JPS62193168A - One-transistor type dram device - Google Patents
One-transistor type dram deviceInfo
- Publication number
- JPS62193168A JPS62193168A JP61034692A JP3469286A JPS62193168A JP S62193168 A JPS62193168 A JP S62193168A JP 61034692 A JP61034692 A JP 61034692A JP 3469286 A JP3469286 A JP 3469286A JP S62193168 A JPS62193168 A JP S62193168A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- electrode layer
- electrode
- trench
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 20
- 239000010410 layer Substances 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 24
- 238000002955 isolation Methods 0.000 claims description 15
- 239000011229 interlayer Substances 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000010408 film Substances 0.000 abstract description 44
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 10
- 229920005591 polysilicon Polymers 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 5
- 239000010409 thin film Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000010354 integration Effects 0.000 description 5
- 230000005260 alpha ray Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/37—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
- H10B12/377—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate having a storage electrode extension located over the transistor
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は1トランジスタ型DRAM装置特に高密度高信
頼性の1トランジスタ型DRAM装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a one-transistor type DRAM device, and particularly to a high-density and highly reliable one-transistor type DRAM device.
従来の技術
近年、半導体メモリ装置の高密度化が進み、特にDRA
Mの高集積化、大容量化は著しい。このようなりRAM
の発展はそのチップサイズの半分以上の面積を占めるメ
モリセルの高密度化技術の発展に負う所が大きい。現在
、一層の高密度化を目的として種々の立体構造DRAM
セルが提案されて来ている。従来、この種の立体構造D
RAMTechnical Papers)1!244
−247 ) 0第2図において、1はビットラインを
形成するドレイン、2は信号読み出し用トランスファゲ
ートを構成するMOSトランジスタのゲート酸化膜、3
はワード線を構成する、例えばポリシリコンで形成され
たゲート電極、4はメモリセルのソース拡散部、5はメ
モリセルのキャパシタを構成する絶縁薄膜、6はセルプ
レートを形成する例えばポリシリコンを用いたプレート
電極、了はセル間分離用厚膜、8は基板、10は層間絶
縁膜である。これはいわゆるトレンチ構造といわれるメ
モリセル構造の一例でFCCセル(Folded Co
pacitor Ce1l )と呼ばれるものである。2. Description of the Related Art In recent years, semiconductor memory devices have become more densely packed, especially DRA.
The increase in the integration and capacity of M is remarkable. RAM like this
The development of the chip is largely due to the development of high-density technology for memory cells, which occupy more than half the area of the chip. Currently, DRAMs with various three-dimensional structures are being developed for the purpose of further increasing density.
Cells have been proposed. Conventionally, this type of 3D structure D
RAM Technical Papers) 1!244
-247) 0 In Figure 2, 1 is the drain forming the bit line, 2 is the gate oxide film of the MOS transistor forming the transfer gate for signal readout, and 3
4 is a source diffusion part of a memory cell; 5 is an insulating thin film that is a capacitor of a memory cell; 6 is a cell plate made of polysilicon, for example; 1 is a plate electrode, a thick film for cell isolation, 8 a substrate, and 10 an interlayer insulating film. This is an example of a memory cell structure called a trench structure, and is an FCC cell (Folded Co
It is called pacitor Ce1l).
トレンチを基板8の深さ方向に形成するため、トレンチ
深さの制御により蓄積用容量もメモリセルとして必要と
される値(50fF以上と一般にいわれている。)を充
分確保できる。またFCC構造においては、トレンチを
単に信号蓄積キャパシタとしてだけでなく素子分離にも
利用しており、セル間分離用厚膜7を厚くとることによ
りセル間リーク電流を充分低くとることができる。Since the trench is formed in the depth direction of the substrate 8, by controlling the depth of the trench, the storage capacitance can be sufficiently secured to a value required for a memory cell (generally said to be 50 fF or more). Further, in the FCC structure, the trench is used not only as a signal storage capacitor but also for element isolation, and by making the intercell isolation thick film 7 thick, the intercell leakage current can be kept sufficiently low.
