JPS62202742A - Preparation of liquid jet recording head - Google Patents
Preparation of liquid jet recording headInfo
- Publication number
- JPS62202742A JPS62202742A JP4528686A JP4528686A JPS62202742A JP S62202742 A JPS62202742 A JP S62202742A JP 4528686 A JP4528686 A JP 4528686A JP 4528686 A JP4528686 A JP 4528686A JP S62202742 A JPS62202742 A JP S62202742A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- liquid
- jet recording
- liquid jet
- recording head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000011521 glass Substances 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 95
- 239000011241 protective layer Substances 0.000 claims description 49
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 12
- 230000004044 response Effects 0.000 abstract description 9
- 230000006872 improvement Effects 0.000 abstract description 4
- 238000003475 lamination Methods 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 2
- 229920003023 plastic Polymers 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract description 2
- 230000008719 thickening Effects 0.000 abstract description 2
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- -1 for instance Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 25
- 238000004544 sputter deposition Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 244000233967 Anethum sowa Species 0.000 description 1
- 229910003862 HfB2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/14016—Structure of bubble jet print heads
- B41J2/14088—Structure of heating means
- B41J2/14112—Resistive element
- B41J2/14129—Layer structure
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は液体噴射記録ヘッドの作成方法、特に熱エネル
ギー発生手段を有する液体噴射記録ヘッドの作成方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a liquid jet recording head, and particularly to a method of manufacturing a liquid jet recording head having thermal energy generating means.
現在知られている各種の記録法のなかでも、記録時に騒
音の発生がほとんどないノンインパクト記録方法であっ
て且つ高速記録が可能であり、しかも普通紙に特別の定
着処理を必要とせずに記録の行なえる−いわゆる液体噴
射記録法(インクジェット記録法)は、極めて有用な記
録方法である。この液体噴射記録法については、こわま
でにも様々な方法が提案され改良が加えられて商品化さ
れたものもあれば現在もなお実用化への努力が続けられ
ているものもある。Among the various recording methods currently known, this is a non-impact recording method that generates almost no noise during recording, is capable of high-speed recording, and can record on plain paper without the need for special fixing treatment. The so-called liquid jet recording method (inkjet recording method) is an extremely useful recording method. Regarding this liquid jet recording method, a variety of methods have been proposed, some of which have been improved and commercialized, while others are still being worked on to put them into practical use.
液体噴射記録法は、インクと称される記録液の液e4(
drop le t、)を種々の作用原理で飛翔させ、
それを紙などの被記録材に付着させて記録を行なうもの
である。The liquid jet recording method uses recording liquid e4 (called ink).
drop let,) is made to fly using various principles of operation,
Recording is performed by attaching it to a recording material such as paper.
そして、本件出願人もかかる液体噴射記録法に係わる新
規方法について既に提案を行なってぃる。この新規方法
は特開昭52−118798号公報において提案されて
おり、その基本原理は次に概説する通りである。つまり
、この液体噴射記録法は、記録液を収容することのでき
る作用室中に導入された記録液に対して情報信号として
熱的パルスを与え、これにより記録液が蒸気泡を発生し
自己収縮する過程で生ずる作用力に従って前記作用室に
連通せる液体吐出口よりml記記録液を吐出して小液滴
として飛翔せしめ、これを被記録材に付着させて記録を
行なう方法である。The applicant has already proposed a new method related to such liquid jet recording method. This new method has been proposed in Japanese Patent Application Laid-Open No. 52-118798, and its basic principle is as outlined below. In other words, in this liquid jet recording method, a thermal pulse is applied as an information signal to the recording liquid introduced into an action chamber that can contain the recording liquid, whereby the recording liquid generates vapor bubbles and self-contracts. In this method, recording liquid is ejected in ml from a liquid ejection port communicating with the action chamber according to the acting force generated in the process, flying as small droplets, and making the droplets adhere to a recording material to perform recording.
ところで、この方法は高密度マルチアレー構成にして高
速記録、カラー記録に適合させやすく、実施装置の構成
が従来のそわに比べて簡略であるため、記録ヘッドとし
て全体的にはコンパクト化か図れ且つ量産に向くこと、
半導体分野において技術の進歩と信頼性の向上が著しい
IC技術やマイクロ加工技術の長所を十二分に利用する
ことで長尺化が容易であること等の利点があり、適用範
囲の広い方法である。By the way, this method is easy to adapt to high-speed recording and color recording by forming a high-density multi-array configuration, and the configuration of the implementation device is simpler than the conventional Sowa, so the overall recording head can be made more compact. To be suitable for mass production,
By making full use of the advantages of IC technology and micro-processing technology, which have seen remarkable technological progress and improved reliability in the semiconductor field, it has the advantage of being easy to lengthen, and is a method with a wide range of applications. be.
上記液体噴射記録法に用いる液体噴射記録装置の特徴的
な記録ヘッドには、液体吐出口より記録液を吐出して飛
翔的液滴を形成するための熱エネルギー発生手段が設け
られている。A characteristic recording head of a liquid jet recording apparatus used in the liquid jet recording method is provided with thermal energy generating means for ejecting recording liquid from a liquid ejection port to form flying droplets.
該熱エネルギー発生手段は、発生する熱エネルギーを効
率良く記録液に作用させること、記録液への熱作用の0
N−OFF応答速度を高めること等のために、記録液に
直接接触する様に設けられるのが望ましいとされている
。The thermal energy generating means is configured to efficiently apply the generated thermal energy to the recording liquid, and to eliminate the thermal effect on the recording liquid.
In order to increase the N-OFF response speed, etc., it is considered desirable to provide it in direct contact with the recording liquid.
