JPS62216304A - Cryostat - Google Patents
CryostatInfo
- Publication number
- JPS62216304A JPS62216304A JP61058104A JP5810486A JPS62216304A JP S62216304 A JPS62216304 A JP S62216304A JP 61058104 A JP61058104 A JP 61058104A JP 5810486 A JP5810486 A JP 5810486A JP S62216304 A JPS62216304 A JP S62216304A
- Authority
- JP
- Japan
- Prior art keywords
- laminated
- porosity
- pores
- layers
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012774 insulation material Substances 0.000 claims description 13
- 239000011810 insulating material Substances 0.000 claims description 8
- 239000003507 refrigerant Substances 0.000 claims description 7
- 230000005855 radiation Effects 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 239000012212 insulator Substances 0.000 abstract 6
- 239000011148 porous material Substances 0.000 abstract 6
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000000151 deposition Methods 0.000 abstract 1
- 239000002648 laminated material Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 2
- 239000005041 Mylar™ Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
- F17C3/085—Cryostats
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】 〔目 的〕 (産業上の利用分野) 本発明は極低温冷媒を収容する極低温容器しこ関する。[Detailed description of the invention] 〔the purpose〕 (Industrial application field) TECHNICAL FIELD This invention relates to cryogenic vessels containing cryogenic refrigerants.
(従来の技術)
従来、液体窒素や液体ヘリウム等の極低温冷媒を収容す
る極低温容器は、内側容器と外側容器間を真空にすると
共に、真空空間に積層断熱材を介在させて、極低温冷媒
を収容した内側容器を外側容器から断熱している。この
積層断熱材は、プラスチックフィルムあるいはマイラー
シート等の片面又は両面にアルミニウム等の金属を蒸着
し、かつ穿孔を施した反射膜とプラスチックネットとを
交互に積層した構成となっている。この穿孔を施した積
層断熱材では、層間の排気性がよくなり、残留ガスによ
る伝導熱を減少させる。しかし穿孔の総画積分だけ外側
容器からの輻射熱を反射する面積が小さくなり、輻射熱
は増加する。従って、反射膜の全面積に対する穿孔の総
面積の割合、すなわち穿孔率は排気性の向上と、輻射に
よる侵入熱の増加を考慮して決定されなければならない
。(Prior art) Conventionally, cryogenic containers that contain cryogenic refrigerants such as liquid nitrogen and liquid helium have been constructed by creating a vacuum between the inner container and the outer container, and by interposing a laminated insulation material in the vacuum space to maintain the cryogenic temperature. The inner container containing the refrigerant is insulated from the outer container. This laminated heat insulating material has a structure in which a metal such as aluminum is vapor-deposited on one or both sides of a plastic film or Mylar sheet, and a perforated reflective film and a plastic net are alternately laminated. This perforated laminated insulation material improves ventilation between the layers and reduces conduction heat due to residual gas. However, the area that reflects the radiant heat from the outer container becomes smaller by the total fractional integral of the perforations, and the radiant heat increases. Therefore, the ratio of the total area of the perforations to the total area of the reflective film, that is, the perforation rate, must be determined taking into consideration the improvement in exhaust performance and the increase in heat intrusion due to radiation.
しかし、一般には、積層断熱材の層間の真空度は層ごと
に異なり、低温になるほど悪くなる。すなわち、低温側
では高温側に比べ、残留ガスによる伝導熱の全侵入熱に
対する割合が大きくなり、逆に高温側では輻射熱が支配
的である。However, in general, the degree of vacuum between the layers of a laminated insulation material differs from layer to layer, and becomes worse as the temperature decreases. That is, on the low temperature side, the ratio of conduction heat due to residual gas to the total intrusion heat is larger than on the high temperature side, and conversely, on the high temperature side, radiant heat is dominant.
(発明が解決しようとする問題点)
上記の理由から、同径の穿孔を各層に同数設けた従来の
積層断熱材の高温側では、穿孔を通過する輻射の影響が
大きく、低温側での真空の向」二による伝導熱の減少を
相殺するため、穿孔の効果が失なわれる。(Problem to be solved by the invention) For the above reasons, in the high temperature side of conventional laminated insulation materials in which the same number of perforations of the same diameter are provided in each layer, the effect of radiation passing through the perforations is large, and the vacuum on the low temperature side To compensate for the reduction in conductive heat due to the direction of the hole, the effectiveness of the perforation is lost.
