[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62202582A - Integrated semiconductor laser - Google Patents

Integrated semiconductor laser

Info

Publication number
JPS62202582A
JPS62202582A JP20065085A JP20065085A JPS62202582A JP S62202582 A JPS62202582 A JP S62202582A JP 20065085 A JP20065085 A JP 20065085A JP 20065085 A JP20065085 A JP 20065085A JP S62202582 A JPS62202582 A JP S62202582A
Authority
JP
Japan
Prior art keywords
layer
mode
active layer
waveguide
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20065085A
Other languages
Japanese (ja)
Other versions
JPH0821749B2 (en
Inventor
Jun Osawa
大沢 潤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60200650A priority Critical patent/JPH0821749B2/en
Publication of JPS62202582A publication Critical patent/JPS62202582A/en
Publication of JPH0821749B2 publication Critical patent/JPH0821749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4037Edge-emitting structures with active layers in more than one orientation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To vary equivalent refractive indice Ne, i.e., propagation constants, of respective waveguides and make the waveguide with a larger equivalent refractive index have a smaller propagation loss alpha and obtain a high output light beam by a method wherein a distance between a layer which functions as an absorbing and reflecting element for a guided light and an active layer is gradually varied every one of parallel stripes. CONSTITUTION:A quintuplex-stripe part 14 is an inclined active layer which is formed with an inclination against a current blocking layer 2 so as to make a distance between the active region and the absorbing region (current blocking layer) varied every waveguide. By this injection of a current, the parts of the active layer above the stripe shape trenches 8 are turned into active regions and five elements make oscillation while being coupled with each other. As the larger the distance between the inclined active layer 14 and the current blocking layer 2, the smaller the influence of absorption and reflection of the layer 2 in the region where a P-type AlGaAs lower cladding layer 3 is relatively thin, an equivalent refractive index Ne is large and a propagation loss alpha is small. By the effect that light converges into the part where an equivalent refractive index Ne is large, the shape of the light distribution of a basic array mode is biased to the left and the propagation loss alpha becomes smaller toward the left side. In other words, the mode gain to the basic array mode becomes larger than the mode gain to a higher degree mode so that the lateral mode of the integrated laser can be controlled to be the basic mode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は集積型半導体レーザ(以下単に集積型レーザ
と記す)に関し、その横モード制御に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an integrated semiconductor laser (hereinafter simply referred to as an integrated laser), and relates to transverse mode control thereof.

〔従来の技術〕[Conventional technology]

第4図(a)は従来の集積型レーザの一例を示したもの
で、これはいわゆる内部ストライプレーザを5個並列配
置した構造となっている。この第4図と類似のレーザは
、電流阻止層が無く導波層を持つ点は異なるが、例えば
文献^ρp1. Phys、 Lett。
FIG. 4(a) shows an example of a conventional integrated laser, which has a structure in which five so-called internal stripe lasers are arranged in parallel. A laser similar to that shown in FIG. 4 differs in that it has a waveguide layer without a current blocking layer, but is described in, for example, the document ^ρp1. Phys, Lett.

43 pp、 1096−1098”に示されている。43 pp. 1096-1098''.

図において、1はp−GaAs基板、2はn −GaA
s電流阻止層、3はp −A ff1GaAs下クラッ
ド層、4はp−Aj!Ga八S活性へ、5はn−A/!
GaAs上クラッド層、6はn側電極、7はp側電極、
8は電流阻止層2を貫通するストライプ状の溝である。
In the figure, 1 is a p-GaAs substrate, 2 is an n-GaA substrate
s current blocking layer, 3 is p-A ff1GaAs lower cladding layer, 4 is p-Aj! To Ga8S activity, 5 is n-A/!
GaAs upper cladding layer, 6 is an n-side electrode, 7 is a p-side electrode,
Reference numeral 8 denotes a striped groove penetrating the current blocking layer 2 .

次に動作について説明する。p電極7に正、n電極6に
負の電圧をかけると、電流はストライプ状の溝8を通っ
て流れ、該溝上の活性層4に注入される。注入を増加す
ると活性層4のうちの溝上部の部分にキャリアの反転分
布が生じ(活性領域)誘導放出による発光が起きる。こ
のようにして生じた光は上記ストライプに沿って導波さ
れ、通常の半導体レーザの場合と同様の増幅・帰還作用
により発振に至る。第4図(bl、 (C1は、各々横
方向の等価的屈折率Ne及び導波光に対する伝搬損失α
を示したもので、これらの分布により5つの溝8上の活
性層4に同等で平行な導波路が形成されている。
Next, the operation will be explained. When a positive voltage is applied to the p-electrode 7 and a negative voltage is applied to the n-electrode 6, current flows through the striped grooves 8 and is injected into the active layer 4 above the grooves. When the injection is increased, population inversion of carriers occurs in the upper part of the groove in the active layer 4 (active region), and light emission occurs due to stimulated emission. The light thus generated is guided along the stripes, and oscillates due to amplification and feedback effects similar to those of a normal semiconductor laser. Figure 4 (bl, (C1 is the equivalent refractive index Ne in the lateral direction and the propagation loss α for guided light, respectively)
These distributions form equivalent and parallel waveguides in the active layer 4 on the five grooves 8.