しかしながら、面記の熱エネルギー発生手段は通電され
ることによって発熱する発熱抵抗層と該発熱抵抗層に通
電するための一対の電極とで基本的には構成されている
ために、発熱抵抗層が直に記録液に接触する状態である
と、記録液の電気抵抗値如何によっては該液を通じて電
気が流れたり、記録液を通じての電気の流れによって記
録液自身が電気分解したり、あるいは発熱抵抗層への通
電の際に該発熱抵抗層と記録液とか反応して、発熱抵抗
層の腐食による抵抗値の変化や発熱抵抗層の破損あるい
は破壊が起こったりする場合があった。However, since the heat energy generating means described above basically consists of a heat generating resistor layer that generates heat when energized and a pair of electrodes for supplying current to the heat generating resistor layer, the heat generating resistor layer is If it is in direct contact with the recording liquid, depending on the electrical resistance of the recording liquid, electricity may flow through the liquid, the recording liquid itself may be electrolyzed by the flow of electricity through the recording liquid, or the heating resistance layer may When the heating resistor layer is energized, the recording liquid reacts with the heating resistor layer, resulting in a change in resistance value due to corrosion of the heating resistor layer, or damage or destruction of the heating resistor layer.
そのために、従来においては、NiCr等の合金や7r
B2.1lfB2等の金属ホウ化物等の発熱抵抗材料と
しての特性に比較的に優れた無機材料で発熱抵抗層を構
成すると共に、該材料で構成された発熱抵抗層上に5i
02等の耐酸化性に優れた材料で構成された保護層を設
けることで発熱抵抗層が記録液に直に接触するのを防止
して、航記の諸問題を解決し信頼性と繰返し使用耐久性
の向上を図ろうとすることが提案されている。Therefore, in the past, alloys such as NiCr and 7r
The heating resistor layer is made of an inorganic material that has relatively excellent properties as a heating resistor material, such as metal boride such as B2.1lfB2, and 5i is formed on the heating resistor layer made of the material.
By providing a protective layer made of a material with excellent oxidation resistance such as 02, it prevents the heating resistance layer from coming into direct contact with the recording liquid, solving various navigation problems and improving reliability and repeated use. It has been proposed to try to improve durability.
ところで、このような液体噴射記録ヘッドの熱エネルギ
ー発生手段を形成するに際しては、上記発熱抵抗層を所
望の基体上に形成した後、電極および保護層を順次積層
していくのが一般的であり、このような熱エネルギー発
生手段の保護層には、F記のような発熱抵抗層の破損防
止あるいは電極間の短絡防止などの保護層としての各種
の機能を部分に果たすべく、これら発熱抵抗層や電極の
所要部をピンホールなどの層欠陥を有することなく一様
に覆う(カバー)ことが要求される。By the way, when forming the thermal energy generating means of such a liquid jet recording head, it is common to form the heat generating resistive layer on a desired substrate, and then sequentially stack electrodes and protective layers. The protective layer of such a thermal energy generating means includes these heat generating resistive layers in order to partially fulfill various functions as a protective layer such as preventing damage to the heat generating resistive layer and preventing short circuit between electrodes as described in F. It is required to uniformly cover the required portions of the electrodes and electrodes without layer defects such as pinholes.
また、このような液体噴射記録ヘッドでは、面述したよ
うに、一般には電極が発熱抵抗層上に形成されるため、
電極および発熱抵抗層間に段差(ステップ)が生じるが
、このような段差部には、層厚の不均一などが発生し易
すいため、露出部分を生じることのないように該段差を
十分に覆う(ステップカバレージ)ように層形成が実施
されねばならない。すなわち、ステップカバレージが不
十分な状態では、発熱抵抗層の露出部分と記録液とが直
に接触して、記録液が電気分解されたり、記録液と発熱
抵抗層が反応して発熱抵抗層が破壊されてしまうことが
あった。また、このような段差部には、膜質の不均一・
なども生しやすく、このような膜質の不均一は、熱発生
の繰り返しによって保護層−生じる熱ストレスの部分集
中を招き、保護層に亀裂(クラック)を生じる原因とも
なり、このクラックから記録液が侵入して、上記のよう
な発熱抵抗層の破壊に至ることもあった。更には、ピン
ホールから記録液か侵入して発熱抵抗層が破壊されるこ
ともあった。In addition, in such a liquid jet recording head, as mentioned above, the electrodes are generally formed on the heat generating resistor layer.
A step occurs between the electrode and the heat-generating resistor layer, but unevenness in layer thickness is likely to occur at such a step, so the step must be sufficiently covered to avoid any exposed parts. (step coverage) layer formation must be carried out. In other words, if step coverage is insufficient, the exposed portion of the heat generating resistor layer may come into direct contact with the recording liquid and the recording liquid may be electrolyzed, or the recording liquid and the heat generating resistor layer may react and the heat generating resistor layer may be damaged. Sometimes it was destroyed. In addition, uneven film quality and
Such non-uniformity in film quality causes local concentration of thermal stress generated in the protective layer due to repeated heat generation, and causes cracks in the protective layer. In some cases, the heat-generating resistor layer may be destroyed as described above. Furthermore, the heating resistor layer may be destroyed due to the recording liquid entering through the pinhole.
従来、このような問題の解決にあたっては、保護層の層
厚を厚くし、ステップカバレージの向上やピンホールの
減少をはかることが一般に行なわれている。しかしなが
ら、保護層を厚くすることは、ステップカバレージやピ
ンホールの減少に寄与するものの、保護層を厚くするこ
とによって記録液への熱供給が阻害され、以下のような
新たな問題を生じることになった。Conventionally, in order to solve such problems, the general practice has been to increase the thickness of the protective layer to improve step coverage and reduce pinholes. However, although increasing the thickness of the protective layer contributes to reducing step coverage and pinholes, increasing the thickness of the protective layer obstructs the heat supply to the recording liquid, causing new problems such as the following. became.
