[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6220711B2 - - Google Patents

Info

Publication number
JPS6220711B2
JPS6220711B2 JP54167327A JP16732779A JPS6220711B2 JP S6220711 B2 JPS6220711 B2 JP S6220711B2 JP 54167327 A JP54167327 A JP 54167327A JP 16732779 A JP16732779 A JP 16732779A JP S6220711 B2 JPS6220711 B2 JP S6220711B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
insulating film
film
platinum
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54167327A
Other languages
Japanese (ja)
Other versions
JPS5690561A (en
Inventor
Akira Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16732779A priority Critical patent/JPS5690561A/en
Publication of JPS5690561A publication Critical patent/JPS5690561A/en
Publication of JPS6220711B2 publication Critical patent/JPS6220711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置特にベース電極とエミツ
タ電極との間隔を極端に短くして抵抗を減少させ
たバイポーラトランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, particularly a bipolar transistor in which the distance between a base electrode and an emitter electrode is extremely shortened to reduce resistance.

バイポーラトランジスタのベース抵抗は集積度
を上げるべくパターンを微細化する程大きくなる
傾向にあり、一方ベース抵抗はトランジスタ動作
速度を制限するからかゝる点では小さいのが望ま
しい。本発明はエミツタ領域の可及的近傍におい
てかつベース領域の全面に亘つてベース電極が被
着するようにし、かつ各種パターニングをセルフ
アラインで実行可能なようにし、こうしてベース
抵抗が極めて小さい高集積化可能バイポーラトラ
ンジスタを提供しようとするものである。本発明
の半導体装置の製造方法は半導体基板のフイール
ド領域に絶縁膜を、また活性領域にベース拡散を
行ない、該基板上に不純物ドープの多結晶シリコ
ンを、またその上に絶縁膜を被着し、かつパター
ニングしたフオトレジスト膜を用いてこれらを選
択エツチングしてエミツタ形成領域上に位置する
順テーパ状の多結晶シリコンおよび絶縁膜部分を
残し、次いでベース電極となる多結晶シリコンの
蒸着を行ない、その後前記フオトレジスト膜を除
去して該膜上の多結晶シリコン層をリフトオフ
し、かゝる状態で、全面に絶縁膜を被着しまたイ
オン打込みを行ないかつ熱処理して前記不純物ド
ープの多結晶シリコンを不純物源とするエミツタ
拡散を行ない、次に前記イオン打込みした絶縁物
のエツチングを行なつて前記エミツタ領域上の順
テーパ状の多結晶シリコンの周囲の絶縁膜のみを
残し、またマスクを使用して該エツチングで露出
した前記ベース電極となる多結晶シリコンのパタ
ーニングを行ない、次いで白金を被着し、かつ熱
処理し、次いで白金のエツチングを行なつて白金
シリサイドとなつた前記多結晶シリコン上の白金
を残して前記絶縁膜上の白金膜を除去することを
特徴とするが、次に図面を参照しながらこれを詳
細に説明する。
The base resistance of a bipolar transistor tends to increase as the pattern becomes finer in order to increase the degree of integration.On the other hand, since the base resistance limits the transistor operating speed, it is desirable to have a small base resistance. The present invention allows the base electrode to be deposited as close as possible to the emitter region and over the entire surface of the base region, and enables various patterning to be performed in self-alignment, thereby achieving high integration with extremely low base resistance. The present invention is intended to provide a possible bipolar transistor. The method for manufacturing a semiconductor device of the present invention includes forming an insulating film in the field region of a semiconductor substrate, performing base diffusion in the active region, depositing impurity-doped polycrystalline silicon on the substrate, and depositing an insulating film thereon. , and selectively etching them using a patterned photoresist film to leave a tapered polycrystalline silicon and insulating film portion located on the emitter formation region, and then vapor depositing polycrystalline silicon that will become a base electrode, Thereafter, the photoresist film is removed and the polycrystalline silicon layer on the film is lifted off. In this state, an insulating film is deposited on the entire surface, and ion implantation and heat treatment are performed to form the impurity-doped polycrystalline silicon layer. Emitter diffusion is performed using silicon as an impurity source, and then the ion-implanted insulator is etched to leave only the insulating film around the tapered polycrystalline silicon on the emitter region, and a mask is used. Then, the polycrystalline silicon exposed by the etching, which will become the base electrode, is patterned, and then platinum is deposited and heat treated, and then the platinum is etched to form platinum silicide on the polycrystalline silicon. The method is characterized in that the platinum film on the insulating film is removed while leaving the platinum, and this will be described in detail below with reference to the drawings.