ここで問題にしている集積型レーザは、上記の複数の導
波路の導波光の相互作用により、各エレメントが同じ波
長で一定の位相関係を保って発振する位相同期レーザで
ある。このために、各エレメント(ストライプ)の間隔
は数μm程度に狭くして光学的結合を図っている。この
種のレーザでは、光のコヒーレンスを保ちつつ、発光郡
全体の面積が増える分だけ高出力化できるという利点が
ある。
The integrated laser in question here is a phase-locked laser in which each element oscillates at the same wavelength while maintaining a constant phase relationship due to the interaction of guided light in the plurality of waveguides. For this purpose, the interval between each element (stripe) is narrowed to about several μm to achieve optical coupling. This type of laser has the advantage that the output can be increased by increasing the area of the entire light emitting group while maintaining optical coherence.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の集積型レーザは5個のエレメント(導波、路)が
等価に構成されているので、5個存在する集積型レーザ
全体としての固有モード(アレイモード)の伝搬定数の
差が小さく、また全ての導波路が同位相となる基本モー
ドに対するモード利得が必ずしも高くない。このため、
横モードが基本モードに制御されず、出射ビームが双峰
形又は複雑な形となるという欠点があつた。さらに、従
来の構造で高次モードを遮断するには、ストライプの幅
や間隔を1μm以下に作る微細加工を必要とするという
問題点があった。
Conventional integrated lasers are composed of five elements (waveguides, paths) equivalently, so the difference in propagation constant of the eigenmodes (array modes) of the five integrated lasers as a whole is small, and The mode gain for the fundamental mode in which all waveguides are in phase is not necessarily high. For this reason,
There was a drawback that the transverse mode was not controlled to the fundamental mode, and the output beam had a bimodal or complicated shape. Furthermore, in order to block higher-order modes with the conventional structure, there is a problem in that microfabrication is required to make the width and spacing of the stripes 1 μm or less.

この発明は上記のような問題点を解消するためになされ
たもので、集積型レーザのアレイモードを基本モードに
制御することによって、出射ビームを水平方向半値幅の
狭い単峰形に制御するとともに、高い光出力の得られる
集積型レーザを得ることを目的とする。
This invention was made to solve the above problems, and by controlling the array mode of the integrated laser to the fundamental mode, the output beam is controlled to be a single peak with a narrow half width in the horizontal direction. The purpose of this study is to obtain an integrated laser with high optical output.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る集積型レーザは、導波光に対して吸収・
反射体として働く層と活性層との間隔を、並置されたス
トライプ毎に漸次変化させることにより、各導波路の等
価屈折率Ne、即ち伝搬定数を変えると共に、等価屈折
率が大きい導波路ほど伝搬損失αが小さくなるようにし
たものである。
The integrated laser according to the present invention absorbs and absorbs guided light.
By gradually changing the distance between the layer that acts as a reflector and the active layer for each stripe arranged in parallel, the equivalent refractive index Ne of each waveguide, that is, the propagation constant, is changed, and the waveguide with a larger equivalent refractive index has a higher propagation rate. This is designed to reduce the loss α.

〔作用〕[Effect]

この発明においては、各導波路の単体としての伝搬定数
が異なるため、集積化した場合のアレイモードの各伝搬
定数の差が大きくなり、高次モードが遮断されるストラ
イプ間隔が大きくなる。また、基本モードに対する伝搬
損失が最も小さくなるため、注入電流に差がない場合で
も、基本モードのモード利得が最も大きくなり、発振の
横モードは基本モードに制御される。
In this invention, since each waveguide has a different propagation constant as a single unit, the difference in the propagation constant of each array mode when integrated becomes large, and the stripe interval at which higher-order modes are blocked becomes large. Further, since the propagation loss for the fundamental mode is the smallest, even if there is no difference in the injection current, the mode gain of the fundamental mode is the largest, and the transverse mode of oscillation is controlled to the fundamental mode.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、第4図と同一符号は同−又は相当部分を示
す。11は(100)面からストライプと直角方向に傾
いた面方位を持ちp −GaAsから成る(l OO)
オフ基板、14は5連のストライプ部で電流阻止層2に
対して傾斜して形成され、各導波路における活性領域と
吸収領域(電流阻止層)との間隔が異なるようにした傾
斜活性層である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, the same reference numerals as in FIG. 4 indicate the same or corresponding parts. 11 is made of p -GaAs (l OO) with a plane orientation tilted perpendicular to the stripe from the (100) plane.
The off-substrate 14 is a slanted active layer which is formed in five series of stripes and is inclined with respect to the current blocking layer 2, and the interval between the active region and the absorption region (current blocking layer) in each waveguide is different. be.