すなわち、発熱抵抗層に発生する熱は保護層を通じて記
録液に伝達される訳であるが、この熱の作用面であると
ころの保護層表面と発熱抵抗層との間の熱9’J抵抗が
保護層層厚を厚くすることで大きくなり、このため発熱
抵抗層に必要以上の電力負荷をかける必要を生じ、
■省電力化が不利である、
■必要以上の熱が基体に蓄熱し、熱応答性が悪くなる、
■必要以上の電力のため発熱抵抗層の耐久性が悪くなる
と言った問題を生じるのである。In other words, the heat generated in the heat generating resistor layer is transferred to the recording liquid through the protective layer, but the thermal 9'J resistance between the surface of the protective layer, which is the surface on which this heat acts, and the heat generating resistor layer is Increasing the thickness of the protective layer increases the size, which makes it necessary to apply more power load than necessary to the heat-generating resistor layer. ■ It is disadvantageous to save power. ■ More heat than necessary accumulates in the base, causing heat This results in problems such as poor responsiveness, and (2) poor durability of the heating resistor layer due to more power than necessary.
このような問題は、保護層を薄くすれば克服できるので
あるか、該層の形成に例えばスパッタリングあるいは蒸
着などの膜形成方法を用いる従来の液体噴射記録ヘッド
の作成方法では、ステップカバレージ不良などのため、
面述のような耐久上の欠点があり、保護層を薄くするこ
とが困難であった。Is it possible to overcome such problems by making the protective layer thinner? Conventional liquid jet recording head fabrication methods that use film forming methods such as sputtering or vapor deposition to form the protective layer suffer from poor step coverage and other problems. For,
It has the disadvantages in terms of durability as mentioned above, and it has been difficult to make the protective layer thinner.
また、上記の如き液体噴射記録ヘッドにおける記録の際
には、−・般には記録液の急速・加熱を行なうほど記録
液の発泡安定性が向トすることが知られている。すなわ
ち、熱エネルギー発生手段に印加する電気信号、一般に
は矩形の電気パルスであるが、このパルス幅を短くすれ
ばするほど記録液の発泡安定性が良くなり、これによっ
て飛翔液滴の吐出安定性が向上して記録品位が向上する
のである。しかしながら、従来の液体噴射記録ヘッドに
おいては、前述の如く保護層層厚を厚くしなければなら
ず、このため保護層の熱的抵抗が大きくなり、必要以上
の熱を熱エネルギー発生手段で発生させねばならないこ
とから耐久性の劣化や熱応答性の低下を生じ、このため
パルス幅を短くするのも困難であり、記録品位の向上に
はおのずと限度があった。It is also known that during recording with the liquid jet recording head as described above, the foaming stability of the recording liquid generally improves as the recording liquid is heated more rapidly. In other words, the shorter the pulse width of the electric signal applied to the thermal energy generating means, which is generally a rectangular electric pulse, the better the bubbling stability of the recording liquid will be, which will improve the ejection stability of flying droplets. This improves recording quality. However, in conventional liquid jet recording heads, the thickness of the protective layer must be increased as described above, which increases the thermal resistance of the protective layer and causes the thermal energy generating means to generate more heat than necessary. As a result, durability deteriorates and thermal responsiveness decreases, and it is therefore difficult to shorten the pulse width, and there is a natural limit to the improvement of recording quality.
(発明が解決しようとする問題点)
本発明は上述した従来例の問題点に鑑みてなされたもの
で、省電力、高耐久性および高速応答性を達成し、更に
は記録品質の向上をもはかることが可能な新規な液体噴
射記録ヘッドの作成方法を提供することを主たる目的と
する。(Problems to be Solved by the Invention) The present invention has been made in view of the problems of the prior art described above, and achieves power saving, high durability, and high-speed response, and also improves recording quality. The main purpose of this invention is to provide a method for creating a new liquid jet recording head that can be measured.
前記目的を達成する本発明は、記録液を吐出させるため
の液体吐出口と、該記録液に吐出エネルギーを供給する
ための熱エネルギー発生手段と、該手段上に該手段の保
護層とを有し、該熱エネルギー発生手段が発熱抵抗層お
よび該発熱抵抗層に電気的に接続する少なくとも一対の
電極とからなる液体噴射記録ヘッドの作成方法において
、前記保護層の形成が、該保護層となる上部層を前記熱
エネルギー発生手段上に積層後、該上部層を再溶融して
行なわれるものであることを特徴とする液体噴射記録ヘ
ッドの作成方法である。The present invention that achieves the above object includes a liquid ejection port for ejecting a recording liquid, a thermal energy generation means for supplying ejection energy to the recording liquid, and a protective layer for the means on the means. In the method for producing a liquid jet recording head in which the thermal energy generating means includes a heat-generating resistive layer and at least a pair of electrodes electrically connected to the heat-generating resistive layer, forming the protective layer serves as the protective layer. This method of manufacturing a liquid jet recording head is characterized in that the upper layer is laminated on the thermal energy generating means and then the upper layer is remelted.
以下、必要に応じて図面を参照しつつ、本発明の詳細な
説明する。Hereinafter, the present invention will be described in detail with reference to the drawings as necessary.
第1図乃至第2図は、本発明の方法を適用して得られる
液体噴射記録ヘッドの一例を説明する図であり、それぞ
れ第1図には該ヘッドの熱エネルギー発生手段付近の部
分平面図が、また第2図には第1図のX−Y断面図が示
されている。1 and 2 are diagrams illustrating an example of a liquid jet recording head obtained by applying the method of the present invention, and FIG. 1 is a partial plan view of the vicinity of the thermal energy generating means of the head. However, FIG. 2 also shows an X-Y sectional view of FIG. 1.
第1図乃至第2図に例示される如く、本発明の適用され
る液体噴射記録ヘッドは、例えばガラス、セラミックス
あるいはプラスチック等の所望の材質からなる基体(一
般には、各種形状の基板1)−ヒに、発熱抵抗層2およ
び該層2に電気的に接続する少なくとも一対の電極3.