本発明の目的は、穿孔を施した積層断熱材の層間の残留
ガスによる伝導熱を減少させ、かつ穿孔による輻射熱の
増加を少なくし、断熱性能を向上した極低温容器を提供
することにある。An object of the present invention is to provide a cryogenic container with improved heat insulation performance by reducing conduction heat due to residual gas between layers of a laminated insulation material with perforations, and by reducing an increase in radiant heat due to perforations.
(問題点を解決するための手段)
上記目的を達成するために、本発明においては、極低温
冷媒を収容する内側容器と、それを囲み内部を真空に引
かれる外側容器と、その両容器間の真空空間に介装され
る極低温用積層断熱材とからなる極低温容器において、
積層断熱材は内側容器に近いものほど、排気性能が容易
になるように穿孔率および穿孔径の少なくとも一方を変
化させたことを特徴とするものである。(Means for Solving the Problems) In order to achieve the above object, the present invention provides an inner container containing a cryogenic refrigerant, an outer container surrounding the inner container whose inside is evacuated, and a space between the two containers. In a cryogenic container consisting of a cryogenic laminated insulation material interposed in a vacuum space,
The laminated heat insulating material is characterized in that at least one of the perforation rate and the perforation diameter is changed so that the closer to the inner container, the easier the exhaust performance becomes.
(作 用)
このように構成されたものにおいては、内側容器に近い
積層断熱材の排気性能を向上させたことにより、真空度
が外側に比べて、あまり低下せず断熱作用が従来のもの
に比べて著しく向上する。(Function) With this structure, by improving the exhaust performance of the laminated insulation material near the inner container, the degree of vacuum does not decrease much compared to the outside, and the insulation effect is comparable to that of the conventional one. Significant improvement in comparison.
(発明の実施例) 以下、本発明の一実施例を図面により説明する。(Example of the invention) An embodiment of the present invention will be described below with reference to the drawings.
第1図は本実施例による積層断熱材を施した極低温容器
の断面図、第2図は積層断熱材の拡大断面図である。第
1図においては、(1)は真空引き用ボート、(2)
、 (3) 、 (4)は数十層の積層断熱材のうち代
表的な外側、中間、内側の3つの層、(5)は液体窒素
、液体ヘリウム等の極低温冷媒(6)を溜めである内側
容器、(7)は内部を真空に引かれる外側容器を示す。FIG. 1 is a sectional view of a cryogenic container provided with a laminated heat insulating material according to this embodiment, and FIG. 2 is an enlarged sectional view of the laminated heat insulating material. In Figure 1, (1) is a vacuum boat, (2)
, (3) and (4) are typical outer, middle, and inner three layers out of dozens of laminated insulation layers, and (5) is for storing cryogenic refrigerant (6) such as liquid nitrogen or liquid helium. (7) indicates an outer container whose interior is evacuated.
第1図および第2図において、積層断熱材(2) 、
(3) 、 (4)は、プラスチックフィルムまたは、
マイラーシートの片面または両面にアルミニュウム等の
金属を蒸着し、かつ穿孔(9)を施したものである。穿
孔径は内側はど小さくし、孔数を多くし、この穿孔の穿
孔率は積層断熱材の各層で段階的に変化させ、内側容器
側はど大きくしている。穿孔率は、積層断熱材の外層(
外側容器側)で0.5〜1.0%程度内層側で2〜4%
程度とし、その間の層では、この穿孔率の範囲内で段階
的に変化させる。In Figures 1 and 2, laminated insulation material (2),
(3) and (4) are plastic films or
This is a mylar sheet with metal such as aluminum vapor-deposited on one or both sides and perforations (9). The diameter of the perforations is made smaller on the inside and the number of holes is increased, the perforation rate of the perforations is changed stepwise in each layer of the laminated insulation material, and the diameter is made larger on the inner side of the container. The perforation rate is the outer layer of laminated insulation (
0.5-1.0% on the outer container side) 2-4% on the inner layer side
The perforation rate is changed in stages within this range for layers in between.
