[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62196815A - Thin-film growth device - Google Patents

Thin-film growth device

Info

Publication number
JPS62196815A
JPS62196815A JP3857386A JP3857386A JPS62196815A JP S62196815 A JPS62196815 A JP S62196815A JP 3857386 A JP3857386 A JP 3857386A JP 3857386 A JP3857386 A JP 3857386A JP S62196815 A JPS62196815 A JP S62196815A
Authority
JP
Japan
Prior art keywords
substrate
thin film
film growth
molecular beam
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3857386A
Other languages
Japanese (ja)
Inventor
Tadatsugu Ito
伊藤 糾次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3857386A priority Critical patent/JPS62196815A/en
Publication of JPS62196815A publication Critical patent/JPS62196815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To increase a growth rate without elevating the temperature of a substrate by irradiating the substrate by ultraviolet rays and conducting molecular-beam epitaxy (MBE) through the irradiation of molecular beams of a thin-film growth material from a molecular-beam source 2 under the state. CONSTITUTION:MBE constitution in which the molecular-beam source 2 of a thin-film growth material and the arranging section 4 of a substrate 3, to which a thin-film must be grown, are mounted into an ultra-high vacuum tank 1 evacuated by an ultra-high vacuum pump from an exhaust port 1A is formed. An ultraviolet-ray irradiation means 5 irradiating a surface, on which the thin- film is grown, of the substrate 3 by ultraviolet rays is provided. The substrate 3 is irradiated by ultraviolet rays, and MBE is performed through the irradiation of the molecular beams of the thin-film growth material from the molecular- beam source 2 under the state. A detecting means 6 detecting the reflected beams of ultraviolet rays from the surface of the substrate or the growth surface of the thin-film and deciding or observing the states of these surfaces is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に分子線エピキタシーによってシリニlン
、化合物半導体等の薄膜成長を行う薄膜成長材料に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention particularly relates to thin film growth materials for growing thin films of silicone, compound semiconductors, etc. by molecular beam epitaxy.

〔発明の概要〕[Summary of the invention]

本発明は、分子線エピキタシーによって薄膜成長を行う
に当って基板に対して紫外線照射を行い、これによって
、低い成長温度で良質の薄膜を、高い成長速度をもって
形成することができ、更に不純物ドーピングを行う場合
には、その不純物活性化率を高める。
The present invention irradiates a substrate with ultraviolet rays when growing a thin film by molecular beam epitaxy, thereby making it possible to form a high-quality thin film at a high growth rate at a low growth temperature, and furthermore to prevent impurity doping. When this is done, the impurity activation rate is increased.

〔従来の技術〕[Conventional technology]

薄膜の成長技術は、エレクトロニクス・デバイスの製造
上量も重要な技術であるが、中でも半導体薄膜を低温で
エピタキシャル成長せしめる技術は、デバイスの特性を
本質的に左右することになるので特に重要である。一般
に、デバイスはウエファ状の基板の上に形成されるため
、ウェファ面上の薄膜エピタキシ中ル成し法が基本技術
の一つとなっている。
Thin film growth technology is an important technology for the production of electronic devices, but the technology for epitaxially growing semiconductor thin films at low temperatures is particularly important because it essentially influences the characteristics of the device. Generally, devices are formed on a wafer-shaped substrate, so one of the basic technologies is a thin film epitaxy method on the wafer surface.

この場合、ウェファの大きさは年とともに増加の傾向に
あり、特にSiでは6インチ径のウェファが既に用いら
れるようになっている。この様にウェファの径が大きく
なると、エピタキシャル層の成S=温度を低温化するこ
とによっ°C、ウェファの反りを抑制することが極めて
重要になる。このような成長温度の低減化に対しては、
分子線エピキシー(以下MBEと呼ぶ)法が有効である
ことが知られているが、従来のMBE法でこれを達成す
る為には、Siを例にとると、膜の成長温度を仮りに5
00℃とした場合、結晶性の良い薄膜を成長させるには
、その成長速度は数nm/a+in以下に制限すること
が必要である。従って、この程度の小ざな成長速度では
、実用的なエピタキシー技術とは成り得ないのが現状で
ある。また、導電性を制御する為にドープする不純物の
電気的活性化率は、成長温度の低下と共に急激に低下す
ることが知られて層り、例えば、基板温度が500℃の
場合、従来のMBE法で得られる不純物の活性化率、例
えば八s、Bの活性化率は10%程度未満であり、これ
以上に高めることは極めて困難である。
In this case, the size of wafers tends to increase over the years, and wafers with a diameter of 6 inches are already being used especially for Si. As the diameter of the wafer becomes larger as described above, it becomes extremely important to suppress the warping of the wafer by lowering the temperature at which the epitaxial layer is formed. To reduce the growth temperature,
It is known that the molecular beam epixy (hereinafter referred to as MBE) method is effective, but in order to achieve this with the conventional MBE method, taking Si as an example, the film growth temperature must be set to 5.
When the temperature is 00° C., in order to grow a thin film with good crystallinity, it is necessary to limit the growth rate to several nm/a+in or less. Therefore, at present, such a small growth rate cannot provide a practical epitaxy technique. Furthermore, it is known that the electrical activation rate of impurities doped to control conductivity rapidly decreases as the growth temperature decreases.For example, when the substrate temperature is 500°C, conventional MBE The activation rate of impurities obtained by this method, for example, the activation rate of 8s and B, is less than about 10%, and it is extremely difficult to increase it beyond this level.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は低い成長温度で工業的に充分実用化の司清な大
きな成長速度をもって、良質な薄膜を形成することがで
き、更にドーピング不純物の活性化率を^めることので
きるようにする。
The present invention makes it possible to form a high-quality thin film at a low growth temperature and with a high growth rate sufficient for industrial practical use, and also to increase the activation rate of doping impurities.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第1図にその路線的構成図をネオように、通
電のMBE装置におけると同様に、排気口(IA)から
超高真空ポンプで排気される起部真空槽(1)内に薄膜
成長材料の分子線源(2)と薄膜成長を行おうとする基
板(3)の配置部(4)とが設けられたMBE構成とす
るが、特に本発明においては、基板(3)の薄膜成長を
行う面に向って紫外線照射を行う紫外線照射手段(5)
を設ける。そし°ζ基扱(3)に向っ一ζ紫外線照射を
行いこの状態で分子線源(2)からの>:’i IIQ
成長材料の分子線を照射してMBIEi’、を行う。
As shown in FIG. 1, the present invention has a starting vacuum chamber (1) that is evacuated from an exhaust port (IA) by an ultra-high vacuum pump, as in an energized MBE device. The MBE configuration is provided with a molecular beam source (2) for a thin film growth material and a placement section (4) for a substrate (3) on which thin film growth is to be performed. Ultraviolet irradiation means (5) for irradiating ultraviolet light toward the growth surface
will be established. Then, ζ ultraviolet rays are irradiated toward the °ζ group (3), and in this state >:'i IIQ from the molecular beam source (2)
MBIEi' is performed by irradiating the growth material with a molecular beam.

そして、更に、基板表面もしくは薄膜の成長表面からの
紫外線の反射光を検出してこれら曲の表面状態を判断な
いしは観察する検出手段(6)を設ける。
Furthermore, a detecting means (6) is provided for detecting the reflected light of ultraviolet rays from the substrate surface or the growth surface of the thin film to judge or observe the surface condition of these curves.

〔作用〕[Effect]

本発明は、紫外線照射を行い乍らMBEを行うものであ
るが、このようにすることによって薄膜成長材料、すな
わち基板(3)の加か?温度を例えば500℃程度の低
い温度に選定しても、ρlい薄11a成区速度をもって
結晶性にすぐれた、すなわち良好な薄膜を育成すること
ができる。これは第2図A及びBに示す基板(3)の薄
膜成長面となる結晶表面の未粘合の価電子、すなわちダ
ングリングボンドの状態モデルによって説明することが
できる。第2図にネオモデルは、St基板(3)の(1
00)結晶層による表面の電子結合状態を示し、同図A
は紫外線照射を行っていない状態、同図Bは紫外線照射
を行った状態を示す。紫外線照射を行わない場合は、β
+)i空中に置かれた基板(3)の結晶層111状態は
、白丸をもってその価電子をモデル的に示し、円弧状実
線aをもってその結合状態をモデル的に示すように、低
い基数温度では互いに近傍の未結合電子が相互に結合し
合っていて符号すで示すような結合のなされていないダ
ングリングボンドの発生が極めて少ない状態にあると考
えられ、このような状態の表面にSi原子が輸送されて
来ても、Si原子の結合が少ないことによって、基板(
3)の結晶からB膜結晶は育成しにくり、育成速度が低
くなる。これに比し、紫外線照射を適度のエネルギーと
強度をもゲで照射するときは、表面結合電子は紫外線を
吸収して容易に離解し、第2図Bに示すように、多くの
ダングリングボンドbを生じる。その結果、この表面に
到来するSi原子は容易に基板(3)のSi原子とボン
ドを組んで結晶化し、これによってずぐれた結晶@股を
賄い成長速度をもって育成できるものであると思われる
In the present invention, MBE is performed while irradiating ultraviolet rays, and by doing so, it is possible to increase the thickness of the thin film growth material, that is, the substrate (3). Even if the temperature is selected to be as low as, for example, 500° C., it is possible to grow a thin film with excellent crystallinity, that is, with a thin 11a formation rate that is low. This can be explained by the state model of unattached valence electrons, that is, dangling bonds, on the crystal surface that becomes the thin film growth surface of the substrate (3) shown in FIGS. 2A and 2B. In Figure 2, the Neo model shows (1) of the St substrate (3).
00) Shows the electronic bonding state of the surface due to the crystal layer, and the figure A
B shows a state where ultraviolet rays are not irradiated, and B shows a state where ultraviolet rays are irradiated. If no UV irradiation is performed, β
+) i The state of the crystal layer 111 of the substrate (3) placed in the air is such that at low radix temperatures, the white circles represent the valence electrons, and the arcuate solid line a represents the bonding state. It is thought that unbonded electrons in the vicinity of each other are bonded to each other, and the occurrence of unbonded dangling bonds as shown in the figure is extremely rare. Even when transported, the substrate (
It is difficult to grow B film crystals from the crystals of 3), and the growth rate becomes low. In contrast, when ultraviolet irradiation is applied with moderate energy and intensity, the surface-bound electrons absorb the ultraviolet light and are easily dissociated, resulting in many dangling bonds, as shown in Figure 2B. produces b. As a result, it seems that the Si atoms arriving at this surface easily form bonds with the Si atoms of the substrate (3) and crystallize, thereby covering the unbalanced crystals and allowing the crystals to grow at a high growth rate.

〔実施例〕〔Example〕

更に第1図を参照して本発明装置の一例を詳細に説明す
る。基板(3)は、例えばSiの単結晶体から切り出し
たウェファであり、これの上にS1薄欣をMBEする場
合である。基板(3)の配置部(4)をは、基板(3)
を保持するようになされると共に、この基板(3)を所
要の温度に加熱する加熱子¥jt(71、例えば抵抗加
熱手段を具備して成る。(8)は、この基板配置部(4
)の周囲に配置された冷却手段例えば液体窒素シュラウ
ドである。
Further, an example of the apparatus of the present invention will be explained in detail with reference to FIG. The substrate (3) is, for example, a wafer cut from a single crystal of Si, and the S1 thin film is subjected to MBE on this wafer. The arrangement part (4) of the board (3) is placed on the board (3).
The heater element (71, for example, resistance heating means) is configured to hold the substrate (3) and heat the substrate (3) to a required temperature.
), such as a liquid nitrogen shroud.

そして、この基板(3)の配置部(4)に対向して、S
i分子線源(2)が設けられる。このSi分子線源(2
)は、例えば、電子線加熱、いわゆるE−ガンを具備し
、これにより、薄膜構成材料のSiの分子線を発生させ
るようになされている。また、この分子線源(2)の周
囲には、冷却手段(9)、例えば同様に液体窒素シュラ
ウドが配置される。
Then, facing the placement part (4) of this substrate (3),
An i-molecule radiation source (2) is provided. This Si molecular beam source (2
) is equipped with, for example, an electron beam heating device, a so-called E-gun, to generate a molecular beam of Si, which is a thin film constituent material. Cooling means (9), for example a liquid nitrogen shroud, are also arranged around this molecular beam source (2).