4とからなる熱エネルギー発生手段の少なくとも一組以
トと、該手段上に保護層5となる上部層を形成した後、
該上部層を再溶融(リフロー)して得られる保護層5を
有している。尚、6は、TL電極、4間に形成される発
熱抵抗層2の熱発生部6aに電力供給して発生した熱を
記録液に伝える熱作用面であり、7が発熱抵抗層2と電
極3.4との間に生じる段差(ステップ)である。As illustrated in FIGS. 1 and 2, a liquid jet recording head to which the present invention is applied has a substrate (generally a substrate 1 of various shapes) made of a desired material such as glass, ceramics, or plastic. h) a heating resistance layer 2 and at least one pair of electrodes 3 electrically connected to the layer 2;
After forming at least one set of thermal energy generating means consisting of 4 and an upper layer serving as a protective layer 5 on the means,
It has a protective layer 5 obtained by remelting (reflowing) the upper layer. 6 is a heat-acting surface that supplies power to the heat generating portion 6a of the heat generating resistor layer 2 formed between the TL electrode and transmits the generated heat to the recording liquid, and 7 is a heat acting surface that transfers the generated heat to the recording liquid. This is the step that occurs between 3.4 and 3.4.
第10図は、上記第1図乃至第2図にその一部を示した
本発明の方法を適用して得られる液体噴射記録ヘッドの
一例の完成した状態における模式的断面図であり、21
が記録液を吐出させるための液体吐出口である。FIG. 10 is a schematic cross-sectional view in a completed state of an example of a liquid jet recording head obtained by applying the method of the present invention, a part of which is shown in FIGS.
is a liquid ejection port for ejecting recording liquid.
この液体噴射記録ヘッドは、基板l上に前述の如き保護
層5を存する熱エネルギー発生手段を形成した後、該熱
エネルギー発生手段のそれぞれに対応する作用室と該作
用室に連通ずる液体吐出口21とを設けるべく形成され
た溝を有する第9図に例示の如き天板16を、基板lに
接合して得られたものである。尚、第9図において、I
7が作用室であるところの液流路を形成するための溝で
あり、19は該液流路17に記録液を供給するための共
通液室となる溝である。該共通液室19には、必要に応
じて例えば第10図に例示の如き液供給管20が接続さ
れ、該液供給管20を通じてヘッド外部から記録液が導
入される゛。また、天板16を接合するに際しては、熱
エネルギー発生手段のそれぞれが、液流路17のそれぞ
わに対応するように十分な位置合せが行なわれることが
望ましい。In this liquid jet recording head, after forming thermal energy generating means including the above-mentioned protective layer 5 on a substrate l, working chambers corresponding to each of the thermal energy generating means and liquid ejection ports communicating with the working chambers are formed. This is obtained by bonding a top plate 16 as illustrated in FIG. 9, which has grooves formed to provide grooves 21, to a substrate l. In addition, in Fig. 9, I
7 is a groove for forming a liquid flow path which is an action chamber, and 19 is a groove serving as a common liquid chamber for supplying recording liquid to the liquid flow path 17. A liquid supply pipe 20 as illustrated in FIG. 10, for example, is connected to the common liquid chamber 19 as necessary, and recording liquid is introduced from outside the head through the liquid supply pipe 20. Further, when joining the top plate 16, it is desirable that sufficient positioning be performed so that each of the thermal energy generating means corresponds to each side of the liquid flow path 17.
このような液体噴射記録ヘッドを作成するに際し、第3
図に例示の如き従来例の液体噴射記録ヘッドでは、眞述
の如く保護層5にピンホールなどの層欠陥を生じ易く、
特にステップ7には露出部分を生じ易いために、保護層
層厚を必要以上に厚く(通常は、電極厚みの2倍以上)
しなければならなかワた。しかしながら、本発明では、
保護層5が該層5となる上部層を形成後、該上部層を再
溶融し、必要に応じてL部層の積層と再溶融を繰り返し
実施して得られるため、上記ピンホールやクラックの発
生の原因となる膜質の不均一などの層欠陥を解消できる
のである。When creating such a liquid jet recording head, the third
In the conventional liquid jet recording head as illustrated in the figure, layer defects such as pinholes are likely to occur in the protective layer 5 as described above.
Particularly in step 7, the thickness of the protective layer is made thicker than necessary (usually at least twice the electrode thickness) because exposed parts are likely to occur.
I had to do it. However, in the present invention,
After forming the upper layer that will become the protective layer 5, the upper layer is remelted, and if necessary, the L layer is repeatedly laminated and remelted, so that no pinholes or cracks are generated. It is possible to eliminate layer defects such as non-uniformity in film quality, which are the cause of the occurrence.
また、上部層の積層と再溶融が必要に応じて繰り返し実
施されるため、保護層層厚を任意に設定することができ
、前述の如き層欠陥の解消やステップカバレージの向上
を目的とした保護層5の厚膜化に伴なう問題点が解消さ
れ、省電力は言うに及ばず、高耐久かつ高速熱応答性を
も有する液体噴射記録ヘッドを提供できるのである。ち
なみに、本発明では、保護層層厚は電極厚みの1.5倍
以下で十分であフた。In addition, since the lamination and remelting of the upper layer are repeated as necessary, the thickness of the protective layer can be set arbitrarily, and the protective layer can be used to eliminate layer defects as described above and improve step coverage. The problems associated with the thickening of the layer 5 are solved, and it is possible to provide a liquid jet recording head that not only saves power but also has high durability and high-speed thermal response. Incidentally, in the present invention, it is sufficient that the thickness of the protective layer is 1.5 times or less the thickness of the electrode.
本発明において、上記発熱抵抗層並びに電極は、それぞ
れ周知の原料を用い、例えば高周波(RF)スパッタリ
ング等のスパッタリング法、化学気相堆MI(CVD)
法、真空蒸着法等の周知の膜形成方法などを特に限定す
ることなく用いて形成される。また、上部層に関しても
、周知の原料および上記同様の膜形成方法などを用いて
形成することができるが、再溶融を考慮すると、例えば
低融点ガラス、具体的にはPbO−5i02系ガラス等
の加熱により比較的容易に溶融するりフロー性に優れた
ものが好ましいものである。より具体的には、リフロ一
温度が500℃〜800℃程度のものが好ましく、この
ようなりフロ一温度を有するものとして、例えば上記P
bO−5i02系ガラスの他、Ge02S 102 &
ガラス等が好ましく用いられるものである。In the present invention, the heat generating resistive layer and the electrodes are formed using well-known raw materials, for example, by a sputtering method such as radio frequency (RF) sputtering, or by chemical vapor deposition MI (CVD).
