims] (1)海底光中継器回路を耐圧、気密を保って収納し、
海底光ケーブルと電気的、機械的、光学的に海底光ケー
ブルと接続する海底光中継器きょう体において、該海底
光中継器きょう体の耐圧シリンダ端面板に設けた光信号
導入孔に少なくとも1個の第1の光学レンズが耐水圧、
気密性を保って装着され、該第1の光学レンズのおのお
のに対して前記海底光中継器回路に接続された少なくと
も1本の第1の光ファイバを1本毎に予め接続した1個
のレンズ型フィードスルを有し、一方、前記海底光ケー
ブル端に設けた海底光ケーブル引留装置から導出された
各光ファイバ端にも個々に第2の光学レンズを接続した
成端部を有し、前記レンズ型フィードスルの前記第1の
光学レンズの端面と前記成端部の第2の光学レンズの端
面とを相互に光学的に接続するレンズガイド機構を有す
ることを特徴とする海底光中継器きょう体。
(1) Store the submarine optical repeater circuit in a pressure-resistant and airtight manner,
In a submarine optical repeater housing electrically, mechanically, and optically connected to a submarine optical cable, at least one optical signal introduction hole provided in a pressure-resistant cylinder end plate of the submarine optical repeater housing is provided. 1 optical lens is water pressure resistant,
one lens that is attached in an airtight manner and to which at least one first optical fiber connected to the submarine optical repeater circuit is connected in advance to each of the first optical lenses; On the other hand, each optical fiber end led out from the submarine optical cable anchoring device provided at the end of the submarine optical cable also has a termination portion to which a second optical lens is individually connected, and the lens type A submarine optical repeater housing comprising a lens guide mechanism that optically connects an end surface of the first optical lens of the feedthrough and an end surface of the second optical lens of the termination section.
(2)海底光中継器回路を耐圧、気密を保って収納し、
海底光ケーブルと電気的、機械的、光学的に海底光ケー
ブルと接続する海底光中継器きょう体において、該海底
光中継器きょう体の耐圧シリンダ端面板に設けた光信号
導入孔に少なくとも1個の第1の光学レンズが耐水圧、
気密性を保って装着され、該第1の光学レンズのおのお
のに対して前記海底光中継器回路に接続された少なくと
も1本の第1の光ファイバを1本毎に予め接続した1個
のレンズ型フィードスルを有し、一方、前記海底光ケー
ブル端に設けた海底光ケーブル引留装置から導出された
各光ファイバ端にも個々に第2の光学レンズを接続した
成端部を有し、前記レンズ型フィードスルの前記第1の
光学レンズの端面と前記成端部の第2の光学レンズの端
面とを相互に光学的に接続するレンズガイド機構を有し
、前記レンズ型フィードスルは前記第1の光学レンズを
内包する第1の耐圧金属殻および外周の第1の絶縁ポレ
エチレン層を介して前記端面板に装着され、一方前記海
底光ケーブル引留装置側光ファイバの成端部は前記第2
の光学レンズおよび該第2の光学レンズに接続された光
ファイバが前記海底光ケーブルの耐圧パイプから連続す
る第2の耐圧金属殻に内包され、該第2の耐圧金属殻の
外周には前記海底光ケーブルの絶縁ポレエチレンと連続
する第2の絶縁ポレエチレン層が施され、前記第1の光
学レンズと第2の光学レンズとの接続部を内包して前記
第1の耐圧金属殻と第2の耐圧金属殻とを耐圧を保ち相
互に接続する接続構造を有し、更に前記第1の絶縁ポレ
エチレン層と前記第2の絶縁ポレエチレン層の各々の端
面を相互に切れ目なく溶着する接続構造を有すること特
徴とする海底光中継器きょう体。
(2) Store the submarine optical repeater circuit in a pressure-resistant and airtight manner,
In a submarine optical repeater housing electrically, mechanically, and optically connected to a submarine optical cable, at least one optical signal introduction hole provided in a pressure-resistant cylinder end plate of the submarine optical repeater housing is provided. 1 optical lens is water pressure resistant,
one lens that is attached in an airtight manner and to which at least one first optical fiber connected to the submarine optical repeater circuit is connected in advance to each of the first optical lenses; On the other hand, each optical fiber end led out from the submarine optical cable anchoring device provided at the end of the submarine optical cable also has a termination portion to which a second optical lens is individually connected, and the lens type The lens type feed through has a lens guide mechanism that optically connects the end face of the first optical lens of the feed through and the end face of the second optical lens of the termination section, and the lens type feed through has a The end plate is attached to the end plate via a first pressure-resistant metal shell containing an optical lens and a first insulating polyethylene layer on the outer periphery, while the termination portion of the optical fiber on the submarine optical cable tensioning device side is attached to the second
An optical lens and an optical fiber connected to the second optical lens are enclosed in a second pressure-resistant metal shell that is continuous from the pressure-resistant pipe of the submarine optical cable, and the outer periphery of the second pressure-resistant metal shell is surrounded by the submarine optical cable. A second insulating polyethylene layer that is continuous with the insulating polyethylene layer is applied, and includes a connecting portion between the first optical lens and the second optical lens, and is connected to the first pressure-resistant metal shell and the second pressure-resistant metal shell. It is characterized by having a connection structure for mutually connecting the first insulating polyethylene layer and the second insulating polyethylene layer while maintaining a withstand voltage, and further having a connection structure for seamlessly welding the end faces of the first insulating polyethylene layer and the second insulating polyethylene layer to each other. Submarine optical repeater housing.
JP5368286A 1986-03-13 1986-03-13 Submarine optical repeater housing Pending JPS62211605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5368286A JPS62211605A (en) 1986-03-13 1986-03-13 Submarine optical repeater housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5368286A JPS62211605A (en) 1986-03-13 1986-03-13 Submarine optical repeater housing