本実施例による積層断熱材において、高温側の外側積層
材(2)の穿孔率が、従来型のものと同程度あるいはそ
れ以下としさらに穿孔径を大きくしであるので、この層
を通過する輻射熱を減少させることができる。また、低
温側の内側積層材(4)はど、穿孔率を大きく、かつ穿
孔径を小さくしているので、従来型のものより、積層材
内層での真空が良くなり、積層間のガスによる伝導熱が
減少する。すなわち、本実施例では、積層材の侵入熱の
主要因となる輻射熱を減少させ、また積層材の低温側で
主要因となる残留ガスによる伝導熱を減少させることで
侵入熱を低減することができる。In the laminated insulation material according to this example, the perforation rate of the outer laminated material (2) on the high temperature side is the same as or lower than that of the conventional type, and the perforation diameter is increased, so that radiant heat passes through this layer. can be reduced. In addition, the inner laminated material (4) on the low temperature side has a large perforation rate and a small perforation diameter, so the vacuum in the inner layer of the laminated material is better than that of conventional types, and the gas between the laminated materials is reduced. Conductive heat is reduced. That is, in this example, it is possible to reduce the heat intrusion by reducing radiant heat, which is the main cause of heat intrusion into the laminated material, and by reducing conduction heat due to residual gas, which is the main cause on the low temperature side of the laminated material. can.
従って、本発明による積層断熱材では、断熱性能が向上
する。なお、本発明において、プラスチックネットなど
の介在物のないタイプの積層断熱材についても適用され
ることは自明である。Therefore, in the laminated heat insulating material according to the present invention, the heat insulating performance is improved. It is obvious that the present invention can also be applied to laminated heat insulating materials without inclusions such as plastic nets.
その他の例として下記のものが考えられる。Other examples include the following.
=4−
上記の実施例では積層材の穿孔率と穿孔径を変化させ、
積層材の高温側での放射による侵入熱を減少させ低温側
でのガス伝導による侵入熱を減少させているが穿孔率を
一定にし、穿孔径のみを変化させるものが考えられる。=4- In the above example, the perforation rate and perforation diameter of the laminated material were changed,
It is possible to reduce the intrusion heat due to radiation on the high temperature side of the laminated material and reduce the intrusion heat due to gas conduction on the low temperature side, but it is possible to keep the perforation rate constant and change only the perforation diameter.
すなわち、積層材の高温側では穿孔(9)の径は大きく
、穿孔数は少なくし、内層側はど穿孔径を小さく、穿孔
数を多くするものである。これは、積層材の各層での穿
孔率(穿孔面積の総和)が同じであれば、穿孔径が大き
いものほど、断熱性能がよく、穿孔数が多いものほど排
気性能が良いという基本的な性質を利用して、前記の実
施例と同様の効果が得られる。That is, on the high temperature side of the laminated material, the diameter of the perforations (9) is large and the number of perforations is small, and on the inner layer side, the perforation diameter is small and the number of perforations is large. This is due to the basic property that if the perforation rate (total perforation area) in each layer of laminated material is the same, the larger the perforation diameter, the better the insulation performance, and the larger the number of perforations, the better the exhaust performance. By using this, the same effects as in the above embodiment can be obtained.
また、穿孔径を一定にし、穿孔数を低温側はど多くする
こと、従って穿孔率を大にすることも考えられる。It is also conceivable to keep the perforation diameter constant and increase the number of perforations on the low temperature side, thus increasing the perforation rate.
また、各層で穿孔の位置が重なり、輻射による侵入熱が
増加する可能性も考えられるが、これは、穿孔率が数%
と小さく、かつ暦数が数十層と多いため前記可能性が少
なく、問題にならない。It is also possible that the perforation positions overlap in each layer, increasing the intrusion heat due to radiation, but this is because the perforation rate is a few percent.
Since the number of layers is small and the number of calendar layers is large, such as several tens, the above possibility is small and does not pose a problem.