The film may be formed using a well-known film forming method such as a vacuum evaporation method or a vacuum evaporation method without particular limitation. The upper layer can also be formed using well-known raw materials and the same film forming method as above, but in consideration of remelting, it is necessary to use low melting point glass, specifically PbO-5i02 glass, etc. Those that melt relatively easily by heating and have excellent flowability are preferred. More specifically, it is preferable that the reflow temperature is about 500°C to 800°C.
In addition to bO-5i02 glass, Ge02S 102 &
Glass or the like is preferably used.
本発明における上部層の再溶融は、例えば加熱炉、レー
ザ光などの周知の加熱手段等を特に限定することなく用
いて行なわれる。レーザ光等の選択加熱が可能なものを
用いる場合には、上部層のみの加熱によって該層の再溶
融を行なってもよいし、加熱炉等の特には選択加熱を行
なえないものを用いる場合には、上部層を含む基板全体
の加熱によってもよい。このような上部層の再溶融は、
上部層の材質等に応じた所望の条件で行なえばよいので
あるが、リフロ一温度の高いものを用いる場合には1.
ヒ記七部層以外の電極等についても耐熱性の良好なもの
を用いることが好ましい。The remelting of the upper layer in the present invention is carried out using any well-known heating means, such as a heating furnace or laser light, without any particular limitation. When using a device that can selectively heat, such as a laser beam, the layer may be remelted by heating only the upper layer, or when using a device that cannot perform selective heating, such as a heating furnace. The heating may be performed by heating the entire substrate including the upper layer. Such remelting of the upper layer is
This can be done under desired conditions depending on the material of the upper layer, etc., but when using a material with a high reflow temperature, 1.
It is also preferable to use electrodes and the like other than those in the seventh layer described above that have good heat resistance.
以下、第4図(a)〜第4図(c)に基づいて、本発明
の液体噴射記録ヘッドの作成方法の一例を説明する。Hereinafter, an example of a method for manufacturing a liquid jet recording head of the present invention will be explained based on FIGS. 4(a) to 4(c).
まず、第4図(a)に示す如くに所望の基板l上に、例
えば真空蒸着あるいはスパッタリング法などを用いて発
熱抵抗層2を形成する。尚、本例では説明を簡略化する
ため特に示さなかったが、基板l上には例えば後述する
第5図乃至第6図に例示の如き蓄熱層9等の機能層を設
けてもよいものである。First, as shown in FIG. 4(a), a heat generating resistor layer 2 is formed on a desired substrate l using, for example, vacuum evaporation or sputtering. Although not particularly shown in this example to simplify the explanation, a functional layer such as a heat storage layer 9 as illustrated in FIGS. 5 and 6, which will be described later, may be provided on the substrate l. be.
次に、この発熱抵抗層2上に電極3.4を形成すべく、
該抵抗層2上に電極層を真空蒸着あるいはスパッタリン
グ法などを用いて所望の厚さに一様に形成する。その後
、周知のフォトリソ(フォトリソグラフィ)技法を用い
て該電極層および発熱抵抗層2にパターニングを施し、
基体1上に所望のパターンに形成された発熱抵抗層2お
よび電極3.4からなる熱エネルギー発生手段を得る。Next, in order to form an electrode 3.4 on this heating resistance layer 2,
An electrode layer is uniformly formed on the resistance layer 2 to a desired thickness by vacuum evaporation or sputtering. Thereafter, the electrode layer and the heating resistor layer 2 are patterned using a well-known photolithography technique,
A thermal energy generating means consisting of a heat generating resistive layer 2 and electrodes 3.4 formed in a desired pattern on a substrate 1 is obtained.
次いで、第4図(b)に示す如くに上記熱エネルギー発
生手段上に保護層を形成すべく、例えば前述の低融点ガ
ラス等からなる上部層5aを、上記同様の真空蒸着、ス
パッタリングあるいはCVD法などを用いて電極3.4
の約2倍程度の厚さに形成する。Next, as shown in FIG. 4(b), in order to form a protective layer on the thermal energy generating means, an upper layer 5a made of, for example, the above-mentioned low melting point glass is formed by vacuum evaporation, sputtering or CVD method similar to that described above. Electrode 3.4 using etc.
The thickness should be approximately twice that of the previous one.
その後、上部層5aを再溶融すべく該層5aをリフロ一
温度以上(例えば前述のPbO−5i02系ガラスであ
れば400℃程度以上)に加熱し、第4図(C)に示す
ように所望厚みに形成された保護層5を得る。Thereafter, in order to remelt the upper layer 5a, the layer 5a is heated to a temperature higher than one reflow temperature (for example, about 400°C or higher in the case of the above-mentioned PbO-5i02 glass), and as shown in FIG. A thick protective layer 5 is obtained.
尚、上記においては特に説明しなかったが、保護層5形
成時には第4図(b)に示したような凸部7aや凹部7
bかステップ7に生じ易い。このような凹凸は層欠陥の
発生原因となるばかりか、記録液への熱供給の阻害原因
ともなるので、除去することが望ましいのであるが、従
来法ではこのような凸部7aや凹部7bの有効除去は行
なえなかった。Although not specifically explained above, when forming the protective layer 5, convex portions 7a and concave portions 7 as shown in FIG. 4(b) are formed.
b. This tends to occur in step 7. Such irregularities not only cause layer defects but also obstruct heat supply to the recording liquid, so it is desirable to remove them. However, in conventional methods, such irregularities such as the convex portions 7a and concave portions 7b are removed. Effective removal could not be performed.