この構造の具体的実現方法は次の通りである。A specific method for realizing this structure is as follows.

第2図(a)は(100)オフ基板11とストライプ8
の方位関係を示す斜視図である。p −GaAs基板1
1と電流阻止層2は、<100>方向からく011〉方
向側へ微小角度θ(く5°)だけずれた面を持ち、スト
ライプ8は<011>方向と直角の<011>方向に並
行である。同図(blは、下クラッド層3と傾斜活性層
14を上記基板■1と電流阻止層2上に液相成長した後
の(011)面断面構式図である。特異面である、(1
00)面からずれた面の上にはミクロな段差が存在し、
この段差が<Ol 1>方向に移動することによって成
長が起きる。このため、成長層が薄い間はストライプ部
の両側で比較的大きな層厚の差が生じ、結果的に、スト
ライプ部の活性層が傾斜して形成される。なお第2図中
の21は基板11の法線を示す。
FIG. 2(a) shows the (100) off-board 11 and stripe 8.
FIG. p-GaAs substrate 1
1 and the current blocking layer 2 have planes that are shifted from the <100> direction to the 011> direction by a small angle θ (5°), and the stripes 8 are parallel to the <011> direction, which is perpendicular to the <011> direction. It is. The figure (bl) is a schematic cross-sectional view of the (011) plane after the lower cladding layer 3 and the graded active layer 14 are grown in liquid phase on the substrate 1 and the current blocking layer 2. 1
00) There is a microscopic step on the surface that deviates from the surface,
Growth occurs when this step moves in the <Ol 1> direction. For this reason, while the grown layer is thin, a relatively large difference in layer thickness occurs on both sides of the stripe portion, and as a result, the active layer in the stripe portion is formed to be inclined. Note that 21 in FIG. 2 indicates a normal line to the substrate 11.

次に作用効果について説明する。電流注入により、スト
ライプ状の溝8上に位置する活性層が活性領域となって
、5個のエレメントが互いに結合しつつ発振する点は、
第4図の従来例の場合と同じである。相違点は各エレメ
ントの等価的屈折率Neと伝搬損失αであり、第1図(
b)、 (C)に、第4図に対応して横方向のNe及び
αの分布を示している。p−AlGaAs下クラッド層
りがある程度薄い(〈1μm)範囲では、傾斜活性層1
4が電流阻止層2から遠い程、該層2による吸収・反射
の影響が少ないために、等価的屈折率Neは大きく伝搬
損失αは小さくなる。第1図(b)、 (C)の分布の
非対称性はこのような作用に基づいている。従来例のよ
うに各導波路が等価の場合の基本アレイモードは、中央
が最大で左右対称形の光分布となるが、等価的屈折率N
eが高い部分に光が集中する作用により、この実施例の
基本アレイモードは光分布が左側に片寄った形状となり
、かつ同図tc+に見るように、左側程伝搬損失αは小
さい。即ち、基本アレイモードに対するモニド利得が、
高次モードに対する利得より大きくなって、集積型レー
ザの横モードは基本モードに制御できる。
Next, the effects will be explained. By current injection, the active layer located on the striped groove 8 becomes an active region, and the five elements are coupled to each other and oscillate.
This is the same as the conventional example shown in FIG. The difference is the equivalent refractive index Ne and propagation loss α of each element, as shown in Figure 1 (
b) and (C) show the distributions of Ne and α in the lateral direction, corresponding to FIG. When the p-AlGaAs lower cladding layer is thin (<1 μm) to a certain extent, the graded active layer 1
The farther the layer 4 is from the current blocking layer 2, the smaller the influence of absorption and reflection by the layer 2, the larger the equivalent refractive index Ne and the smaller the propagation loss α. The asymmetry of the distributions in Figures 1(b) and 1(C) is based on this effect. When each waveguide is equivalent as in the conventional example, the fundamental array mode has a symmetrical light distribution with the maximum at the center, but the equivalent refractive index N
Due to the effect that light is concentrated in the portion where e is high, the light distribution in the fundamental array mode of this embodiment is biased to the left, and as shown in tc+ in the figure, the propagation loss α is smaller toward the left. That is, the monido gain for the basic array mode is
The transverse mode of the integrated laser can be controlled to the fundamental mode, with the gain greater than the gain for higher-order modes.

