[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62206491A - Manufacture of nuclear fuel molded shape - Google Patents

Manufacture of nuclear fuel molded shape

Info

Publication number
JPS62206491A
JPS62206491A JP61049161A JP4916186A JPS62206491A JP S62206491 A JPS62206491 A JP S62206491A JP 61049161 A JP61049161 A JP 61049161A JP 4916186 A JP4916186 A JP 4916186A JP S62206491 A JPS62206491 A JP S62206491A
Authority
JP
Japan
Prior art keywords
nuclear fuel
binder
powder
acid
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61049161A
Other languages
Japanese (ja)
Other versions
JPH0311438B2 (en
Inventor
仁 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Japan Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Fuel Co Ltd filed Critical Japan Nuclear Fuel Co Ltd
Priority to JP61049161A priority Critical patent/JPS62206491A/en
Publication of JPS62206491A publication Critical patent/JPS62206491A/en
Publication of JPH0311438B2 publication Critical patent/JPH0311438B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は成形体の製造方法に関し、特に、クラック等の
欠陥がなく機械的特性にすぐれたセラミック核燃料成形
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a molded body, and particularly to a method for manufacturing a ceramic nuclear fuel molded body that is free from defects such as cracks and has excellent mechanical properties.

〔発明の技術的背景〕[Technical background of the invention]

原子炉に使用されている核燃料は二酸化ウラン、酸化プ
ルトニウム入り二酸化ウラン等の成分から構成され、通
常はこれら酸化物を成形、焼結して得られる焼結体とし
て用いている。これら焼結ベレットは核燃料酸化物の粉
末を加圧成形し、これを焼結し、さらに焼結体の外周面
を研削することによって得られるが、ペレットにかけや
割れ等の欠陥が存在すると核燃料として使用し得ない。
Nuclear fuel used in nuclear reactors is composed of components such as uranium dioxide and uranium dioxide containing plutonium oxide, and is usually used as a sintered body obtained by molding and sintering these oxides. These sintered pellets are obtained by press-molding nuclear fuel oxide powder, sintering it, and then grinding the outer surface of the sintered body. However, if the pellets have defects such as chips or cracks, they cannot be used as nuclear fuel. It cannot be used.

これら欠陥の多くは成形体の成形時に成形体の強度が小
さいために発生する。したがってこれを改善するために
核燃料酸化物粉末に結合剤(バインダー)を添加する方
法が通常とられている。
Many of these defects occur because the strength of the compact is low during molding. Therefore, in order to improve this problem, a method of adding a binder to the nuclear fuel oxide powder is commonly used.

このような目的で用いるバインダーとしては、従来澱粉
、デキストリン、アルギン酸、アルギン酸ソーダ、カゼ
イン、ポリビニルアルコール、ポリアクリル酸ソーダ、
ポリエチレングリコール、尿素、微結晶セルロース、ぶ
どう糖、乳酸、マロン酸等の有機物質の水溶液や有機溶
媒溶液があり、これらバインダー溶液を核燃料粉末と湿
式混合した後この混合物を成形する方法が用いられてい
る。
Conventional binders used for this purpose include starch, dextrin, alginic acid, sodium alginate, casein, polyvinyl alcohol, sodium polyacrylate,
There are aqueous solutions and organic solvent solutions of organic substances such as polyethylene glycol, urea, microcrystalline cellulose, glucose, lactic acid, and malonic acid, and the method used is to wet-mix these binder solutions with nuclear fuel powder and then mold the mixture. .

しかし、このような湿式混合の場合にはバインダーを溶
媒に溶解させる工程並びに混合物を乾燥する工程が必要
となり、工程が繁雑化し、熱エネルギー的にも好ましく
ない。さらに混合物が混合機内に付着し残存するという
問題もある。
However, such wet mixing requires a process of dissolving the binder in a solvent and a process of drying the mixture, making the process complicated and unfavorable in terms of thermal energy. Furthermore, there is also the problem that the mixture adheres and remains inside the mixer.

その点バインダーを粉末のままで核燃料粉末に乾式混合
し、加圧成形することによって充分な結合効果が得られ
れば上述した湿式混合の問題は解決される。
In this respect, the above-mentioned problem of wet mixing can be solved if a sufficient bonding effect can be obtained by dry mixing the binder as a powder with the nuclear fuel powder and press-molding it.

しかしながら、上記のようなバインダーを用いて乾式混
合し、成形する方法では充分な強度を有する成形体を得
ることは困難である。
However, it is difficult to obtain a molded product having sufficient strength by dry mixing using a binder as described above and molding.