本発明では先ず第1図aに示すようにn型シリ
コン半導体基板10にアイソプレーナ等の方法に
より酸化膜12を作り、該酸化膜で囲まれた活性
領域に基板と反対の導電型本例ではp型の不純物
を拡散してベース電極14を作る。このn型シリ
コン基板10はバイポーラトランジスタのコレク
タ領域となる。次にbに示すようにn型不純物の
ヒ素(As)またはリン(P)をドープされた
3000〜4000Åの厚みの多結晶シリコン層16を被
着し、その表面にCVD法により1000Å程度の厚
みの二酸化シリコン膜18を被着し、更にその上
にフオトレジストを塗布しかつパターニングして
エミツタ形成位置に対応する部分に被着したレジ
スト膜20を作る。このレジスト膜20をマスク
にして二酸化シリコンおよび多結晶シリコンのエ
ツチングを行ない、第1図cに示す状態にする。
この状態で多結晶シリコンの蒸着を行なうと、第
1図dに示す如くなる。22a〜22cが該蒸着
により形成された多結晶シリコン膜である。次い
でp型不純物のほう素などを全面にイオン打込み
し、多結晶シリコン膜の導電性を高める。この多
結晶シリコン膜22a,22cはベース電極とな
るものであり、蒸着時にすでにp型不純物がドー
プされているなら上記イオン打込みは不要であ
る。その後硫酸ボイル又はプラズマアツシヤーに
よりレジスト膜20を除去すると、その上の多結
晶シリコン膜22bはリフトオフ法の原理で除去
され、第1図eに示すように多結晶シリコン膜2
2a,22cが残る。この状態でCVD法により
二酸化シリコンを成長させ、二酸化シリコン層2
4を形成する。CVD法による二酸化シリコンの
成長では、蒸着法と異なり、二酸化シリコンは先
細の多結晶シリコン16の上に庇状に突出してい
る二酸化シリコン膜18の下部のくぼみにも侵入
し、全体を完全に包む状態となる。この状態で
900〜1000℃の温度で熱処理し、n型不純物を含
む多結晶シリコン16から該n型不純物をベース
領域14へ拡散させ、エミツタ領域26を作る。
このときp型不純物ドープの多結晶シリコン層2
2a,22cからベース領域14への不純物拡散
があるが、これは該ベース領域の不純物濃度を高
めるだけであり、支障はない。更に再びほう素の
イオン打込みを行ない、表面の二酸化シリコン膜
24をエツチングされやすくする。しかし二酸化
シリコン膜18の蔭になつた二酸化シリコン膜2
4部分(24aで示す)は該膜18で遮蔽される
からイオン打込みは行なわれず、エツチング特性
に変化はない。この状態でフツ酸などのエツチン
グ液で二酸化シリコンのエツチングを行なうと第
1図fに示すようにイオン打込みされた二酸化シ
リコン膜部分24,18は除去され、くぼみに入
つた二酸化シリコン膜部分24aが残る。次いで
マスクを使用してエツチングを行ない、多結晶シ
リコン22a,22bのうち余分の部分を除去す
る。然るのち白金(Pt)をスパツタし、その後熱
処理する。この熱処理で、多結晶シリコン22
a,22c,16上に被着した白金はシリコンと
反応して白金シリサイドを作り、一方、二酸化シ
リコン24a上に被着した白金はそのまゝにとど
まる。そこで白金に対するエツチングを行なうと
第1図gに示すように白金シリサイド膜28a,
28b,28cは残るが、二酸化シリコン24a
上の白金は除去される。
In the present invention, first, as shown in FIG. 1a, an oxide film 12 is formed on an n-type silicon semiconductor substrate 10 by a method such as isoplanar, and an active region surrounded by the oxide film is formed with a conductivity type opposite to that of the substrate. A base electrode 14 is formed by diffusing p-type impurities. This n-type silicon substrate 10 becomes a collector region of a bipolar transistor. Next, as shown in b, it is doped with n-type impurity arsenic (As) or phosphorus (P).
A polycrystalline silicon layer 16 with a thickness of 3000 to 4000 Å is deposited, a silicon dioxide film 18 with a thickness of about 1000 Å is deposited on the surface of the polycrystalline silicon layer 16 by a CVD method, and a photoresist is further applied and patterned to form emitters. A resist film 20 is made that adheres to a portion corresponding to the formation position. Using this resist film 20 as a mask, silicon dioxide and polycrystalline silicon are etched to form the state shown in FIG. 1c.
If polycrystalline silicon is deposited in this state, the result will be as shown in FIG. 1d. 22a to 22c are polycrystalline silicon films formed by the vapor deposition. Next, ions of p-type impurities such as boron are implanted into the entire surface to increase the conductivity of the polycrystalline silicon film. These polycrystalline silicon films 22a and 22c serve as base electrodes, and if they are already doped with p-type impurities at the time of vapor deposition, the ion implantation is not necessary. After that, when the resist film 20 is removed by sulfuric acid boiling or plasma assher, the polycrystalline silicon film 22b thereon is removed by the principle of lift-off method, and the polycrystalline silicon film 22b is removed as shown in FIG. 1e.
2a and 22c remain. In this state, silicon dioxide is grown using the CVD method to form a silicon dioxide layer 2.
form 4. When silicon dioxide is grown by the CVD method, unlike the vapor deposition method, silicon dioxide also invades the depressions at the bottom of the silicon dioxide film 18 that protrudes like an eave over the tapered polycrystalline silicon 16, completely enveloping the entire surface. state. in this state
Heat treatment is performed at a temperature of 900 to 1000° C. to diffuse the n-type impurity from the polycrystalline silicon 16 containing the n-type impurity into the base region 14, thereby forming the emitter region 26.
At this time, p-type impurity-doped polycrystalline silicon layer 2
Although there is impurity diffusion from 2a and 22c to the base region 14, this only increases the impurity concentration in the base region and is not a problem. Further, boron ion implantation is performed again to make the silicon dioxide film 24 on the surface more easily etched. However, the silicon dioxide film 2 is hidden behind the silicon dioxide film 18.
Since the four portions (indicated by 24a) are shielded by the film 18, ion implantation is not performed and there is no change in the etching characteristics. In this state, when silicon dioxide is etched with an etching solution such as hydrofluoric acid, the ion-implanted silicon dioxide film portions 24 and 18 are removed, and the silicon dioxide film portion 24a that has entered the recess is removed, as shown in FIG. remain. Etching is then performed using a mask to remove excess portions of polycrystalline silicon 22a and 22b. After that, platinum (Pt) is sputtered on and then heat treated. With this heat treatment, polycrystalline silicon 22
The platinum deposited on a, 22c, 16 reacts with the silicon to form platinum silicide, while the platinum deposited on silicon dioxide 24a remains intact. Therefore, when etching is performed on platinum, a platinum silicide film 28a, as shown in FIG.
28b and 28c remain, but silicon dioxide 24a
The upper platinum is removed.