しかしながら、本発明では、上部層5aの積層後に該層
5aを再溶融するため、凸部7aが溶融除去されるのみ
ならず、該溶融によって凹部7bが埋められ、例えば第
4図(C)に示す如くステップ部分に上記のような凹凸
のない均一かつ良質の保護層5を層厚を厚くすることな
く形成することができるのである。However, in the present invention, since the upper layer 5a is remelted after being laminated, not only the convex portions 7a are melted and removed, but also the concave portions 7b are filled by the melting, as shown in FIG. 4(C), for example. As shown, it is possible to form a uniform and high quality protective layer 5 without any unevenness as described above on the step portion without increasing the layer thickness.
このような上部層5aの形成と再溶融は、一度行なえば
十分であるが、保護層5の機能を更に優れたものとする
等の目的で、該層5aの形成と再溶融を必要に応じて繰
り返し実施し、保護層5を形成することは一向に差しつ
かえないものである。もちろん、このような繰り返しを
行なう場合には、繰り返し形成される上部層5aのすべ
てを再溶融する必要はなく、再溶融は少なくも最下層の
上部層5aに行なえばよいものである。また、保護層5
は、単一材質のものとする必要はなく、例えば耐キャビ
テーション(熱エネルギー発生手段の駆動によって生じ
る気泡に起因する保護層5の耐触性のこと)性の向上を
はかる等の目的で、2種以上の材質からなる複層構成の
ものとしてもよいものである。Although it is sufficient to form and remelt the upper layer 5a once, the formation and remelting of the layer 5a may be performed as necessary to improve the functionality of the protective layer 5. There is absolutely no problem in forming the protective layer 5 by repeating the steps. Of course, when such repetition is performed, it is not necessary to remelt all of the repeatedly formed upper layer 5a, and it is sufficient to remelt at least the lowermost upper layer 5a. In addition, the protective layer 5
It is not necessary to use a single material. It may also have a multi-layer structure made of more than one type of material.
以上のようにして保護層5を形成した熱エネルギー発生
手段を存する基板1上に、前述の如き溝を有する第9図
に例示の如き天板16を十分な位置合わせを行なった後
に接合し、これに不図示の液供給系から供給される記録
液をヘッド内部に導入するための液供給管20を接続し
て、第1O図に例示の如き液体噴射記録ヘッドを完成す
る。After sufficient positioning, a top plate 16 as illustrated in FIG. 9 having grooves as described above is bonded to the substrate 1 having the thermal energy generating means on which the protective layer 5 is formed as described above. A liquid supply pipe 20 for introducing recording liquid supplied from a liquid supply system (not shown) into the head is connected to this to complete a liquid jet recording head as illustrated in FIG. 1O.
尚、上記においては特に説明しなかったが、液体吐出口
や液流路等の形成は、上記第9図に例示の如き溝付き板
によることは必ずしも必要ではなく、感光性樹脂のバタ
ーニング等により形成してもよい。また、本発明は、上
述したような複数の゛液体吐出口を有するマルチアレー
タイプの液体噴射記録ヘッドのみに限定されるものでは
なく、液体吐出[Iが1つのシングルアレータイプの液
体噴射記録ヘッドにも、もちろん適用できるものである
。Although not specifically explained above, the formation of liquid discharge ports, liquid flow paths, etc. does not necessarily require the use of a grooved plate as illustrated in FIG. It may be formed by Further, the present invention is not limited to a multi-array type liquid jet recording head having a plurality of liquid ejection ports as described above, but a single array type liquid jet recording head in which liquid ejection [I is one]. Of course, it can also be applied.
このように、本発明では、上部層の形成と再溶融、必要
に応じてこれを繰り返し実施して保護層を形成するため
、層厚が薄くても、ピンホールなどの層欠陥がなく、ま
たステップカバレージも良好な保護層を有する液体噴射
記録ヘッドを得ることができ、省電力は言うに及ばず、
高耐久かつ高速熱応答性をも達成し、更には記録品質に
も優れた液体噴射記録ヘッドを提供できるのである。In this way, in the present invention, the protective layer is formed by repeatedly forming and remelting the upper layer as necessary, so even if the layer thickness is thin, there are no layer defects such as pinholes, and It is possible to obtain a liquid jet recording head that has a protective layer with good step coverage, and it not only saves power but also
It is possible to provide a liquid jet recording head that achieves high durability and high-speed thermal response, and also has excellent recording quality.
以下に本発明の実施例を示す。 Examples of the present invention are shown below.
実施例
第1θ図に例示の液体噴射記録ヘッドを、以下のように
作成した。EXAMPLE The liquid jet recording head illustrated in FIG. 1θ was prepared as follows.
まず、第5図乃至第6図に示したようなSi板8に厚さ
5IIJIの5i02からなる熱酸化蓄熱層9を形成し
た基板1を作成し・た。この基板1上に、HfB2から
なる発熱抵抗層10をスパッタリング法により1300
人の厚みに形成した。First, a substrate 1 was prepared in which a thermally oxidized heat storage layer 9 made of 5I02 having a thickness of 5IIJI was formed on a Si plate 8 as shown in FIGS. 5 and 6. On this substrate 1, a heating resistor layer 10 made of HfB2 is formed with a thickness of 1300 nm by sputtering.
Formed to the thickness of a person.