〔発明の概要〕[Summary of the invention]

本発明は上述した点に鑑みてなされたものであり、成形
体製造工程の一層の容易化と作業能率の向上が図れると
ともに、チップ、クラック等の欠陥がなく、機械的性質
にすぐれたレラミック核燃利成形体の製造方法を提供す
ること、を目的とする。
The present invention has been made in view of the above-mentioned points, and it is possible to further simplify the molded product manufacturing process and improve work efficiency, and to produce a relamic nuclear fuel that is free from defects such as chips and cracks and has excellent mechanical properties. The object of the present invention is to provide a method for manufacturing a molded article.

本発明者は、上記目的を達成するために様々な実験を繰
り返した結果、核燃料粉末の特性として含水量の多い粉
末を用い、混合するバインダーをクエン酸のような潮解
性の強い消失性(成形体に対する加熱処理工程において
分解し、消散する性質)のバインダーとして、しかも両
者の混合粉末を一定期間静置熟成さぜることにより、成
形作業が容易になり、かつ得られる核燃料成形体の機械
的性質がすぐれて向上することを見出した。
As a result of repeated various experiments in order to achieve the above object, the inventor of the present invention determined that the characteristics of the nuclear fuel powder is to use a powder with a high water content, and to use a binder with a strong deliquescent property such as citric acid, which is As a binder with the property of decomposing and dissipating during the heat treatment process for nuclear fuel bodies, by allowing the mixed powder of both to stand and mature for a certain period of time, the molding work becomes easier and the mechanical properties of the resulting nuclear fuel compacts are improved. It has been found that the properties are significantly improved.

本発明は、上記知見に基づいてなされたものであり、更
に詳しくは、含水量が0.5〜5%である核燃料粉末に
、成形体に対する加熱処理工程において消失するバイン
ダーを添加・混合し、この混合物を熟成させ、次いで加
圧成形することを特徴とするものである。
The present invention has been made based on the above findings, and more specifically, a binder that disappears in the heat treatment process for the compact is added and mixed with nuclear fuel powder having a water content of 0.5 to 5%, This mixture is characterized by being aged and then pressure molded.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明を更に詳細に説明する。以下の記載におい
て量を表わす1%」は特に断らない限り重量基準である
The present invention will be explained in more detail below. In the following description, the amount "1%" is based on weight unless otherwise specified.

核燃料粉末 本発明で用いられる核燃料粉末としては、二酸化ウラン
その他の酸化ウラン、酸化プルトニウム、酸化トリウム
等があげられ、これらは1種または2種以上混合して用
いられる。又、中性子吸収物質、例えば酸化ガドリニウ
ムとの混合物としても用いられる。その凝集粒径は混合
前において約10〜1500μm程度の範囲が好ましい
Nuclear Fuel Powder The nuclear fuel powder used in the present invention includes uranium dioxide, other uranium oxides, plutonium oxide, thorium oxide, etc., and these may be used alone or in combination of two or more. It is also used as a mixture with neutron absorbing substances such as gadolinium oxide. The aggregate particle size before mixing is preferably in the range of about 10 to 1500 μm.

核燃料粉末としては、含水量の多いものが特に好ましく
用いられる。この含水量は、0.5〜5%が好ましく、
更に好ましくは、1〜3%である。
As nuclear fuel powder, one with a high moisture content is particularly preferably used. This water content is preferably 0.5 to 5%,
More preferably, it is 1 to 3%.

含水量0.5%未満では、バインダー効果を充分に発揮
させることができない。一方、含水量が、5%を超える
と粉末搬送上の困難性や混合機内への粉末の付着等の問
題を発生させることとなるので好ましくない。
If the water content is less than 0.5%, the binder effect cannot be fully exhibited. On the other hand, if the water content exceeds 5%, problems such as difficulty in transporting the powder and adhesion of the powder to the inside of the mixer may occur, which is not preferable.

バインダー バインダーとしては消失性バインダーが用いられる。本
発明において「消失性バインダー」とは、加熱炉等で、
焼結が始まる前に核燃料物質から熱分解気化により完全
に除去され、焼結体中に炭素等の残渣を残さずかつ焼結
体tEJsliに影響を与えることのないバインダーを
意味する。
Binder A fugitive binder is used as the binder. In the present invention, the "fugitive binder" refers to
It means a binder that is completely removed from the nuclear fuel material by pyrolysis vaporization before sintering begins, leaves no residue such as carbon in the sintered body, and does not affect the sintered body tEJsli.