第2図aは第1図gの状態の素子つまりバイポ
ーラトランジスタを上から見た状態を示す。ベー
ス領域14の周囲は厚い酸化膜12が囲んでお
り、このベース領域に2叉状のベース電極22
a,22cが取付けられている。ベース電極22
a,22cは図面下方で1つになつて引出されて
おり(第1図fで説明した多結晶シリコン膜22
a,22cの不要部分の除去とは、該2叉状多結
晶シリコン膜の主として外側部分を除去するため
のもの)、そしてその2叉状部分の中に密嵌状態
でエミツタ電極26bが入り込んでいる。第2図
bは第1図gの要部のみを示したものであるが、
この第2図a,bを見れば明らかなようにベース
電極22a,22cはベース領域14のエミツタ
領域26を除くほヾ全表面にオーム接触してお
り、従つてベース抵抗は極めて小になる。従来の
バイポーラトランジスタのベース電極配線は第3
図に示すようにその多結晶シリコン電極22部分
がベースコンタクト窓14aにおいてベース領域
14とオーム接触するに過ぎず、該電極22を引
出線としてアルミニウムのベース配線が酸化膜1
2上において該電極22と接続することによりベ
ース電極配線が完成する形式であるので、ベース
領域内での抵抗、電極22部分の抵抗、電極22
とベース領域14との接触部の抵抗等、多くの抵
抗が入ることになる。
FIG. 2a shows the device in the state shown in FIG. 1g, that is, a bipolar transistor viewed from above. The base region 14 is surrounded by a thick oxide film 12, and a bifurcated base electrode 22 is formed in this base region.
a, 22c are attached. Base electrode 22
a and 22c are pulled out as one at the bottom of the drawing (the polycrystalline silicon film 22 explained in FIG.
Removal of unnecessary portions a and 22c is mainly to remove the outer portions of the bifurcated polycrystalline silicon film), and the emitter electrode 26b is tightly fitted into the bifurcated portions. There is. Figure 2b shows only the main part of Figure 1g,
As is clear from FIGS. 2a and 2b, the base electrodes 22a and 22c are in ohmic contact with almost the entire surface of the base region 14 except for the emitter region 26, so that the base resistance is extremely small. The base electrode wiring of conventional bipolar transistors is the third
As shown in the figure, the polycrystalline silicon electrode 22 portion is only in ohmic contact with the base region 14 at the base contact window 14a, and the aluminum base wiring is connected to the oxide film 1 using the electrode 22 as a lead wire.
Since the base electrode wiring is completed by connecting the electrode 22 on the base area, the resistance within the base area, the resistance of the electrode 22 portion, and the electrode 22
A large amount of resistance will be introduced, such as resistance at the contact portion between the base region 14 and the base region 14.

