JPS62190404A - Measuring instrument for body shape - Google Patents
Measuring instrument for body shapeInfo
- Publication number
- JPS62190404A JPS62190404A JP3072486A JP3072486A JPS62190404A JP S62190404 A JPS62190404 A JP S62190404A JP 3072486 A JP3072486 A JP 3072486A JP 3072486 A JP3072486 A JP 3072486A JP S62190404 A JPS62190404 A JP S62190404A
- Authority
- JP
- Japan
- Prior art keywords
- interference fringes
- shape
- measured
- light
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000037237 body shape Effects 0.000 title 1
- 239000004065 semiconductor Substances 0.000 claims abstract description 13
- 230000010355 oscillation Effects 0.000 claims abstract description 6
- 238000005259 measurement Methods 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 10
- 238000005286 illumination Methods 0.000 abstract 3
- 238000005305 interferometry Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は干渉縞を利用して高速で走行している物体の
形状および形状変化を測定する物体形状測定装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an object shape measuring device that uses interference fringes to measure the shape and shape change of an object traveling at high speed.
高速で走行している物体の形状、とくに物体が短時間で
どのように変化するかを非接触で測定する場合、レーザ
光を利用した光学的測定方法が利用されている。このレ
ーザ光を利用する測定法の一つに、スペックル干渉法が
ある。このスペックル干渉法で得られるスペックルパタ
ーンは、粗面にレーザ光を照射した際に散乱光どうしが
干渉して得られる斑点模様のことをいうが、レーザ光を
2方向から照射すると、物体の直前で2光束による干渉
縞が現われ、その干渉縞が物体面でスペックル干渉縞と
なる。このスペックル干渉縞は、粗面の変形を示すので
、前記高速走行物体の形状検査に利用できる。Optical measurement methods using laser light are used to non-contactly measure the shape of an object traveling at high speed, especially how the object changes over a short period of time. One of the measurement methods that utilizes this laser light is speckle interferometry. The speckle pattern obtained by this speckle interferometry is a speckled pattern obtained when scattered light interferes with each other when a laser beam is irradiated onto a rough surface. Interference fringes due to the two light beams appear just before the , and these interference fringes become speckle interference fringes on the object plane. These speckle interference fringes indicate the deformation of the rough surface and can therefore be used to inspect the shape of the object traveling at high speed.
しかるに、スペックル干渉法は1本来、干渉編のプント
ラストが悪い上1こ、コントラストが粗面の粗さに依存
し、極端に表面が平滑になると、スペックルパターンが
現われなくなり1表面の形状検査が不可能となる。However, in speckle interferometry, the speckle pattern is inherently poor, and the contrast depends on the roughness of the surface, and if the surface becomes extremely smooth, the speckle pattern will no longer appear and the shape of the surface will be affected. Inspection becomes impossible.
この発明は、上記事情を勘案してなされたもので1表面
が平滑な被測定物体の形状および形状変化を非接触で測
定することができる物体形状測定itを提供することを
目的とする。The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an object shape measurement IT capable of non-contact measurement of the shape and shape change of an object to be measured having a smooth surface.
この発明の装置は、駆動源によってパルス、駆動される
半導体レーザ装置と、この半導体レーザ装置からのレー
ザ光を被測定物体を照射する照射光と上記被測定物体か
ら反射した上記照射光とで干渉縞を作る参照光とに分割
する光学系と、この光学系により作られた干渉縞から上
記被測定物体の形状および形状変化を求める表示手段と
、レーザ光の発振周期を腑整するとともにレーザ光の発
振に同期して被測定物体の干渉縞を表示手段1こ表示さ
せるためのパルス1g号を出力するパルス発振器とを具
備するようにしたものである。The device of the present invention includes a semiconductor laser device that is pulsed and driven by a driving source, and a laser beam from the semiconductor laser device that interferes with the irradiation light that irradiates the object to be measured and the irradiation light that is reflected from the object to be measured. an optical system that divides the reference beam into a reference beam that creates fringes; a display means that determines the shape and shape change of the object to be measured from the interference fringes created by this optical system; and a display device that adjusts the oscillation period of the laser beam and The apparatus is equipped with a pulse oscillator that outputs a pulse number 1g for displaying the interference fringes of the object to be measured on the display means 1 in synchronization with the oscillation of the apparatus.
以下、この発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第2図に示す測定装置は顕微鏡(1)を備えている。こ
の顕微鏡(1)の接眼部(2)には光像強度を増幅させ
る光増幅器(3)を介してテレビカメラ(4)が接続さ
れている。また、顕微鏡(1)の対物レンズ部(5)に
は干渉計(6)が対向して配置されている。この干渉計
(6)は第1図に示すように光学系(7)を有する。The measuring device shown in FIG. 2 is equipped with a microscope (1). A television camera (4) is connected to an eyepiece (2) of this microscope (1) via an optical amplifier (3) that amplifies the intensity of the optical image. Further, an interferometer (6) is arranged opposite to the objective lens section (5) of the microscope (1). This interferometer (6) has an optical system (7) as shown in FIG.
この光学系(力はPまたはS偏向成分のうちの一方を取
出して1/4波長板(8)に導くビームスプリッタ(9
)と、上記1/4波長板(8)に対向して配置されたハ
ーフミラ−αυとから構成されている。上記ビームスプ
リッタ(9)には半導体レーザ& 置(lから出力され
コリメータレンズa3を通過したレーザ光りが入射する
ようになっている。ビームスプリッタ(9)に入射した
レーザ光りはそのうちの所定の成分がビームスプリッタ
(9)で反射して1/4改長板(8)を透過してハーフ
ミラ−αυに到る。このハーフミラ−(lυにおいてレ
ーザ光りの一部はこれを透過して被測定物体をu4)を
照射する照射光L1となり、他の一部はハーフミラ−(
11)で反射して参照光り、となる。上記照射光り、は
被測定物体Iで反射したのちハーフミラ−αυを透過し
、上記参照元Ltと干渉を起こす。したがって、被測定
物体Iの測定面の形状に応じた干渉縞ができ、この干渉
縞、つまり光信号は上記顕微! (1) lこ入射する
ようになっている。This optical system (force is a beam splitter (9) that extracts one of the P or S polarization components and guides it to the quarter-wave plate (8).
) and a half mirror αυ placed opposite to the quarter wavelength plate (8). The beam splitter (9) is configured so that the laser beam output from the semiconductor laser & The beam is reflected by the beam splitter (9) and transmitted through the 1/4 modification plate (8) to reach the half mirror αυ. A part of the laser light is transmitted through this half mirror (lυ) to the object to be measured. becomes the irradiation light L1 that irradiates u4), and the other part becomes the irradiation light L1 that irradiates the half mirror (
11) and becomes a reference light. The irradiation light is reflected by the object to be measured I and then transmitted through the half mirror αυ, causing interference with the reference source Lt. Therefore, interference fringes are formed according to the shape of the measurement surface of the object to be measured I, and these interference fringes, that is, optical signals, are generated by the microscopic device mentioned above! (1) It is designed so that 1 light is incident.
上記テレビカメラ(4)にはこれを駆動する第1の駆動
装置四が接続されている。この第1の駆動装置αつには
モニタuQが接続されている。また、上記半導体レーザ
装置(13にはこれをパルス駆動する第2の駆動装置(
11が接続されている。そして、上記第1の駆動装置0
9と上記第2の駆動装置αDとの間には発振器(181
が設けられ、この発振器時からのパ器賭からのパルス1
g号STの立上り時点に同期して。A first driving device 4 for driving the television camera (4) is connected to the television camera (4). A monitor uQ is connected to the first drive device α. Further, the semiconductor laser device (13 has a second drive device (13) for pulse-driving the semiconductor laser device (13).
11 are connected. Then, the first drive device 0
An oscillator (181) is provided between 9 and the second drive device αD.
is provided, and the pulse 1 from the output from this oscillator time is
In synchronization with the rise of the g ST.
つまり、パルス信号S′vをトリガバルストシて、この
パルス信号8Tを入力した第1の2枢動装置(15)か
らは、パルス状のmJ’+M号SLが出力され、この駆
動信号SLにより半導体レーザ装置1.1カからレーザ
光りが出力されるとともに、レーザ光りの発振に同期し
て、テレビカメラ(4)の画像がモニタ(IF5に取込
まれるようになっている。゛このときのパルス信号ST
の周期P0は1発振器0樽にて調節できるようになって
いる。また、パルス信号STのパルス幅T、は、モニタ
aOの1フレームに要する時間より長くなるよう(ζ設
定されている。他方、駆動信号SLのパルス幅T、は、
後述するように、干渉縞がぼけない時間幅に設定されて
いる。In other words, the first two-pivot device (15) to which the pulse signal S'v is triggered and this pulse signal 8T is input outputs a pulsed mJ'+M number SL, and by this drive signal SL. Laser light is output from the semiconductor laser device 1.1, and an image from the television camera (4) is captured on the monitor (IF5) in synchronization with the oscillation of the laser light. Pulse signal ST
The period P0 can be adjusted with 1 oscillator and 0 barrels. Further, the pulse width T of the pulse signal ST is set (ζ) to be longer than the time required for one frame of the monitor aO. On the other hand, the pulse width T of the drive signal SL is
As will be described later, the time width is set so that the interference fringes are not blurred.
このように構成された測定装置によれば、半導体レーザ
装置(1カから出力されたレーザ光りが]・−7ミラー
(11)によって照射光り、と参照光L2とに分けられ
る。そして、これらの光によって上記照射光り、が照射
した被測定物体Q41の形状に応じた干渉縞が作られ、
この干渉縞がモニタαeに写し出されるから、これによ
って上記被測定物体04)の形状を知ることがで舟る。According to the measuring device configured in this way, the laser light output from the semiconductor laser device (1) is divided into the irradiation light and the reference light L2 by the -7 mirror (11). Interference fringes are created by the light according to the shape of the object to be measured Q41 irradiated by the irradiation light,
Since this interference fringe is displayed on the monitor αe, it is possible to know the shape of the object to be measured 04).
また、半導体レーザ装置σ2はパルス信号BTに基づき
、第2の駆動装置(Iηによってパルス駆動されるから
、各パルス毎の干渉縞を比較すれば、その間における被
測定物体(14)の形状の変化を求めることもできる。Furthermore, since the semiconductor laser device σ2 is pulse-driven by the second driving device (Iη) based on the pulse signal BT, if the interference fringes for each pulse are compared, the change in the shape of the object to be measured (14) during that time can be seen. You can also ask for
ところで、被測定物体Iが、第4図に示すようにテープ
状をなし、かつ矢印(V)方向に高速で走行されるもの
であった場合、被測定物体α滲に大きさd、高さHの変
形があったとすると、レーザ光りの波長をλとすると、
変形に対応して現われる干渉縞の本数mは1次式ので表
わされる。By the way, if the object to be measured I is tape-shaped as shown in FIG. 4 and is traveling at high speed in the direction of arrow (V), If there is a deformation of H, and if the wavelength of the laser beam is λ, then
The number m of interference fringes that appear in response to deformation is expressed by the linear equation.
m −2H/λ ・・・・・・■また、干
渉縞の平均間隔Δdは1次式〇で表わされる。m −2H/λ ...■ Also, the average interval Δd of interference fringes is expressed by the linear equation 〇.
Δd = d / 2m = d *λ/4H−、、用
■干渉縞がぼけないための被測定物体Iの許容移動量を
Δd/10以下とすると、半導体レーザ装置(I21の
パルス幅T、は1次式■により表わされる。Δd = d / 2m = d *λ/4H-,, ■ If the permissible movement amount of the object to be measured I to avoid blurring the interference fringes is Δd/10 or less, then the pulse width T of the semiconductor laser device (I21 is It is expressed by the linear equation (■).
Tt<Δd/1O−v)d・λ/40・H・■・・・■
たとえば、V=1(m/秒) 、 d = 1 (II
’+) 、 H= 100 (μmλ=08(μm)と
した場合−Tt < 0.2μ式となる。この実施例の
場合1発振器賭からの同期信号STのパルス幅を、前記
V、 d、 H,λに照応して変化させることにより干
渉縞のボケを防止することができる。Tt<Δd/1O-v)d・λ/40・H・■・・・■
For example, V = 1 (m/s), d = 1 (II
'+), H = 100 (μm When λ = 08 (μm), the formula -Tt < 0.2μ is obtained. In this embodiment, the pulse width of the synchronization signal ST from one oscillator is determined by the above V, d, By changing it in accordance with H and λ, blurring of interference fringes can be prevented.
この発明の物体形状測定装置によれば、平滑な表面を有
し且つ高速で移動する被測定物体の形状を、扁楕度で測
定できる。とくに、パルス状に発振されるレーザ光の発
振に同期して干渉縞を表示手段1こて表示されるように
したので、干渉縞連続変化を正確に観察することができ
る。According to the object shape measuring device of the present invention, the shape of an object to be measured that has a smooth surface and moves at high speed can be measured in terms of oblateness. In particular, since the interference fringes are displayed on the display means 1 in synchronization with the oscillation of the pulsed laser beam, continuous changes in the interference fringes can be observed accurately.
図面はこの発明の一実施?りを示し、第1図は干渉計の
構成図、第2図は装置全体の概略図、第3(1)−・・
顕微鏡、(3)・・・光増幅器。
(4)・・・テレビカメラ、(9)・・・ビームスプリ
ッタ。
(11)・・・ハーフミラ−1α2・・・半導体レーザ
装置。
)・ C14)・・・被測定物体、 (Le
・・・モニタ(表示手段)、C171・・・第2の駆動
源、 賭・・・発振器。
代理人 弁理士 則 近 憲 佑
同 竹 花 喜久男
第1図
+7 +FI 16第
2 図
一一一−T1−−−−
/′7
第 4 図
第5図Is the drawing an implementation of this invention? Fig. 1 is a block diagram of the interferometer, Fig. 2 is a schematic diagram of the entire device, and Fig. 3 (1)...
Microscope, (3)... Optical amplifier. (4)...TV camera, (9)...beam splitter. (11) Half mirror 1α2 Semiconductor laser device. )・C14)...Object to be measured, (Le
. . . Monitor (display means), C171 . . . Second drive source, Bet . . . Oscillator. Agent Patent Attorney Nori Ken Yudo Takehana Kikuo Figure 1 +7 +FI 16th
2 Figure 111-T1---/'7 Figure 4 Figure 5
Claims (2)
置と、この半導体レーザ装置からのパルス状のレーザ光
を被測定物体を照射する照射光と上記被測定物体から反
射した上記照射光とで干渉縞を作る参照光とに分割する
光学系と、この光学系により作られた干渉縞から上記被
測定物体の形状を表示する表示手段と、上記レーザ装置
からのレーザ光の発振周期を調整させるとともに上記レ
ーザ光の発振に同期して上記被測定物体の干渉縞を上記
表示手段にて表示させるパルス信号を上記駆動源及び上
記表示手段に出力するパルス発振器とを具備したことを
特徴とする物体形状測定装置。(1) A semiconductor laser device that is pulse-driven by a driving source, an interference pattern formed by the irradiation light that irradiates the object to be measured with pulsed laser light from the semiconductor laser device, and the irradiation light that is reflected from the object to be measured. an optical system that divides the reference beam into a reference beam that produces Object shape measurement characterized by comprising a pulse oscillator that outputs to the drive source and the display means a pulse signal that causes the display means to display interference fringes of the object to be measured in synchronization with laser beam oscillation. Device.
定されていることを特徴とする特許請求の範囲第1項記
載の物体形状測定装置。(2) The object shape measuring device according to claim 1, wherein the pulse width of the laser beam is set to a width that does not blur interference fringes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3072486A JPS62190404A (en) | 1986-02-17 | 1986-02-17 | Measuring instrument for body shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3072486A JPS62190404A (en) | 1986-02-17 | 1986-02-17 | Measuring instrument for body shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62190404A true JPS62190404A (en) | 1987-08-20 |
Family
ID=12311596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3072486A Pending JPS62190404A (en) | 1986-02-17 | 1986-02-17 | Measuring instrument for body shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62190404A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1430534A1 (en) * | 2001-08-23 | 2004-06-23 | University of Washington | Image acquisition with depth enhancement |
-
1986
- 1986-02-17 JP JP3072486A patent/JPS62190404A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1430534A1 (en) * | 2001-08-23 | 2004-06-23 | University of Washington | Image acquisition with depth enhancement |
EP1430534A4 (en) * | 2001-08-23 | 2009-07-01 | Univ Washington | Image acquisition with depth enhancement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4887899A (en) | Apparatus and method for electronic analysis of test objects | |
US4900940A (en) | Optical system for measuring a surface profile of an object using a converged, inclined light beam and movable converging lens | |
US5555087A (en) | Method and apparatus for employing a light source and heterodyne interferometer for obtaining information representing the microstructure of a medium at various depths therein | |
US4160598A (en) | Apparatus for the determination of focused spot size and structure | |
WO1999046557A1 (en) | Method and apparatus for measuring optical reflectivity and imaging through a scattering medium | |
US6124930A (en) | Method and arrangement for transverse optical coherence tomography | |
Willomitzer et al. | High resolution non-line-of-sight imaging with superheterodyne remote digital holography | |
US6219145B1 (en) | Interferometric system for precision imaging of vibrating structures | |
US5011280A (en) | Method of measuring displacement between points on a test object | |
US4222669A (en) | Interferometer for determining the shape of an object | |
JP2004271381A (en) | Speckle interferometry unit | |
JPS62190404A (en) | Measuring instrument for body shape | |
JP3986137B2 (en) | Laser illumination device and optical device using the same | |
JPH0886745A (en) | Spatial-coherence type light wave reflection measuring device and light-wave echo tomographic device using same | |
CN112731345B (en) | Vibration-resistant type area array sweep frequency distance measurement/thickness measurement device and method with active optical anti-shake function | |
US5734471A (en) | Method of adjusting sample position in light wave interference apparatus | |
JPH063128A (en) | Optical type surface shape measuring apparatus | |
JP2005049317A (en) | Interferometer | |
CN115235345A (en) | Transmission type interference microscopic nondestructive measurement device and measurement method for microstructure with high depth-to-width ratio | |
JP3693767B2 (en) | Shape measuring instrument | |
JP4307321B2 (en) | Dynamic shape measuring device | |
JPS62126306A (en) | Apparatus for measuring shape of object | |
JPS6275363A (en) | Laser distance measuring apparatus | |
JP3230977B2 (en) | Object positioning device for light wave interference device | |
JP2507409B2 (en) | Interference fringe generator |