消失性バインダーとして用いられる物質としては、ヒド
ロキシカルボン酸があげられ、具体的にはクエン酸、リ
ンゴ酸、酒石酸等があり、中でもクエン酸が特に好まし
く用いられる。
Examples of substances used as fugitive binders include hydroxycarboxylic acids, and specific examples include citric acid, malic acid, and tartaric acid, among which citric acid is particularly preferably used.

また、その添加量は、核燃料粉末に対して、0.5〜5
%となる範囲が望ましい。添加量が0.5%未満である
と、成形体の物理的特性の改善効果が小さく、一方5%
を越えるとバインダーの形状によっても異なるが焼結体
の密度が低下し核燃料製品として使用することができな
くなることもあり、又結合剤使用量の増加に伴う経済的
不利益も生じる。
In addition, the amount added is 0.5 to 5
% is desirable. If the amount added is less than 0.5%, the effect of improving the physical properties of the molded product is small;
If this value is exceeded, the density of the sintered body decreases, depending on the shape of the binder, and it may become impossible to use it as a nuclear fuel product, and there will also be economic disadvantages due to the increased amount of binder used.

製造■稈 まず、含水量が例えば約0.5〜5%である核燃料粉末
を用意し、これにバインダーを添加づる。
Production (1) First, nuclear fuel powder having a water content of, for example, about 0.5 to 5% is prepared, and a binder is added thereto.

添加されたバインダーと核燃料粉末との混合は適当な乾
式混合装置を用いて行うことができる。装置としてはV
字ブレンダー、リボン型ブレンダー、スラブ型ブレンダ
ー、流動床ブレンダー、振動ミル、ボールミル、遠心ミ
ル等が用いられ得る。
The added binder and nuclear fuel powder can be mixed using a suitable dry mixing device. As a device, V
Blenders, ribbon blenders, slab blenders, fluidized bed blenders, vibratory mills, ball mills, centrifugal mills, etc. may be used.

次いで、この混合粉末を密閉容器に入れ、少なくとも約
1日間熟成させる。
This mixed powder is then placed in a closed container and aged for at least about 1 day.

この熟成工程は、成形体にすぐれた機械的性質を発現さ
せる上で重要である。このように、原料混合物を調製し
たのち一定期間静置熟成することによって、得られる成
形体の機械的性質が向上することは本発明者にとっても
意外であるが、その理由は次のように推測される。
This aging step is important for developing excellent mechanical properties in the molded article. It is surprising to the present inventor that the mechanical properties of the obtained molded product are improved by preparing the raw material mixture and then allowing it to mature for a certain period of time.The reason for this is speculated as follows. be done.

含水量の多い核燃料粉末において、水分は粉末の表面に
均一に吸着されている。一方、バインダーは固体状で核
燃料粉末と混合される為に両者はより容易に均一状態に
なる。これらが一定時間静置熟成されることにより、表
面吸着水をもった粉末に囲れたバインダーはその潮解性
により、吸着水を吸収し潮解する。次に毛細管現象によ
り潮解したバインダーが粉末と粉末の接合部に適度に集
まり、そこで固化する。この結果、核燃料粉末同士がバ
インダーによって強く結合されることになり、成形体の
機械的性質の向上につながるものと考えられる。
In nuclear fuel powder with a high water content, water is uniformly adsorbed on the surface of the powder. On the other hand, since the binder is in solid form and is mixed with the nuclear fuel powder, the two can more easily be brought into a uniform state. When these are aged for a certain period of time, the binder surrounded by powder with surface adsorbed water absorbs the adsorbed water and deliquesces due to its deliquescent property. Next, the binder deliquesced by capillary action gathers appropriately at the joint between the powders and solidifies there. As a result, the nuclear fuel powders are strongly bound together by the binder, which is thought to lead to improvement in the mechanical properties of the compact.

熟成後、混合粉末を常法に従い、所望形状の成形機の金
型中に装入し、例えば0.5〜5ton/cII稈麿の
圧ツノで成形して、40〜60%TD(理論密度の40
〜60%、理論密度は二酸化ウランの場合10.95g
/CIj)の成形体を得る。
After aging, the mixed powder is charged into the mold of a molding machine of a desired shape according to a conventional method, and is molded with a pressure horn of, for example, a 0.5-5 ton/cII culm, to obtain a 40-60% TD (theoretical density 40 of
~60%, theoretical density is 10.95g for uranium dioxide
/CIj) is obtained.