また本発明の製造工程はベース電極配線、エミ
ツタ電極配線、酸化膜24aの形成、白金膜のパ
ターニングなど多くの工程がセルフアラインで行
なわれ、従つて高集積度微細パターンの形成が可
能である。
Further, in the manufacturing process of the present invention, many steps such as base electrode wiring, emitter electrode wiring, formation of the oxide film 24a, and patterning of the platinum film are performed in a self-aligned manner, thus making it possible to form highly integrated fine patterns.

以上説明したように本発明によればベース抵抗
の小さい、微細パターンの高集積度化可能バイポ
ーラトランジスタが得られ、LSI用素子などに好
適である。
As described above, according to the present invention, a bipolar transistor with a small base resistance and a fine pattern that can be highly integrated can be obtained, and is suitable for LSI devices and the like.

なお実施例ではn型基板使用の場合を例に挙げ
たが、勿論p,n導電型はこの逆にしてもよい。
In the embodiment, an example is given in which an n-type substrate is used, but of course the reverse may be used for p and n conductivity types.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜gは本発明の製造方法の1実施例を
示す工程図、第2図a,bは本発明によるトラン
ジスタベース部の平面図および断面図、第3図は
従来のトランジスタのベース部の概平面図および
断面図である。 図面で10は半導体基板、12はフイールド絶
縁膜、14はベース領域、16は不純物ドープの
多結晶シリコン層、18は絶縁膜、20はフオト
レジスト膜、22a,22cはベース電極となる
多結晶シリコン層、24は絶縁膜、26はエミツ
タ領域、28a〜28cは白金シリサイド層であ
る。
1A to 1G are process diagrams showing one embodiment of the manufacturing method of the present invention, FIGS. 2A and 2B are a plan view and a sectional view of a transistor base portion according to the present invention, and FIG. 3 is a conventional transistor base. FIG. In the drawing, 10 is a semiconductor substrate, 12 is a field insulating film, 14 is a base region, 16 is an impurity-doped polycrystalline silicon layer, 18 is an insulating film, 20 is a photoresist film, and 22a and 22c are polycrystalline silicon serving as base electrodes. 24 is an insulating film, 26 is an emitter region, and 28a to 28c are platinum silicide layers.