以上説明したように、本発明によれば、排気性能が向上
し、輻射熱と伝導熱の和が低減できるので、断熱性能の
向上を図れる極低温容器が得られる。As explained above, according to the present invention, the exhaust performance is improved and the sum of radiant heat and conductive heat can be reduced, so that a cryogenic container with improved heat insulation performance can be obtained.
第1図は本発明の極低温容器の一実施例を示す断面図、
第2図は第1図の積層断熱材の拡大断面図である。
1・・・真空引き用ポート、
2.3.4・・・積層断熱材、 5・・・内側容器、6
・・・極低温冷媒、 7・・・外側容器、8・
・・スペーサー、 9・・・穿孔。FIG. 1 is a sectional view showing an embodiment of the cryogenic container of the present invention;
FIG. 2 is an enlarged sectional view of the laminated insulation material of FIG. 1. 1... Vacuum port, 2.3.4... Laminated insulation material, 5... Inner container, 6
...Cryogenic refrigerant, 7.Outer container, 8.
...Spacer, 9...perforation.
Claims (1)
真空に引かれる外側容器と、その両容器間の真空空間に
介装される極低温用積層断熱材とからなる極低温容器に
おいて、積層断熱材は内側容器に近いものほど、排気性
能が容易になるように穿孔率および穿孔径の少なくとも
一方を変化させたことを特徴とする極低温容器。In a cryogenic container consisting of an inner container containing a cryogenic refrigerant, an outer container surrounding it and evacuated inside, and a cryogenic laminated insulation material interposed in the vacuum space between both containers, a laminated A cryogenic container characterized in that at least one of the perforation rate and the perforation diameter of the insulating material is changed so that the closer the insulating material is to the inner container, the easier the exhaust performance is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058104A JPS62216304A (en) | 1986-03-18 | 1986-03-18 | Cryostat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058104A JPS62216304A (en) | 1986-03-18 | 1986-03-18 | Cryostat |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62216304A true JPS62216304A (en) | 1987-09-22 |
Family
ID=13074650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61058104A Pending JPS62216304A (en) | 1986-03-18 | 1986-03-18 | Cryostat |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62216304A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0479703U (en) * | 1990-11-26 | 1992-07-10 | ||
WO2008115143A1 (en) * | 2007-03-21 | 2008-09-25 | Fidens Holding Ab | Insulation layer for use in thermal insulation, insulation and method of manufacturing such |
-
1986
- 1986-03-18 JP JP61058104A patent/JPS62216304A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0479703U (en) * | 1990-11-26 | 1992-07-10 | ||
WO2008115143A1 (en) * | 2007-03-21 | 2008-09-25 | Fidens Holding Ab | Insulation layer for use in thermal insulation, insulation and method of manufacturing such |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100188443B1 (en) | Vaccum heat insulation panel | |
US20040226956A1 (en) | Cryogenic freezer | |
JPS6119431B2 (en) | ||
US3139206A (en) | Thermal insulation | |
EP1835221A1 (en) | Vacuum heat insulation tube | |
US6838146B2 (en) | Vacuum thermal insulation product and method for making same | |
KR900005027B1 (en) | Low cost intermediate radiation shield for a magnet cryostat | |
JPS62216304A (en) | Cryostat | |
CN212530787U (en) | Vacuum container | |
JPH0886394A (en) | Vacuum heat insulation material and its manufacture | |
JPS6327192Y2 (en) | ||
JPH08303685A (en) | Vacuum heat insulating body | |
JPH01150098A (en) | Heat insulator | |
JPH06281089A (en) | Vacuum heat-insulating material | |
JPH0368549B2 (en) | ||
JPH05299710A (en) | Heat insulation structure using multilayer heat insulator | |
JPH1089588A (en) | Radiation shield for low temperature machinery | |
JPS63279082A (en) | Vacuum heat-insulating material | |
JPH09137889A (en) | Vacuum heat insulation material | |
JPH07293783A (en) | Heat insulating material and heat insulating box using it | |
JPH08173331A (en) | Vacuum thermal insulating layer | |
JPH0821732B2 (en) | Cryogenic container manufacturing method | |
JPS6052944B2 (en) | laminated insulation | |
JPS60113892A (en) | Vacuum evacuating method of refrigerant transport pipe | |
CN111409961A (en) | Vacuum container |