次いで成形体を水素、水素子窒素の還元性または二酸化
炭素分解による酸化性あるいはアルゴン等の不活性ガス
雰囲気中で核燃料粉末の種類に応じた焼結条件(例えば
、通常の核燃料酸化物粉末の場合、約1500〜180
0℃で約1〜10時間)で焼結する。得られた焼結体は
、例えば所望の直径に研削し、これを燃料被覆管中に装
填し不活性ガスに置換して封入し、燃料棒としそれらを
集めて燃料集合体として原子炉の運転に供する。
The compact is then sintered in an atmosphere of hydrogen, reducing hydrogen atoms, nitrogen, oxidizing carbon dioxide decomposition, or inert gas such as argon under conditions depending on the type of nuclear fuel powder (for example, in the case of ordinary nuclear fuel oxide powder). , about 1500-180
Sinter at 0° C. for about 1 to 10 hours). The obtained sintered body is, for example, ground to a desired diameter, loaded into a fuel cladding tube, replaced with an inert gas, and sealed to form a fuel rod, which is assembled into a fuel assembly for operation of a nuclear reactor. Serve.

以下本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these Examples.

〔発明の実施例および比較例〕[Examples and comparative examples of the invention]

以下に示す(a)、(b)、(c)および(d)の4種
の粉末を調整した。
Four types of powders (a), (b), (c) and (d) shown below were prepared.

(a)低含水量(約10001)l)1111−120
)二酸化ウラン粉末、(b)低含水量二酸化ウラン粉末
にクエン酸を2%添加したもの、(C)高含水量(約1
”OOOOppm H20)二酸化ウラン粉末、(d)
高含水量 二酸化ウラン粉末にクエン酸を2%添加した
もの。
(a) Low water content (approximately 10001) l) 1111-120
) uranium dioxide powder, (b) low moisture content uranium dioxide powder with 2% citric acid added, (C) high moisture content (approx.
"OOOOppm H20) Uranium dioxide powder, (d)
High moisture content: 2% citric acid added to uranium dioxide powder.

これらの粉末を各々1日間静置し熟成を行った。Each of these powders was allowed to stand for one day for ripening.

これらの熟成原料粉末を、成形機を用いて成形圧力2.
0ton/Ciで直径約13mmの円柱状成形体を得た
。この成形体を成形体強度装置の受台上に軸を横にして
おき成形体を加圧機で圧縮して引張強度係数を測定した
。引張強度係数は下記式による。
These aged raw material powders are subjected to molding pressure 2. using a molding machine.
A cylindrical molded body with a diameter of about 13 mm was obtained at 0 ton/Ci. This molded body was placed on a pedestal of a molded body strength device with its axis horizontally, and the molded body was compressed with a pressurizer to measure the tensile strength coefficient. The tensile strength coefficient is based on the following formula.

引張強度係数−2P/π・D−L ここで、P:最大荷重(K9 ) D=成形体の直径 L:成形体の長さ また、破断までの伸びも測定した。Tensile strength coefficient -2P/π・DL Here, P: Maximum load (K9) D=diameter of molded body L: Length of molded body The elongation to break was also measured.

各試料についての測定結果を、下記第1表に示す。The measurement results for each sample are shown in Table 1 below.

表からも明らかなように、低含水量二酸化ウラン粉末に
おいては、クエン酸の添加又は熟成によっても成形体の
機械的性質に変化はない。さらに高含水量二酸化ウラン
粉末の場合においてもクエン酸を添加しないもの、又ク
エン酸を添加しても混合後の熟成期間が短いものでは成
形体の機械的性質に変化はない。
As is clear from the table, in the case of low water content uranium dioxide powder, there is no change in the mechanical properties of the compacts even when citric acid is added or aged. Furthermore, even in the case of high water content uranium dioxide powder, if citric acid is not added, or if citric acid is added but the aging period after mixing is short, there is no change in the mechanical properties of the compact.

しかし、高含水量二酸化ウラン粉末にクエン酸を添加混
合し、さらに熟成工程を経たものは他の試料に比べて引
張強度係数は約2.2〜2.5倍に増大しており、また
破断するまでの伸びは約1.5〜1.8倍と著しく増加
している。
However, when citric acid is added to and mixed with high water content uranium dioxide powder and the material is subjected to an aging process, the tensile strength coefficient increases by about 2.2 to 2.5 times compared to other samples. The elongation up to this point is about 1.5 to 1.8 times, which is a remarkable increase.

上記実施例の結果からも明らかなように、本発明の核燃
料成形体の製造方法は、含水量を高めた二酸化ウラン粉
末に消失性バインダーを添加・混合し、更に熟成したの
ち成形するようにしたので、成形体の機械的性質を高め
、従来法に比べて成形性にすぐれ、チップ、クラック等
の欠陥がない核燃料成形体を得ることができる。
As is clear from the results of the above examples, the method for producing a nuclear fuel compact of the present invention involves adding and mixing a fugitive binder to uranium dioxide powder with an increased water content, and molding after further aging. Therefore, it is possible to improve the mechanical properties of the molded body, to obtain a nuclear fuel molded body that has superior moldability compared to conventional methods and is free from defects such as chips and cracks.