Claims (1)

【特許請求の範囲】 1 半導体基板のフイールド領域に絶縁膜を、ま
た活性領域にベース拡散を行ない、 該基板上に不純物ドープの多結晶シリコンを、
またその上に絶縁膜を被着し、かつパターニング
したフオトレジスト膜を用いてこれらを選択エツ
チングしてエミツタ形成領域上に位置する順テー
パ状の多結晶シリコンおよび絶縁膜部分を残し、 次いでベース電極となる多結晶シリコンの蒸着
を行ない、その後前記フオトレジスト膜を除去し
て該膜上の多結晶シリコン層をリフトオフし、
かゝる状態で、全面に絶縁膜を被着しまたイオン
打込みを行ないかつ熱処理して前記不純物ドープ
の多結晶シリコンを不純物源とするエミツタ拡散
を行ない、 次に前記イオン打込みした絶縁物のエツチング
を行なつて前記エミツタ領域上の順テーパ状の多
結晶シリコンの周囲の絶縁膜のみを残し、またマ
スクを使用して該エツチングで露出した前記ベー
ス電極となる多結晶シリコンのパターニングを行
ない、 次いで白金を被着し、熱処理を行なつて前記多
結晶シリコン上の白金を白金シリサイドとし、次
いで前記白金シリサイドを残して前記絶縁膜上の
白金を除去することを特徴とする半導体装置の製
造方法。
[Claims] 1. An insulating film is formed in the field region of a semiconductor substrate, base diffusion is performed in the active region, and impurity-doped polycrystalline silicon is formed on the substrate.
Further, an insulating film is deposited on top of the insulating film and selectively etched using a patterned photoresist film to leave a tapered polycrystalline silicon and insulating film portion located on the emitter formation region, and then a base electrode is formed. After that, the photoresist film is removed and the polycrystalline silicon layer on the film is lifted off,
In such a state, an insulating film is deposited on the entire surface, and ions are implanted and heat treated to perform emitter diffusion using the impurity-doped polycrystalline silicon as an impurity source, and then the ion-implanted insulator is etched. to leave only the insulating film around the tapered polycrystalline silicon on the emitter region, and pattern the polycrystalline silicon exposed by the etching to become the base electrode using a mask. A method for manufacturing a semiconductor device, comprising depositing platinum, performing heat treatment to convert the platinum on the polycrystalline silicon into platinum silicide, and then removing the platinum on the insulating film, leaving the platinum silicide.
JP16732779A 1979-12-22 1979-12-22 Manufacture of semiconductor device Granted JPS5690561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16732779A JPS5690561A (en) 1979-12-22 1979-12-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16732779A JPS5690561A (en) 1979-12-22 1979-12-22 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5690561A JPS5690561A (en) 1981-07-22
JPS6220711B2 true JPS6220711B2 (en) 1987-05-08

Family

ID=15847684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16732779A Granted JPS5690561A (en) 1979-12-22 1979-12-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5690561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666822U (en) * 1993-03-01 1994-09-20 トヨタ車体株式会社 Pressure control device for die cushion pin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169971A (en) * 1982-03-30 1983-10-06 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS5961179A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of bipolar semiconductor device
GB2172744B (en) * 1985-03-23 1989-07-19 Stc Plc Semiconductor devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123083A (en) * 1977-04-01 1978-10-27 Nippon Telegr & Teleph Corp <Ntt> Production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123083A (en) * 1977-04-01 1978-10-27 Nippon Telegr & Teleph Corp <Ntt> Production of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666822U (en) * 1993-03-01 1994-09-20 トヨタ車体株式会社 Pressure control device for die cushion pin

Also Published As

Publication number Publication date
JPS5690561A (en) 1981-07-22

Similar Documents

Publication Publication Date Title
US4125426A (en) Method of manufacturing semiconductor device
EP0076106B1 (en) Method for producing a bipolar transistor
US5128272A (en) Self-aligned planar monolithic integrated circuit vertical transistor process
JPH0578173B2 (en)
US4090915A (en) Forming patterned polycrystalline silicon
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
US4883772A (en) Process for making a self-aligned silicide shunt
JPS6133253B2 (en)
JPS6220711B2 (en)
US4410375A (en) Method for fabricating a semiconductor device
JPS5818784B2 (en) Hand-crafted construction work
JPH04290273A (en) Manufacture of silicon nitride capacitor
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JP2594697B2 (en) Method for manufacturing semiconductor device
JPH0247853B2 (en)
JPH0155585B2 (en)
JPS59105366A (en) Manufacture of metal oxide semiconductor type transistor
JPS6122866B2 (en)
JP2546650B2 (en) Method of manufacturing bipolar transistor
JP2624365B2 (en) Method for manufacturing semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPS6145392B2 (en)
JPH0136709B2 (en)
JPS6115589B2 (en)