Publications (1)

Publication Number Publication Date
JPS62211605A true JPS62211605A (en) 1987-09-17

Family

ID=12949585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5368286A Pending JPS62211605A (en) 1986-03-13 1986-03-13 Submarine optical repeater housing

Country Status (1)

Country Link
JP (1) JPS62211605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204710A (en) * 2014-04-15 2015-11-16 富士通株式会社 Relay device, feedthrough and manufacturing method of relay device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204710A (en) * 2014-04-15 2015-11-16 富士通株式会社 Relay device, feedthrough and manufacturing method of relay device

Similar Documents

Publication Publication Date Title
US4295707A (en) Feed through for optical submerged repeater
US5588086A (en) Fiber optic hermetic bulkhead penetrator feedthrough module and method of fabricating same
US4505540A (en) Spliced portion housing structure for optical fiber in optical submerged repeater
JPS6217704A (en) Submarine line for optical fiber remote telecommunication
JPS6159481B2 (en)
US4678270A (en) Submersible optical repeaters and optical fibre glands
US6081646A (en) In-line solder seal for optical fiber
US20050036751A1 (en) Interconnect including a repeater for an optical transmission cable
EP1579253A1 (en) Hermetically sealed optical amplifier module to be integrated into a pressure vessel
JPS62211605A (en) Submarine optical repeater housing
EP1568111B1 (en) Optical amplifier module housed in a universal cable joint for an undersea optical transmission system
JP2013152363A (en) Relay connector for electrooptical composite cable
JPH0253763B2 (en)
JPH0253762B2 (en)
CN210953187U (en) Connecting mechanism of optical fiber pressure gauge suitable for shaft installation
WO2019069615A1 (en) Cable equipped with connector and method for manufacturing connector
CN213934302U (en) Optical fiber adapter
JPS6253802B2 (en)
JPH0377481B2 (en)
JPS6157609B2 (en)
JPH01266502A (en) Optical connector
JP2968602B2 (en) Optical submarine cable terminator
JPS5918419Y2 (en) Repeater housing for submarine optical system
JPH05501622A (en) Optical connection equipment and its use in video signal transmission
JPS63108301A (en) Leading-in structure for optical fiber