また、立体化構造セルの別の一例として、スタックド構
造があり、これは第3図に示す様な構成である(例えば
、1986.6.30日経エレクトロニクスp209〜
231)。第3図において、1はビットラインを形成す
るドレイン、2は信号読み出し用トランスファゲートと
なるMOS)ランジスタのゲート酸化膜、3はワード線
を構成する、例えばポリシリコンで形成されたゲート電
極、4はメモリセルのソース拡散部、6はメモリセルの
キャパシタを構成する絶縁膜、6はセルプレートを形成
する例えばポリシリコンを用いたプレート電極、7はセ
ル間分離用厚膜、8は基板、9はメモリセルのソース部
を構成する導電性電極、10は層間絶縁膜である。キャ
パシタは6のセルプレートと9のメモリセルのソース部
を形成する導電性電極の間に形成され、9の電極のワー
ド線上の部分や側面部をキャパシタとして利用できるこ
とによりセル容量の増加が得られる。α線ソフトエラー
はメモリセルのソース部下のpn接合領域に形成される
空乏層をα粒子が通過することにより生ずるが、このス
タックド構造では、メモリセルのソース拡散部と基板と
の間のpn接合領域が、従来の平面型や前述のトレンチ
構造メモリセルに比べて非常に小さく、そのためα線ソ
フトエラーに対して極めて強くなる。Another example of a three-dimensional structure cell is a stacked structure, which has a structure as shown in Figure 3 (for example, 1986.6.30 Nikkei Electronics p.209-
231). In FIG. 3, 1 is a drain that forms a bit line, 2 is a gate oxide film of a MOS transistor that is a transfer gate for signal readout, 3 is a gate electrode made of polysilicon, for example, that forms a word line, 4 6 is an insulating film forming a capacitor of the memory cell; 6 is a plate electrode made of polysilicon, for example, forming a cell plate; 7 is a thick film for isolation between cells; 8 is a substrate; 9 1 is a conductive electrode constituting the source portion of the memory cell, and 10 is an interlayer insulating film. A capacitor is formed between the cell plate 6 and the conductive electrode forming the source part of the memory cell 9, and the cell capacitance can be increased by using the part on the word line and the side surface of the electrode 9 as a capacitor. . α-ray soft errors are caused by α particles passing through a depletion layer formed in the pn junction region below the source of the memory cell. The area is much smaller than that of the conventional planar type or the trench structure memory cell described above, making it extremely resistant to α-ray soft errors.
発明が解決しようとする問題点
このような従来の構成では、FCCをはじめとするトレ
ンチ構造、スタックド構造のそれぞれについて次の様な
問題があった。Problems to be Solved by the Invention In such conventional configurations, there are the following problems with each of the trench structure and stacked structure including FCC.
まずトレンチ構造のメモリセルは、蓄積容量については
トレンチを所定の深さに選べば必要な大きさの値が得ら
れるが基板深部にトレンチを埋込んでいるため、プレー
ト電極下の基板中の空乏層が大きくなり、α線ン7トエ
ラー率が同一容量の平面型セルに比べて一桁以上も悪く
なる。そのためa線ソフトエラー率を低くするには、平
面上のキャパシタセル面積部分を大きくする必要があり
高集積化には不利となる。First, in trench-structured memory cells, the required storage capacity can be obtained by selecting the trench to a predetermined depth, but since the trench is buried deep in the substrate, depletion occurs in the substrate under the plate electrode. The layers become larger, and the α-ray torrent error rate is more than an order of magnitude worse than that of a planar cell with the same capacity. Therefore, in order to lower the a-line soft error rate, it is necessary to increase the area of the capacitor cell on the plane, which is disadvantageous for high integration.