従って本実施例では、従来のようにストライプの幅や間
隔を微細加工することなしに、容易に高次モードを遮断
することができる。また基本モード発振が選択されるの
で、水平方向の出射角が非常に狭く、かつ高出力の光ビ
ームが得られる。
Therefore, in this embodiment, higher-order modes can be easily blocked without finely processing the stripe width and spacing as in the conventional method. Furthermore, since fundamental mode oscillation is selected, a light beam with a very narrow horizontal emission angle and high output can be obtained.

なお、上記実施例ではp−GaAs基板として、(10
0)からずれた面方位のウェハを利用したものを示した
が、第3図で示すように多連ストライプ部の片側が厚い
電流阻止層32を用いてもよい。この場合も、上記実施
例の場合と同様に、上記構造の上へ液相成長によって下
クラッド層3、活性層14及び上クラッド層5を順次成
長すれば、ストライプ部上で傾斜した活性層14を形成
することができ、上記実施例と同様の作用効果を奏する
In the above example, the p-GaAs substrate was (10
0), a current blocking layer 32 having a thick one side of the multiple stripe portion may be used as shown in FIG. In this case as well, if the lower cladding layer 3, the active layer 14, and the upper cladding layer 5 are sequentially grown on the above structure by liquid phase growth, the active layer 14 tilted on the stripe portion can be formed, and the same effects as in the above embodiment can be achieved.

また、上記各実施例では吸収体として作用する層が電流
阻止層を兼ねている内部ストライプ型レーザの場合につ
いて説明したが、電流阻止の機能を持たないCS P 
(Channeled−Substrate−Plan
ar)型レーザであってもよく、上記実施例と同様の効
果を奏する。
Further, in each of the above embodiments, the case of an internal stripe type laser in which the layer acting as an absorber also serves as a current blocking layer has been described, but a CS P laser that does not have a current blocking function has been described.
(Channeled-Substrate-Plan
An ar) type laser may also be used, and the same effects as in the above embodiments can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る集積型半導体レーザによ
れば、各エレメントの等価的屈折率、即ち伝搬定数と、
伝搬損失が相異なるように構成したので、高次の固有モ
ードを遮断しやすく、また、基本モード発振が選択され
るので、水平方向の出射角が非常に狭く、かつ高出力の
光ビームが得られる効果がある。
As described above, according to the integrated semiconductor laser according to the present invention, the equivalent refractive index of each element, that is, the propagation constant,
Since the structure has different propagation losses, it is easy to block higher-order eigenmodes, and since the fundamental mode oscillation is selected, a high-output optical beam with a very narrow horizontal emission angle can be obtained. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はこの発明の一実施例による集積型半導体
レーザの断面正面図、第1図(b)、 (C)はそれぞ
実施例による集積型半導体レーザの製造法を示す斜視図
、断面正面図、第3図は他の製造法を説明するための断
面正面図、第4図(a)は従来例の集積型半導体レーザ
の断面正面図、第4図(b)、 (C)はそれぞれ該レ
ーザの等価的屈折率分布、伝搬損失の分布を示す図であ
る。 11・・・(100)オフ基板、14・・・傾斜活性層
、2.32・・・電流阻止層(吸収層)。 なお図中同一符号は同−又は相当部分を示す。 出願人 工業技術院長  等々力  達第1図 (C) 第2図 (b) 第3図 32:πノ、茫MJI:看 第4図 手続補正書(自発) 昭和//年/−2−月ノユ日
FIG. 1(a) is a cross-sectional front view of an integrated semiconductor laser according to an embodiment of the present invention, and FIGS. 1(b) and 1(C) are perspective views showing a method of manufacturing the integrated semiconductor laser according to the embodiment. , FIG. 3 is a cross-sectional front view for explaining another manufacturing method, FIG. 4(a) is a cross-sectional front view of a conventional integrated semiconductor laser, FIG. 4(b), (C ) are diagrams showing the equivalent refractive index distribution and propagation loss distribution of the laser, respectively. 11... (100) off-substrate, 14... graded active layer, 2.32... current blocking layer (absorption layer). Note that the same reference numerals in the figures indicate the same or equivalent parts. Applicant: Director of the Agency of Industrial Science and Technology Todoroki Datsu Figure 1 (C) Figure 2 (b) Figure 3 32: πノ, 茫 MJI: See Figure 4 procedural amendment (voluntary) Showa//2016/-2/2011 Noyu Day