次に発熱抵抗層IO上に、電極11.12となる耐熱性
の良好なMo層を真空蒸着法により約500OAの厚み
に形成した。その後、該Mo層および発熱抵抗層10に
フォトリソ工程によるバターニングを施し、熱発生部I
3の大きさが幅30−×長さ150μで、勤電極I+、
+2を含めた抵抗値が100Ωの回路パターンを有す
る熱エネルギー発生手段を基板上に形成した。尚、本例
では、熱エネルギー発生手段のそれぞれを選択加熱し得
るように、入力側の電極I2を個別電極としであるが、
帰路側の電極11は電極構成を簡略化するため共通電極
としである。Next, a Mo layer having good heat resistance and serving as electrodes 11 and 12 was formed on the heat generating resistor layer IO to a thickness of about 500 OA by vacuum evaporation. Thereafter, the Mo layer and the heat generating resistance layer 10 are patterned by a photolithography process, and the heat generating portion I
The size of 3 is width 30- x length 150μ, and the working electrode I+,
A thermal energy generating means having a circuit pattern having a resistance value of 100Ω including +2 was formed on the substrate. In this example, the input side electrode I2 is an individual electrode so that each of the thermal energy generating means can be selectively heated.
The electrode 11 on the return path is a common electrode to simplify the electrode configuration.
次に、第7図乃至第8図に示すように熱エネルギー発生
手段上に、5i02 : B2O3: PbO:ZnO
=5:15:64:16の組成比を有する低融点ガラス
(リフロ一温度;約600℃)からなる上部層14をl
(Fスパッタリング装置を用いて約5000人の厚さに
形成した。形成条件は、RFパワー、1kW、圧力;1
×lO°3Torrで行なった。Next, as shown in FIGS. 7 to 8, 5i02:B2O3:PbO:ZnO was placed on the thermal energy generating means.
The upper layer 14 is made of low melting point glass (reflow temperature: about 600°C) having a composition ratio of 5:15:64:16.
(It was formed to a thickness of approximately 5,000 mm using an F sputtering device.The forming conditions were: RF power, 1 kW, pressure;
The test was carried out at ×lO°3 Torr.
その後、圧力;lXl0°’ Torrに保持した真空
加熱炉中で約800℃、1時間の条件で−L部層14を
再溶融し、層厚約5000人の上記低融点ガラスからな
る第1の保護層14を形成した。尚、加熱温度は上部層
の急激な流動を生じることがなく、且つステップ部分の
凹凸がならされるまでの時間と言うことで、本例では上
記の値を採用した。Thereafter, the -L section layer 14 was remelted in a vacuum heating furnace maintained at a pressure of 1X10°' Torr at about 800°C for 1 hour to form a first layer made of the above-mentioned low melting point glass with a layer thickness of about 5000. A protective layer 14 was formed. In this example, the heating temperature was set to the above value so as not to cause rapid flow of the upper layer and to allow the time required for the unevenness of the step portion to be smoothed out.
その後、第1の保護層14の耐キャビテーション性を向
上させる目的で、該層14上にTaからなる第2の保護
層15を上記同様のRFスパッタリング装置を用いて約
5000人の厚さに形成し、第1および第2の全層厚が
約10000人の保護層を存する基板を得た。こうして
得られた保護層は、ステップカバレージが良好で、ピン
ホール等の層欠陥もない良質のものであった。Thereafter, in order to improve the cavitation resistance of the first protective layer 14, a second protective layer 15 made of Ta is formed on the layer 14 to a thickness of approximately 5000 mm using the same RF sputtering apparatus as described above. A substrate was obtained in which the first and second protective layers had a total thickness of about 10,000. The protective layer thus obtained was of good quality with good step coverage and no layer defects such as pinholes.
以上の様にして保護層が形成された基板に、前述した第
9図の如き溝を有する天板16(材質;ガラス)を十分
な位置合せを行なった後に接合し、これに更に液供給管
20を接続して第10図の如き液体噴射記録ヘッドを完
成した。After sufficient alignment, the top plate 16 (material: glass) having grooves as shown in FIG. 20 were connected to complete a liquid jet recording head as shown in FIG.
尚、第9図において、液流路!7(幅40μ、高さ40
μ)および共通液室19となる溝は、天板16にマイク
ロカッターを用いて切削形成した。また、第1θ図にお
いて、個別電極12および共通電極11には、ヘッド外
部から所望のパルス信号を印加するための電極リードを
有する不図示のリード基板が付設され、該信号に基づい
て記録が行なわれる。In addition, in Fig. 9, the liquid flow path! 7 (width 40μ, height 40
μ) and the grooves that will become the common liquid chamber 19 were formed by cutting the top plate 16 using a micro cutter. Further, in FIG. 1θ, a lead board (not shown) having an electrode lead for applying a desired pulse signal from outside the head is attached to the individual electrode 12 and the common electrode 11, and recording is performed based on the signal. It will be done.
このようにして作成された液体噴射記録ヘッドは、従来
のものよりも、
(1)消費電力において約50%程度の減少、(2)熱
応答性において約40%程度の向上、(3)従来よりも
短いパルス幅での駆動において耐久性が良好である
といった性能の向上が認められた。また、短幅パルスの
駆動による発泡安定性に基づいて、記録液の吐出安定性
が良化し、記録品質の向上がはかれた。The liquid jet recording head created in this way has the following advantages over conventional ones: (1) approximately 50% reduction in power consumption, (2) approximately 40% improvement in thermal response, and (3) approximately 40% improvement in thermal response. Improved performance, such as better durability, was observed when driving with a shorter pulse width. Furthermore, based on the foaming stability achieved by short-width pulse driving, the ejection stability of the recording liquid was improved, and recording quality was improved.
以上に説明したように本発明によって、液体噴射記録ヘ
ッドの省電力化は言うに及ばず、熱応答性の高速化、耐
久性の向上、吐出安定性の向上ならびに記録品位の向上
環をはかれるものである。As explained above, the present invention not only reduces the power consumption of the liquid jet recording head, but also enables faster thermal response, improved durability, improved ejection stability, and improved recording quality. It is.