Claims (1)

【特許請求の範囲】 1、含水量が0.5〜5%である核燃料粉末と成形体に
対する加熱処理工程において消失するバインダーとを添
加・混合し、この混合物を熟成させ、次いで加圧成形す
ることを特徴とする、核燃料成形体の製造方法。 2、前記バインダーが有機酸である、特許請求の範囲第
1項記載の方法。 3、前記有機酸がクエン酸、リンゴ酸および酒石酸から
選ばれる、特許請求の範囲第1項記載の方法。 4、前記熟成が、前記混合物を少なくとも24時間静置
することにより行なわれる、特許請求の範囲第1項に記
載の方法
[Claims] 1. Nuclear fuel powder with a moisture content of 0.5 to 5% and a binder that disappears during the heat treatment process for the compact are added and mixed, this mixture is aged, and then pressure molded. A method for producing a nuclear fuel molded body, characterized by: 2. The method according to claim 1, wherein the binder is an organic acid. 3. The method of claim 1, wherein the organic acid is selected from citric acid, malic acid and tartaric acid. 4. The method according to claim 1, wherein the aging is carried out by allowing the mixture to stand for at least 24 hours.
JP61049161A 1986-03-06 1986-03-06 Manufacture of nuclear fuel molded shape Granted JPS62206491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049161A JPS62206491A (en) 1986-03-06 1986-03-06 Manufacture of nuclear fuel molded shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049161A JPS62206491A (en) 1986-03-06 1986-03-06 Manufacture of nuclear fuel molded shape

Publications (2)

Publication Number Publication Date
JPS62206491A true JPS62206491A (en) 1987-09-10
JPH0311438B2 JPH0311438B2 (en) 1991-02-15

Family

ID=12823365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049161A Granted JPS62206491A (en) 1986-03-06 1986-03-06 Manufacture of nuclear fuel molded shape

Country Status (1)

Country Link
JP (1) JPS62206491A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129288A (en) * 1981-12-17 1983-08-02 ゼネラル・エレクトリツク・カンパニイ Nuclear fuel material containing vanishable binder and its manufacture
JPS58180985A (en) * 1982-03-22 1983-10-22 ゼネラル・エレクトリツク・カンパニイ Nuclear fuel pellet and manufacture therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129288A (en) * 1981-12-17 1983-08-02 ゼネラル・エレクトリツク・カンパニイ Nuclear fuel material containing vanishable binder and its manufacture
JPS58180985A (en) * 1982-03-22 1983-10-22 ゼネラル・エレクトリツク・カンパニイ Nuclear fuel pellet and manufacture therefor

Also Published As

Publication number Publication date
JPH0311438B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
CA1254378A (en) Fabrication of nuclear fuel pellets
JP2004538475A5 (en)
US2814857A (en) Ceramic fuel element material for a neutronic reactor and method of fabricating same
JPS58180985A (en) Nuclear fuel pellet and manufacture therefor
CA1178044A (en) Method of producing fugitive binder-containing nuclear fuel material
JPS5895617A (en) Method of increasing grain size of uranium oxide
JPS62206491A (en) Manufacture of nuclear fuel molded shape
CN109478430A (en) Ceramic nuclear fuel pellet autofrettage
JPH0244037B2 (en)
JPS60152985A (en) Manufacture of fuel pellet for nuclear reactor
US3025137A (en) Production of sintered compacts of beryllia
JPS6253471B2 (en)
JPH0152162B2 (en)
JP3051388B1 (en) Manufacturing method of nuclear fuel sintered body
CA1263526A (en) Binder system for the manufacture of nuclear fuel pellets, and the method and product thereof
JPS6042435B2 (en) Nuclear fuel production method
JPH01152394A (en) Manufacture of nuclear fuel sintered body
US4696769A (en) Method and binder for the manufacture of nuclear fuel pellets, and the product
JPS6035033B2 (en) Method for producing nuclear fuel pellets
JPS61278789A (en) Manufacture of oxide nuclear fuel material sintered body
JPH0260277B2 (en)
GB2067536A (en) Nuclear fuel pellets
RU2068202C1 (en) Pelletized uranium-plutonium fuel production process
RU2186431C2 (en) Method for manufacturing ceramic fuel pellets for nuclear reactors
CA1165067A (en) Method of improving the green strength of nuclear fuel pellets, and product thereof