これに対し、トレンチの側面あるいは底面にイオンを打
ち込む事により、いわゆるHi−Cセル構造を形成して
空乏層の伸びを押える事もできるが、高濃度注入の結果
としてリーク電流の増大や、プロセスの複雑化などが生
じ、実用上問題がある。On the other hand, by implanting ions into the sides or bottom of the trench, a so-called Hi-C cell structure can be formed and the growth of the depletion layer can be suppressed, but as a result of high-concentration implantation, leakage current increases and the process This poses a practical problem as it complicates the process.
またトレンチの面にそった薄い絶縁膜を形成する必要が
あるが、トレンチの面の結晶軸に対する方位によって、
絶縁膜(例えばS 102 )の酸化レートが異なり一
様な厚さの絶縁膜を成長させることが難しく、絶縁耐圧
のバラツキと低下が生じ実用上問題となっている。It is also necessary to form a thin insulating film along the trench surface, but depending on the orientation of the trench surface with respect to the crystal axis,
The oxidation rate of the insulating film (for example, S 102 ) is different, making it difficult to grow an insulating film with a uniform thickness, which causes variations and decreases in dielectric strength voltage, which poses a practical problem.
また、メモリセルのキャパシタを構成する絶縁膜の誘電
率の増大と絶縁耐圧の増大の両立のために前記絶縁膜に
Si3N4とS 102の多層構造を用いる必要がある
が、トレンチ内壁を構成する基板の単結晶シリコンに、
Si3N4のストレスによる影響が発生し、基板シリコ
ンに欠陥等が形成され、リーク電流が大きくなり実用上
問題となる。Furthermore, in order to achieve both an increase in the dielectric constant and an increase in dielectric strength of the insulating film constituting the capacitor of the memory cell, it is necessary to use a multilayer structure of Si3N4 and S102 for the insulating film. of single crystal silicon,
The influence of stress on Si3N4 occurs, defects etc. are formed in the substrate silicon, and leakage current increases, which poses a practical problem.
これらの問題は、高集積化大容量化を更に推し進める際
には、一層重大な障害となることは明らかである。It is clear that these problems will become even more serious obstacles when further promoting higher integration and larger capacity.
一方スタックト構造は、メモリセルのソース拡散部のp
n接合部の領域が小さく、そのためソフトエラーに強い
という利点をもつ。また素子分離中が平面型セルに比べ
て大きくとれ、素子間リークを容易に押えることができ
るoしかし、その構造上メモリセル容量の増大に限界が
あり、素子の微細化高集積化に伴ってメモリセル容量が
不足するのは必至である。On the other hand, in the stacked structure, the p
The area of the n-junction is small, so it has the advantage of being resistant to soft errors. In addition, the element isolation area can be larger than that of a planar cell, making it easier to suppress leakage between elements.However, due to its structure, there is a limit to the increase in memory cell capacity, and as elements become smaller and more integrated, It is inevitable that the memory cell capacity will be insufficient.
本発明はこのような問題点を解決するもので、蓄積容量
の増大を実現し、高集積化、大容量化が可能で、ンフト
エラー率、リーク電流が大巾に低減し、キャパシタを構
成する絶縁膜の形成が容易なメモリセル構造を備えた半
導体メモリ装置を提供することを目的としたものである
0
問題点を解決するだめの手段
前記の問題点を解決するために本発明は、一導電型の半
導体基板の所定の領域に形成されたトレンチと、前記ト
レンチの内壁及び前記トレンチの周辺部の前記半導体基
板に形成された素子分離用絶縁厚膜と、前記周辺部の素
子分離用絶縁厚膜に隣接した前記半導体基板と反対導電
型の信号読み出し用MOSトランジスタのソース領域と
、前記ソース領域に隣接した前記半導体基板上に形成さ
れり前記Mo S )ランジスタのゲート絶縁膜と、前
記ゲート絶縁膜に隣接した前記ソース領域と反対側の前
記半導体基板表面近傍に形成された前記半導体基板と反
対導電型のビットライン用ドレイン領域と、前記素子分
離用絶縁厚膜のトレンチ周辺部上及び前記ゲート絶縁膜
上に設けられたワードライン用第1電極と、前記第1電
極上に形成された眉間絶縁膜と、前記素子分離用絶縁膜
上に設けられたワードライン用第1電極と、前記第1電
極上に形成された眉間絶縁膜と、前記素子分離用絶縁厚
膜上及び前記層間絶縁膜上に形成された下部セルプレー
ト用第2電極層と、前記第2電極層と前記ソース領域の
間に設けられた層間絶縁膜と、前記第2電極層上に形成
されたメモリセルの下部キャパシタの誘電体用絶縁膜と
、前記下部キャパシタ誘電体用絶縁膜上に形成され前記
ソース領域に電気的にコンタクトする第3電極層と、前
記第3電極層上に形成されたメモルセルの上部キャパシ
タの誘電体用絶縁膜と、前記上部キャパシタの誘電体用
絶縁膜上に形成され前記第2電極層と電気的接続部を有
する上部セルプレート用第4電極層とより構成され、か
つ前記トレンチ内の隣接するセルの第3電極層間に第4
電極層が挿入されている事を特徴とする1トランジスタ
型DRAM装置を提供する。The present invention solves these problems by realizing an increase in storage capacity, allowing for higher integration and larger capacity, greatly reducing the damping error rate and leakage current, and reducing the insulation constituting the capacitor. It is an object of the present invention to provide a semiconductor memory device having a memory cell structure in which a film can be easily formed. a trench formed in a predetermined region of a semiconductor substrate of a type, an insulating thick film for element isolation formed on the semiconductor substrate on an inner wall of the trench and a peripheral part of the trench, and an insulating thickness for element isolation in the peripheral part. a source region of a signal readout MOS transistor of a conductivity type opposite to that of the semiconductor substrate adjacent to the film; a gate insulating film of the MoS transistor formed on the semiconductor substrate adjacent to the source region; a drain region for a bit line of a conductivity type opposite to that of the semiconductor substrate formed near the surface of the semiconductor substrate on the side opposite to the source region adjacent to the film; and a drain region for a bit line of the opposite conductivity type to the semiconductor substrate, and a region around the trench of the thick insulating film for element isolation and the gate. a word line first electrode provided on the insulating film; a glabellar insulating film formed on the first electrode; a word line first electrode provided on the element isolation insulating film; an insulating film between the eyebrows formed on one electrode, a second electrode layer for a lower cell plate formed on the thick insulating film for element isolation and on the interlayer insulating film, and a second electrode layer between the second electrode layer and the source region. an interlayer insulating film provided between, an insulating film for the dielectric of the lower capacitor of the memory cell formed on the second electrode layer, and an insulating film for the dielectric of the lower capacitor formed on the lower capacitor dielectric, and an insulating film for the dielectric of the lower capacitor formed on the second electrode layer; a third electrode layer in contact with the third electrode layer, a dielectric insulating film of the upper capacitor of the memory cell formed on the third electrode layer, and the second electrode layer formed on the dielectric insulating film of the upper capacitor. and a fourth electrode layer for an upper cell plate having an electrical connection portion, and a fourth electrode layer for an upper cell plate having an electrical connection portion, and a fourth
A one-transistor type DRAM device characterized in that an electrode layer is inserted is provided.
作 用 この構成により、次の様な作用がある。For production This configuration has the following effects.
蓄積容量がトレンチ内に埋め込まれた部分とそれ以外の
平面上の部分から成っており、さらに第3電極の上部、
下部、及び側面部のすべてがセルキャパシタとなるため
に容量が極めて増大する0同じセル面積、同じトレンチ
深さのFCC構造と比較してもセル容量は缶板上となる
。我々の計算に基づけばセル面積が8)Ivy?の場合
(4MビットDRAM相当)、トレンチ深さを3)1m
とることによりセル容量を約120fFとることができ
、セル面積が5)tイの場合(16MピットDRAM相
当)には、同じくトレンチ深さ3,11mとることによ
り、約eofFとることができ、1つのメモリセルに最
低必要とされる容量の5ofFを充分に満たすことがで
きる0
また、ソース部の面積を設計上、あるいはプロセス技術
上許容できる限り/J’lさくすることにより、メモリ
セルのソース拡散部と基板との間のpn接合領域を小さ
くすることができるため、メモリセルのリーク電流を極
めて小さくとることができる。The storage capacitor consists of a part buried in the trench and a part on the other plane, and further includes an upper part of the third electrode,
The capacitance is extremely increased because the lower and side portions all serve as cell capacitors.Even when compared with an FCC structure with the same cell area and the same trench depth, the cell capacitance is on a can plate. Based on our calculations, the cell area is 8) Ivy? (equivalent to 4M bit DRAM), trench depth 3) 1m
By setting the trench depth to 3.11 m, the cell capacitance can be approximately 120 fF, and when the cell area is 5)t (equivalent to 16 M pit DRAM), approximately eofF can be obtained by setting the trench depth to 3.11 m. In addition, by making the area of the source part as small as possible in design or process technology, the memory cell's source Since the pn junction region between the diffusion portion and the substrate can be made small, the leakage current of the memory cell can be kept extremely small.
また前記pn接合領域が小さいため、それに伴う空乏層
も非常に小さくなり、これによりα線ンフトエラーを抜
本的に低減させることができる。加えてキャパシタとな
る薄い絶縁膜を形成する場合ポリシリコンの酸化レート
は方位に依存せず一様な厚さの絶縁膜を成長させること
ができ、絶縁耐圧のバラツキと低下を押えることができ
る。Furthermore, since the pn junction region is small, the depletion layer associated therewith also becomes very small, thereby making it possible to drastically reduce the α-ray phasing error. In addition, when forming a thin insulating film to serve as a capacitor, the oxidation rate of polysilicon does not depend on orientation, allowing the insulating film to grow with a uniform thickness, thereby suppressing variations and reductions in dielectric strength.
さらにメモリセルのキャパシタを構成する絶縁膜として
St N とSiO2との多層構造を用いた場合でも
、メモリセルのキャパシタを構成する第2及び第3電極
をポリシリコンで形成すれば、Si3N4のストレスに
よる影響を基板に及ぼさずに吸収できることになり多層
絶縁膜の安定形成にも極めて有利となる。Furthermore, even if a multilayer structure of St N and SiO2 is used as the insulating film constituting the memory cell capacitor, if the second and third electrodes constituting the memory cell capacitor are formed of polysilicon, the stress caused by Si3N4 can be reduced. Since the influence can be absorbed without affecting the substrate, it is extremely advantageous for stable formation of a multilayer insulating film.
実施例
第1図とは本発明の一実施例による1トランジスタ型D
RAM装置のメモリセル部の要部側断面図である。第1
図aにおいて、1はビットラインを形成するドレイン、
2は信号読み出し用トランスファゲートを構成するMO
S)ランジスタのゲート酸化膜、3はワード線を構成す
るポリ7リコンで形成されたゲート電極、4はメモリセ
ルのソース拡散部、5はメモリセルのキャパシタを構成
するS 102絶縁膜、6は下部セルプレートを形成す
るポリシリコンを用いた下部グレート電極、7はセル間
分離用厚膜、8は基板、9はメモリセルのソース部を形
成するポリシリコンを用いた導電性電極、1oは層間絶
縁膜、11は上部セルプレートを形成するポリシリコン
を用いた上部グレート電極である。6の下部プレート電
極と11の上部プレート電極はメモリセル外部において
電気的に接続されている。キャパシタは6のセルプレー
トと9のメモリセルのソース部を形成する導電性電極の
間に形成される。Embodiment FIG. 1 is a one-transistor type D according to an embodiment of the present invention.
FIG. 2 is a sectional side view of a main part of a memory cell portion of a RAM device. 1st
In figure a, 1 is a drain forming a bit line;
2 is an MO constituting a transfer gate for signal readout.
S) Gate oxide film of the transistor, 3 is a gate electrode made of poly7 silicon which constitutes a word line, 4 is a source diffusion part of a memory cell, 5 is an S102 insulating film which constitutes a capacitor of a memory cell, 6 is a A lower gray electrode made of polysilicon forming a lower cell plate, 7 a thick film for cell isolation, 8 a substrate, 9 a conductive electrode made of polysilicon forming a source part of a memory cell, 1o an interlayer An insulating film 11 is an upper gray electrode made of polysilicon forming an upper cell plate. The lower plate electrode 6 and the upper plate electrode 11 are electrically connected outside the memory cell. A capacitor is formed between the cell plate at 6 and the conductive electrode forming the source portion of the memory cell at 9.
第1図すは本発明の他の実施例による1トランジスタ型
DRAM装置のメモリセル部の要部断面図であり、第1
図とに示した前記実施例との相違点は、他のメモリセル
(図示していない)のゲート電極を構成するワードライ
ン用第1電極3が層間絶縁膜10を介して、メモリセル
の上部プレート電極を構成する第4電極層11上に配置
されている点である。FIG. 1 is a sectional view of a main part of a memory cell portion of a one-transistor type DRAM device according to another embodiment of the present invention;
The difference from the embodiment shown in FIG. This point is placed on the fourth electrode layer 11 constituting the plate electrode.
発明の効果
以上の様に本発明によれば、半導体メモリ装置は蓄積容
量を極めて大きくできるばかりでなく、ソフトエラー率
及びリーク電流を抜本的に低減でき、プロセス上絶縁薄
膜の形成も容易となる。従って本発明は半導体メモリ装
置の一層の高集積化。Effects of the Invention As described above, according to the present invention, a semiconductor memory device not only can have an extremely large storage capacity, but also can drastically reduce the soft error rate and leakage current, and can easily form an insulating thin film during the process. . Therefore, the present invention allows for higher integration of semiconductor memory devices.
大容量化を極めて容易に実現させるという効果が得られ
る。The effect of realizing large capacity extremely easily can be obtained.
第1図a、l)は本発明の実施例による半導体メモリセ
ル部を示す要部側断面図、第2図は従来のトレンチ構造
の一例であるFCC構造メモリセルを示す要部側断面図
、第3図は従来のスタックド構造メモリセルを示す要部
側断面図である。
1 ・・・・ビットラインを形成するドレイン、2・・
・・・・ゲート絶縁膜、3・・・・・ワードラインを形
成するゲート電極、4・・・・・・メモリセルのソース
拡散部、5・・・・・・メモリセルのキャパシタを構成
する絶縁膜、6・・・・・・下部プレート電極、7・・
・・・・分離用厚膜、8・・・・・・基板、9・・・・
・・メモリセルのソース部を構成する導電性電極、10
・・・・・・層間絶縁膜、11・・・・・・上部プレー
ト電極。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名イ°
−−ビシlンイノとηATうY・し4゜トーーγ−ト糸
口&S莫1a and 1) are side sectional views of main parts showing a semiconductor memory cell section according to an embodiment of the present invention, FIG. 2 is a side sectional view of main parts showing an FCC structure memory cell which is an example of a conventional trench structure, FIG. 3 is a side sectional view of a main part of a conventional stacked structure memory cell. 1... Drain forming the bit line, 2...
...Gate insulating film, 3...Gate electrode forming word line, 4...Source diffusion part of memory cell, 5...Constituting capacitor of memory cell Insulating film, 6... lower plate electrode, 7...
... Thick film for separation, 8 ... Substrate, 9 ...
...Conductive electrode constituting the source part of the memory cell, 10
. . . Interlayer insulating film, 11 . . . Upper plate electrode. Name of agent: Patent attorney Toshio Nakao and one other person
--Bishinino and ηAT uY・shi4゜to・γ−to clue & Smo
Claims (1)
レンチと、前記トレンチの内壁及び前記トレンチの周辺
部の前記半導体基板に形成された素子分離用絶縁厚膜と
、前記周辺部の素子分離用絶縁厚膜に隣接した前記半導
体基板表面近傍に形成された前記半導体基板と反対導電
型の信号読み出し用MOSトランジスタのソース領域と
、前記ソース領域に隣接した前記半導体基板上に形成さ
れた前記MOSトランジスタのゲート絶縁膜と、前記ゲ
ート絶縁膜に隣接した前記ソース領域と反対側の前記半
導体基板表面近傍に形成された前記半導体基板と反対導
電型のビットライン用ドレイン領域と、前記素子分離用
絶縁厚膜のトレンチ周辺部上及び前記ゲート絶縁膜上に
設けられたワードライン用第1電極と、前記第1電極上
に形成された層間絶縁膜と、前記素子分離用絶縁厚膜上
及び前記層間絶縁膜上に形成された下部セルプレート用
第2電極層と、前記第2電極層と前記ソース領域の間に
設けられた層間絶縁膜と、前記第2電極層上に形成され
たメモリセルの下部キャパシタの誘電体用絶縁膜と、前
記下部キャパシタの誘電体用絶縁膜上に形成され前記ソ
ース領域に電気的にコンタクトする第3電極層と、前記
第3電極層上に形成されたメモリセルの上部キャパシタ
の誘電体用絶縁膜と、前記上部キャパシタの誘電体用絶
縁膜上に形成され前記第2電極層と電気的接続部を有す
る上部セルプレート用第4電極層とより構成され、かつ
前記トレンチ内の隣接するメモリセルの第3電極層間に
第4電極層が挿入されている事を特徴とする1トランジ
スタ型DRAM装置。 2 ゲート絶縁膜上及び層間絶縁膜を介して第4電極層
上に形成された第1電極を有する特許請求の範囲第1項
記載の1トランジスタ型DRAM装置。[Scope of Claims] 1: a trench formed in a predetermined region of a semiconductor substrate of one conductivity type; an insulating thick film for element isolation formed on the semiconductor substrate on the inner wall of the trench and the peripheral portion of the trench; A source region of a signal readout MOS transistor of a conductivity type opposite to that of the semiconductor substrate formed near the surface of the semiconductor substrate adjacent to the thick insulating film for element isolation in the peripheral portion, and on the semiconductor substrate adjacent to the source region. a gate insulating film of the MOS transistor formed in the gate insulating film; and a bit line drain region of a conductivity type opposite to that of the semiconductor substrate formed near the surface of the semiconductor substrate on the opposite side to the source region adjacent to the gate insulating film. , a word line first electrode provided on the trench peripheral portion of the element isolation thick insulating film and on the gate insulating film; an interlayer insulating film formed on the first electrode; and the element isolation insulating film. a second electrode layer for a lower cell plate formed on the thick film and the interlayer insulating film; an interlayer insulating film provided between the second electrode layer and the source region; a dielectric insulating film of the lower capacitor of the formed memory cell; a third electrode layer formed on the dielectric insulating film of the lower capacitor and in electrical contact with the source region; and a third electrode layer on the third electrode layer. a fourth electrode layer for an upper cell plate formed on the dielectric insulating film of the upper capacitor and having an electrical connection with the second electrode layer; A one-transistor type DRAM device comprising: a fourth electrode layer inserted between third electrode layers of adjacent memory cells in the trench. 2. The one-transistor DRAM device according to claim 1, having a first electrode formed on the gate insulating film and on the fourth electrode layer via an interlayer insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61034692A JPH0746700B2 (en) | 1986-02-18 | 1986-02-18 | 1-transistor type DRAM device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61034692A JPH0746700B2 (en) | 1986-02-18 | 1986-02-18 | 1-transistor type DRAM device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62193168A true JPS62193168A (en) | 1987-08-25 |