Claims (4)

【特許請求の範囲】[Claims] (1)2つ以上の導波路を隣接して設けた位相同期集積
型半導体レーザにおいて、各導波路は相互に異なる単体
としてみた場合の基本モードに対応する伝搬定数を有し
、かつ伝搬定数が高い導波路ほど低い伝搬損失を持つこ
とを特徴とする集積型半導体レーザ。
(1) In a phase-locked integrated semiconductor laser in which two or more waveguides are provided adjacently, each waveguide has a propagation constant corresponding to a fundamental mode when viewed as a mutually different single unit, and the propagation constant is An integrated semiconductor laser is characterized in that the higher the waveguide, the lower the propagation loss.
(2)各導波路における活性領域と吸収領域との間隔が
それぞれ異なるよう、活性層が吸収層に対して傾斜して
形成されていることを特徴とする特許請求の範囲第1項
記載の集積型半導体レーザ。
(2) The integrated circuit according to claim 1, wherein the active layer is formed at an angle with respect to the absorption layer so that the distance between the active region and the absorption region in each waveguide is different. type semiconductor laser.
(3)上記傾斜した活性層は、上記導波路方向を軸とす
る回転方向に、微小角度だけ{100}からずれた面方
位を持つ{100}オフ基板上に液相成長してなるもの
であることを特徴とする特許請求の範囲第2項記載の集
積型半導体レーザ。
(3) The tilted active layer is formed by liquid phase growth on a {100} off-substrate having a plane orientation that deviates from {100} by a small angle in the direction of rotation around the waveguide direction. An integrated semiconductor laser according to claim 2, characterized in that:
(4)上記傾斜した活性層は、上記複数の導波路の両側
で層厚差を有する吸収層上に液相成長してなるものであ
ることを特徴とする特許請求の範囲第2項記載の集積型
半導体レーザ。
(4) The inclined active layer is formed by liquid phase growth on an absorption layer having a difference in layer thickness on both sides of the plurality of waveguides. Integrated semiconductor laser.
JP60200650A 1985-09-12 1985-09-12 Integrated semiconductor laser Expired - Lifetime JPH0821749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60200650A JPH0821749B2 (en) 1985-09-12 1985-09-12 Integrated semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60200650A JPH0821749B2 (en) 1985-09-12 1985-09-12 Integrated semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62202582A true JPS62202582A (en) 1987-09-07
JPH0821749B2 JPH0821749B2 (en) 1996-03-04

Family

ID=16427927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60200650A Expired - Lifetime JPH0821749B2 (en) 1985-09-12 1985-09-12 Integrated semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0821749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11398715B2 (en) * 2018-02-26 2022-07-26 Panasonic Holdings Corporation Semiconductor light emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611076A (en) * 1984-06-13 1986-01-07 Matsushita Electric Ind Co Ltd Semiconductor laser array device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611076A (en) * 1984-06-13 1986-01-07 Matsushita Electric Ind Co Ltd Semiconductor laser array device

Also Published As

Publication number Publication date
JPH0821749B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
RU2142665C1 (en) Injection laser
US4792962A (en) A ring-shaped resonator type semiconductor laser device
JPH0211024B2 (en)
JPS62202582A (en) Integrated semiconductor laser
JPS62282483A (en) Semiconductor laser array device
JP2532449B2 (en) Semiconductor laser device
JP2846668B2 (en) Broad area laser
US4764937A (en) Semiconductor laser array device
JPS6257275A (en) Semiconductor laser array device
JPS58225681A (en) Semiconductor laser element
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS5992588A (en) Mono-axial mode semiconductor laser
JPH01238082A (en) Semiconductor laser
JPH02305487A (en) Semiconductor laser
JPS6230391A (en) Integrated semiconductor laser
JPS6194387A (en) Semiconductor laser array device
JPS60227490A (en) Semiconductor laser
JPH05206567A (en) Semiconductor laser
JPS58207691A (en) Semiconductor laser element
JPS63300586A (en) Semiconductor laser device
JPH01282883A (en) Semiconductor laser device
JPS62213289A (en) Semiconductor laser
JPS581556B2 (en) mode seigiyo hand tie laser
JPS62159489A (en) Semiconductor laser element
JPS6261384A (en) High-power semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term