第1図は、・本発明の方法を適用して得られる液体噴射
記録ヘッドの一例の部分平面図、第2図はi1図のX−
Y断面図、第10図は第1図乃至第2図に示した液体噴
射記録ヘッドの完成した状態における模式的斜視図、第
3図は従来例の液体噴射記録ヘッドの一例、第4図(a
)〜(C)は本発明の方法の一例を説明する図、第5図
乃至第8図は実施例で作成した液体噴射記録ヘットの作
成手順を説明する図であり、第5図乃至第6図には保護
層形成前の基板構成が、また第7図乃至第8図には保護
層形成後の基板構成が示されており、第9VAは第1O
図の液体噴射記録ヘッドに用いる天板の〜例である。
1:基板 2、lO:発熱抵抗層3.4、
II、12:電極FIG. 1 is a partial plan view of an example of a liquid jet recording head obtained by applying the method of the present invention, and FIG.
10 is a schematic perspective view of the liquid jet recording head shown in FIGS. 1 and 2 in a completed state, FIG. 3 is an example of a conventional liquid jet recording head, and FIG. a
) to (C) are diagrams for explaining an example of the method of the present invention, and FIGS. The figure shows the structure of the substrate before the formation of the protective layer, and FIGS. 7 to 8 show the structure of the substrate after the formation of the protective layer.
This is an example of a top plate used in the liquid jet recording head shown in the figure. 1: Substrate 2, lO: Heat generating resistance layer 3.4,
II, 12: Electrode
Claims (2)
液に吐出エネルギーを供給するための熱エネルギー発生
手段と、該手段上に該手段の保護層とを有し、該熱エネ
ルギー発生手段が発熱抵抗層および該発熱抵抗層に電気
的に接続する少なくとも一対の電極とからなる液体噴射
記録ヘッドの作成方法において、前記保護層の形成が、
該保護層となる上部層を前記熱エネルギー発生手段上に
積層後、該上部層を再溶融して行なわれるものであるこ
とを特徴とする液体噴射記録ヘッドの作成方法。(1) A liquid discharge port for discharging a recording liquid, a thermal energy generation means for supplying discharge energy to the recording liquid, and a protective layer for the means on the means, and the thermal energy generation In the method for producing a liquid jet recording head, the means includes a heat generating resistive layer and at least a pair of electrodes electrically connected to the heat generating resistive layer, in which forming the protective layer comprises:
A method for producing a liquid jet recording head, characterized in that the upper layer serving as the protective layer is laminated on the thermal energy generating means and then the upper layer is remelted.
する特許請求の範囲第1項に記載の液体噴射記録ヘッド
の作成方法。(2) The method for manufacturing a liquid jet recording head according to claim 1, wherein the upper layer is made of low melting point glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61045286A JPH0729432B2 (en) | 1986-03-04 | 1986-03-04 | How to make a liquid jet recording head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61045286A JPH0729432B2 (en) | 1986-03-04 | 1986-03-04 | How to make a liquid jet recording head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62202742A true JPS62202742A (en) | 1987-09-07 |
JPH0729432B2 JPH0729432B2 (en) | 1995-04-05 |
Family
ID=12715070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61045286A Expired - Fee Related JPH0729432B2 (en) | 1986-03-04 | 1986-03-04 | How to make a liquid jet recording head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0729432B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01195051A (en) * | 1988-01-29 | 1989-08-04 | Ricoh Co Ltd | Liquid jet recording head |
JP2008511130A (en) * | 2004-08-06 | 2008-04-10 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Sealing electrical contacts |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57193038A (en) * | 1981-03-16 | 1982-11-27 | Fairchild Camera Instr Co | Low melting temperature glass for coating aluminum mutual connector of integrated circuit device |
JPS59187870A (en) * | 1983-04-08 | 1984-10-25 | Canon Inc | Liquid injection recorder |
-
1986
- 1986-03-04 JP JP61045286A patent/JPH0729432B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57193038A (en) * | 1981-03-16 | 1982-11-27 | Fairchild Camera Instr Co | Low melting temperature glass for coating aluminum mutual connector of integrated circuit device |
JPS59187870A (en) * | 1983-04-08 | 1984-10-25 | Canon Inc | Liquid injection recorder |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01195051A (en) * | 1988-01-29 | 1989-08-04 | Ricoh Co Ltd | Liquid jet recording head |
JP2008511130A (en) * | 2004-08-06 | 2008-04-10 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Sealing electrical contacts |
Also Published As
Publication number | Publication date |
---|---|
JPH0729432B2 (en) | 1995-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62204952A (en) | Manufacture of liquid jet recording head | |
US7745307B2 (en) | Method of manufacturing an inkjet head through the anodic bonding of silicon members | |
JPS62202741A (en) | Preparation of liquid jet recording head | |
JPH09109392A (en) | Manufacture of ink jet recording head, ink jet recording head manufactured by such manufacturing method and ink jet recorder | |
JPS59143650A (en) | Liquid jet recording head | |
JPH02515A (en) | Ink jet head, base for the head, manufacture thereof and ink jet device using the head | |
JPS59194860A (en) | Liquid jet recording head | |
JPS62202742A (en) | Preparation of liquid jet recording head | |
JPS60208248A (en) | Liquid jet recording head | |
JPS59194868A (en) | Liquid jet recording head | |
GB2298395A (en) | Ink jet recording head | |
JPH08207281A (en) | Ink jet recording head | |
JP3461246B2 (en) | Heating element substrate for inkjet recording head | |
JPH07153603A (en) | Manufacture of heating resistor for ink jet and ink jet printer | |
JP2727988B2 (en) | Method of manufacturing ink jet print head | |
JP2855892B2 (en) | Method of manufacturing ink jet recording head | |
JPH09118018A (en) | Manufacture of ink-jet recording head substrate | |
JPH08118646A (en) | Ink jet head and production thereof | |
JP3461245B2 (en) | Heating element substrate for inkjet recording head | |
JP2001270120A (en) | Thermal ink jet printer head | |
JPS6198549A (en) | Manufacture of liquid jet recording head | |
JPS62220345A (en) | Liquid jet recording head | |
JPH0471711B2 (en) | ||
JPH08309988A (en) | Ink jet printing head and manufacture thereof | |
JPH02192950A (en) | Liquid jet recorder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |