JPS62190613A - Manufacture of zinc oxide conductive film - Google Patents
Manufacture of zinc oxide conductive filmInfo
- Publication number
- JPS62190613A JPS62190613A JP3236986A JP3236986A JPS62190613A JP S62190613 A JPS62190613 A JP S62190613A JP 3236986 A JP3236986 A JP 3236986A JP 3236986 A JP3236986 A JP 3236986A JP S62190613 A JPS62190613 A JP S62190613A
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- conductive film
- film
- hydrogen
- oxide conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims description 37
- 239000011787 zinc oxide Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 3
- 238000005477 sputtering target Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 26
- 238000002834 transmittance Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229940110676 inzo Drugs 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Liquid Crystal (AREA)
- Physical Vapour Deposition (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、太陽電池、液晶表示パネル、その他、産業上
巾広く用いられている透光性導電膜のうち酸化亜鉛導電
膜の作製方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a zinc oxide conductive film among light-transmitting conductive films widely used in solar cells, liquid crystal display panels, and other industries.
従来の透明扉電膜にはAu等の金属薄物を用いるものと
、5n02、Into、等の金属酸化物を用いるものと
がある。金属薄膜はその高い導電性の為、低抵抗の膜を
作りやすい反面、可視域での吸収が大きい為、高透過率
が得にくり、かつ膜の強度が劣るという欠点をもってい
る。一方金属酸化物は適度の導電性と高透過率そのうえ
優れた膜強度をもっているので幅広く応用されている。Conventional transparent door electrical films include those using thin metals such as Au and those using metal oxides such as 5n02 and Into. Metal thin films have high conductivity, making it easy to create low-resistance films, but they have the drawback of having high absorption in the visible range, making it difficult to obtain high transmittance, and having poor film strength. On the other hand, metal oxides have appropriate conductivity, high transmittance, and excellent film strength, so they are widely used.
現在、−Sに知られている金属酸化物はネサ膜と呼ばれ
るSnO□膜、InzO,膜、ITO膜等でこれらのう
ちInzO:+膜とITO膜は比抵抗が10〜4Ωcm
程、5noJ!が10−3Ωcrn程の改質の物が得ら
れている。Currently, metal oxides known for -S include SnO□ film called Nesa film, InzO film, ITO film, etc. Among these, InzO:+ film and ITO film have a specific resistance of 10 to 4 Ωcm.
Cheng, 5noJ! A modified product with a resistance of about 10 −3 Ωcrn has been obtained.
さらに最近、酸化亜鉛膜ZnOがITO膜と同程度の光
透過性を有し、原材料が安価であるために注目されてい
る。Furthermore, recently, a zinc oxide film, ZnO, has attracted attention because it has a light transmittance comparable to that of an ITO film and its raw materials are inexpensive.
しかしながら、公知のスパッタ法などで作製されたZn
O膜はその比抵抗が、10−”(9cm)程度しか得ら
れず実用にはあまり向いていなかった。However, Zn produced by known sputtering method etc.
The O film had a resistivity of only about 10-'' (9 cm) and was not suitable for practical use.
本発明は、この問題を解決するものであり、従来の製造
装置をそのまま利用してより低抵抗なZnO膜を作製す
る方法に関するものである。The present invention solves this problem and relates to a method for producing a ZnO film with lower resistance using conventional production equipment as is.
この問題を解決するために、従来は酸化物被膜を作製す
る際に不必要または悪影響を及ぼすと考えられていた還
元性気体である水素を少量添加して酸化物被膜を形成す
ることを特徴とするものである。In order to solve this problem, the oxide film is formed by adding a small amount of hydrogen, which is a reducing gas that was conventionally thought to be unnecessary or have a negative effect when creating an oxide film. It is something to do.
以下に実施例により本発明を説明する
実施例
本実施例では従来より公知のアグネトロンスパンタリン
グ装置を用いて行った。6インチのZn0(99,9χ
)焼結体ターゲットを用い基板とターゲットの間隔は9
0mmであり、不活性ガスとしてArを用いスパッタリ
ングガス圧は1.2Pa、印加電力300−で一定とし
添加する水素量及び膜形成温度条件を種々変えてZnO
導電膜を作製した。その結果を表1に示す。EXAMPLES The present invention will now be explained with reference to examples. In this example, a conventionally known agnetron sputtering device was used. 6 inch Zn0 (99,9χ
) Using a sintered target, the distance between the substrate and target is 9
0 mm, Ar was used as an inert gas, the sputtering gas pressure was kept constant at 1.2 Pa, and the applied power was kept constant at 300 -.
A conductive film was prepared. The results are shown in Table 1.
表1
また比較の為に各温度において水素を添加しないで、Z
nO膜を作製した。その結果を表2に示す。Table 1 For comparison, Z
An nO film was produced. The results are shown in Table 2.
表2
尚、表1表2の基板温度の欄において加熱せずと表示が
ある時の実際の基板温度は、スパッタリング時の輻射熱
の為若干の違いがあり30℃〜50℃の範囲で一定であ
った
これらの実施例及び比較例より明らかなようにZnO膜
を作製する際に水素を少量添加すると、その比抵抗は最
大で2ケタ以上改善されることが判明した。また水素を
添加すると、基板温度を下げてゆくにしたがい、ZnO
膜の抵抗値が下がってくることが判明した。これは水素
を添加しない場合の現象と全く逆である。Table 2 In addition, in the substrate temperature column of Table 1 and Table 2, the actual substrate temperature when it is indicated that it is not heated is constant within the range of 30°C to 50°C, although there may be slight differences due to radiant heat during sputtering. As is clear from these Examples and Comparative Examples, it has been found that when a small amount of hydrogen is added when producing a ZnO film, the specific resistance can be improved by two orders of magnitude or more at most. Furthermore, when hydrogen is added, as the substrate temperature is lowered, ZnO
It was found that the resistance value of the membrane decreased. This is completely opposite to the phenomenon when no hydrogen is added.
また、これらのZnO膜の光の透過率の代表的な値を表
3に示す。Further, Table 3 shows typical values of the light transmittance of these ZnO films.
表3
(膜厚はすべて3000人)
このように透過率は水素の添加の有無、温度の差にかか
わらず、はぼ一定で良好な透過性を示した。Table 3 (All film thicknesses were 3,000 people) As described above, the transmittance was almost constant regardless of whether hydrogen was added or not, and regardless of the temperature difference, indicating good permeability.
図1に表1の結果をまとめて示す曲線(1) (2)
(3)(4)は各々0゛C3加熱せず100 ’C,1
50℃の基板温度に対応する。これより明らかなように
、水素分圧比で1.5〜2.5z付近が最も低抵抗を示
している。また0℃においては、水素分圧比10χでも
10− ’ (ΩcII+)台の比抵抗値であり、基板
加熱せずと0℃では0.05χでも同様に10− ’
(0cm)台の比抵抗を有していた。Figure 1 shows the curves (1) (2) that summarize the results in Table 1.
(3) and (4) are respectively 100'C and 100'C without heating at 0'C3.
Corresponds to a substrate temperature of 50°C. As is clear from this, the hydrogen partial pressure ratio exhibits the lowest resistance around 1.5 to 2.5z. Furthermore, at 0°C, even with a hydrogen partial pressure ratio of 10χ, the resistivity value is on the order of 10-' (ΩcII+), and at 0°C without heating the substrate, even with 0.05χ, the resistivity value is 10-'
(0 cm).
このように、従来の装置を使用し、還元性気体である水
素を少量添加することにより、より低抵抗なZnO膜を
形成することができる。In this way, by using a conventional device and adding a small amount of hydrogen, which is a reducing gas, it is possible to form a ZnO film with lower resistance.
さらに、この時基板温度を室温以下に保持し、ZnO膜
を形成することは、非常に有効であった。Furthermore, it was very effective to maintain the substrate temperature below room temperature and form the ZnO film at this time.
本実施例では、ZnOのターゲ・ノドを用いArガス中
に水素を添加したが、Znターゲットを用い計ガスと0
2ガスによる反応性スパッタリング時に水素を添加して
も同様である。In this example, hydrogen was added to Ar gas using a ZnO target nod; however, hydrogen was added to Ar gas using a Zn target.
The same effect can be obtained even if hydrogen is added during reactive sputtering using two gases.
また、スパッタリングターゲット中にAIまたはAI□
03を1〜5w tX程度混入しても同様の結果が得ら
れる。Also, AI or AI□ can be added to the sputtering target.
A similar result can be obtained even if approximately 1 to 5 wtX of 03 is mixed.
第1図は、ZnO膜の比抵抗と作製時の水素分圧比の関
係を示す。FIG. 1 shows the relationship between the resistivity of the ZnO film and the hydrogen partial pressure ratio during fabrication.
Claims (1)
ターゲットにより酸化亜鉛導電膜をスパッタリングさせ
て所定の基板に酸化亜鉛導電膜を作製する方法において
、スパッタリング用気体に水素が添加され、かつ前記基
板は室温以下の温度で保持された状態でZnO膜を形成
する酸化亜鉛導電膜の作製方法 2、特許請求の範囲第1項において、前記水素は分圧比
10.0%以下の割合で添加されたことを特徴とする酸
化亜鉛導電膜の作製方法[Claims] 1. In a method of sputtering a zinc oxide conductive film using a sputtering target containing zinc or zinc oxide as a main component to produce a zinc oxide conductive film on a predetermined substrate, hydrogen is added to the sputtering gas. , and method 2 for manufacturing a zinc oxide conductive film in which a ZnO film is formed while the substrate is held at a temperature below room temperature, in claim 1, wherein the hydrogen has a partial pressure ratio of 10.0% or less. A method for producing a conductive film of zinc oxide characterized by the addition of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3236986A JPS62190613A (en) | 1986-02-17 | 1986-02-17 | Manufacture of zinc oxide conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3236986A JPS62190613A (en) | 1986-02-17 | 1986-02-17 | Manufacture of zinc oxide conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62190613A true JPS62190613A (en) | 1987-08-20 |
Family
ID=12357028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3236986A Pending JPS62190613A (en) | 1986-02-17 | 1986-02-17 | Manufacture of zinc oxide conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62190613A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012506486A (en) * | 2008-10-21 | 2012-03-15 | アプライド マテリアルズ インコーポレイテッド | Transparent conductive zinc oxide display film and method for producing the same |
-
1986
- 1986-02-17 JP JP3236986A patent/JPS62190613A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012506486A (en) * | 2008-10-21 | 2012-03-15 | アプライド マテリアルズ インコーポレイテッド | Transparent conductive zinc oxide display film and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4399015A (en) | Method for fabricating an indium tin oxide film for a transparent electrode | |
JPS62122011A (en) | Transparent conducting film and manufacture of the same | |
JPS61111940A (en) | High permeability and low radiation product and manufacture | |
KR910002490B1 (en) | Sputtered films of bismuth/tin oxide and articles produced by said film | |
JP3163015B2 (en) | Transparent conductive film | |
JPS62154411A (en) | Transparent conductive film | |
JPH0344465A (en) | Production of sputtering target for electrically conductive transparent ito film | |
JPS62190613A (en) | Manufacture of zinc oxide conductive film | |
JPS6196609A (en) | Transparent conductive film | |
JP2989886B2 (en) | Analog touch panel | |
JPS62190612A (en) | Manufacture of zinc oxide conductive film | |
JPH06293956A (en) | Zinc oxide transparent conductive film, its formation and sputtering target used therefor | |
JPS62157618A (en) | Manufacture of transparent conductive film | |
JPH0315107A (en) | Conductive metal oxide sintered body and its application | |
JPH06177407A (en) | Transparent conductive film | |
JPH01283369A (en) | Sputtering target for forming electrically conductive transparent ito film | |
JPH04293769A (en) | Ito sputtering target for forming film at low temperature | |
JPS60220505A (en) | Transparent conductive film and method of forming same | |
JPS6280918A (en) | Manufacturing transparent conductive film | |
JP2520493B2 (en) | Target for forming transparent conductive film | |
JPH0133883B2 (en) | ||
CN219678709U (en) | High light transmittance heating structure | |
JPH0765167B2 (en) | Sputtering target for ITO transparent conductive film | |
CN212392011U (en) | Low-sheet-resistance transparent conductive film | |
JPS54134396A (en) | Transparent conductive film and its manufacturing process |