JPH0746700B2 JPH0746700B2 (en) | 1995-05-17 |
Family
ID=12421428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61034692A Expired - Lifetime JPH0746700B2 (en) | 1986-02-18 | 1986-02-18 | 1-transistor type DRAM device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0746700B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147857A (en) * | 1987-12-03 | 1989-06-09 | Fujitsu Ltd | Semiconductor memory and manufacture thereof |
US4905193A (en) * | 1987-07-10 | 1990-02-27 | Siemens Aktiengesellschaft | Large scale integrable memory cell with a trench capacitor wherein the trench edge is surrounded by a field oxide region |
US5075745A (en) * | 1987-12-11 | 1991-12-24 | Oki Electric Industry Co., Ltd. | Capacitor cell for use in a semiconductor memory integrated circuit device |
JPH04206962A (en) * | 1990-11-30 | 1992-07-28 | Mitsubishi Electric Corp | Semiconductor device |
US5138412A (en) * | 1988-09-30 | 1992-08-11 | Kabushiki Kaisha Toshiba | Dynamic ram, having an improved large capacitance |
-
1986
- 1986-02-18 JP JP61034692A patent/JPH0746700B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4905193A (en) * | 1987-07-10 | 1990-02-27 | Siemens Aktiengesellschaft | Large scale integrable memory cell with a trench capacitor wherein the trench edge is surrounded by a field oxide region |
JPH01147857A (en) * | 1987-12-03 | 1989-06-09 | Fujitsu Ltd | Semiconductor memory and manufacture thereof |
US5075745A (en) * | 1987-12-11 | 1991-12-24 | Oki Electric Industry Co., Ltd. | Capacitor cell for use in a semiconductor memory integrated circuit device |
US5138412A (en) * | 1988-09-30 | 1992-08-11 | Kabushiki Kaisha Toshiba | Dynamic ram, having an improved large capacitance |
JPH04206962A (en) * | 1990-11-30 | 1992-07-28 | Mitsubishi Electric Corp | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH0746700B2 (en) | 1995-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2510265B2 (en) | Semiconductor memory device and manufacturing method thereof | |
KR0132577B1 (en) | Integrated circuit trench cell | |
JPH06204428A (en) | Dynamic random access memory and its manufacture | |
JP3172321B2 (en) | Method for manufacturing semiconductor memory device | |
JPH0430573A (en) | Semiconductor memory device | |
US5763305A (en) | Method for forming a semiconductor memory device with a capacitor | |
JPS63158869A (en) | Semiconductor memory | |
JPH0673368B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPH02312270A (en) | Dram cell and its manufacture | |
JPS62193168A (en) | One-transistor type dram device | |
JP2574231B2 (en) | Semiconductor memory device | |
JPS62137863A (en) | Semiconductor memory device | |
JPS60224260A (en) | Semiconductor memory device | |
JPS62190868A (en) | Semiconductor memory | |
JPH01302851A (en) | Structure of memory cell of semiconductor memory | |
JPS6350056A (en) | Semiconductor storage device | |
JPH0575059A (en) | Semiconductor storage device and its manufacture | |
US6180483B1 (en) | Structure and fabrication method for multiple crown capacitor | |
JPH07193137A (en) | Semiconductor storage and its manufacture | |
JPH0789570B2 (en) | 1-transistor type DRAM device | |
JP2827377B2 (en) | Semiconductor integrated circuit | |
JPH06342887A (en) | Mist-type dynamic random-access memory cell and its manufacture | |
JPS583270A (en) | Semiconductor memory | |
JPH0480540B2 (en) | ||
JPS63318151A (en) | Dram memory cell |