一方、基板(3)にり・1して紫外線U、V、を照射す
るための紫外線照射手段(5)を設ける。この紫外線照
射−μ段(5)は、例えば基板配置部(4)と、分子線
源(2)との間の超高風空槽(11の壁面に紫外線を透
過する第1の窓W【を気密的に設け、これに光学的に対
向して槽(11外に、紫外線U、V、の光源(10) 
、例えば高圧水銀ランプを配置する。また、この光源(
10)の背面には反射ff1(21)が設けられ、槽(
11内には、例えば反射鏡等の光学系M1が設けられて
光源(10)からの紫外線を反射鏡(21)によって有
効に窓W□を通じて槽(1)内に導入し、光学系Mlに
よっ′ζ基板(3)の薄膜を成長させるべき8膜成長面
に均一に1(Q射させる。
On the other hand, ultraviolet irradiation means (5) for irradiating ultraviolet rays U and V to the substrate (3) is provided. This ultraviolet irradiation-μ stage (5) includes, for example, a first window W that transmits ultraviolet light on the wall surface of an ultra-high air chamber (11) between the substrate placement section (4) and the molecular beam source (2). A light source (10) for ultraviolet rays U and V is placed outside the tank (11) optically facing the tank (11).
, for example a high-pressure mercury lamp. Also, this light source (
A reflection ff1 (21) is provided on the back surface of the tank (10).
11 is provided with an optical system M1 such as a reflecting mirror, and the ultraviolet rays from the light source (10) are effectively introduced into the tank (1) through the window W□ by the reflecting mirror (21), and the ultraviolet rays from the light source (10) are effectively introduced into the tank (1) through the window W□. Therefore, 1 (Q) is uniformly irradiated onto the 8 film growth surfaces of the substrate (3) on which thin films are to be grown.

そして、この基板(3)に向って照射させた紫外線U、
V、の基板(3)の表面、或いはこれの上に遂次育成さ
れてい(薄膜表面からの反射紫外線によっζその基板(
3)の表面、或いは育成WIt膜の表面状態ないしは結
晶状態を、いわゆるその場観測する紫外線検出手段(6
)を設ける。この手段(6)は、例えばP!1111)
の壁面に設けた紫外線を透過する第2の窓w2に対向し
て槽(1)内に基板(3)からの紫外線の反射光を窓W
2に向わしめる反射鏡等の光学系M2と、槽(1)外に
窓W2を通じて到来する紫外線を受光するモノクロメー
タ(11)と、フォトマルチプライヤ(12)と、更に
これよりの信号によって例えば基板(3)の表向で反射
された紫外線のスペクトル分析を行う。この手段(6)
は、例えば基板(3)の表面に入射された紫外線光と基
板表向、或いは薄膜表面の価電子との相互作用を測定す
るためのものであり、入射光に対する反射光の強度スペ
クトル分布をコンピュータ(13)によって比較計測す
ることにより成長薄膜の表面状態ないしは結晶状態をそ
の場観測することを可能にする。本発明装置によっ°ζ
、(111)結晶面に沿って切り出されたSi基板(3
)上にSiをMBEする場合、基板温度を500℃へ・
550℃とし、紫外線光源(10)として31On川と
360nmの波長でピークを持つ高圧水銀ランプを用い
て基板(3)の表面での紫外線入射強度を80〜120
n+W/Cl11とするときSi薄膜の成に速度はTO
〜BOnm/ minとなった。第3図に本発明装置に
よっζSiの(111’)結晶向上に、基板温度500
℃で、 100mW/ ca!紫外線照射で75nm/
minの成長速度をもって成長させた薄膜の反射電子線
回折像、ずなわちRHEI!D (Reflectio
n High Energy Electron Di
ff−raction )パターンの写真図を示す。ま
た、第4図は基板温度500℃とし、紫外線照射を行わ
ずにMBEを行った場合の成長速度が75nm/min
での成長薄膜、すなわち従来装置によって得たSi成長
薄膜のRIIEED′J4−1図を示す。第3図に示さ
れるように、本発明装置によって得たSi成長薄膜では
第4図の従来の装置によるものに比しストリークパター
ンが生じていて、表面平滑度が極めて優れていることが
分る。
Then, ultraviolet rays U were irradiated toward this substrate (3),
V, is successively grown on or on the surface of the substrate (3) (by ultraviolet light reflected from the thin film surface).
3) or the surface state or crystalline state of the grown WIt film, so-called ultraviolet detection means (6) for in-situ observation.
) will be established. This means (6) is, for example, P! 1111)
Opposed to the second window w2 that transmits ultraviolet rays provided on the wall of the tank (1), a window W that transmits the reflected light of ultraviolet rays from the substrate (3) into the tank (1).
2, a monochromator (11) that receives ultraviolet rays that arrive outside the tank (1) through the window W2, a photomultiplier (12), and signals from these. For example, spectrum analysis of ultraviolet light reflected from the surface of the substrate (3) is performed. This means (6)
For example, this is for measuring the interaction between ultraviolet light incident on the surface of the substrate (3) and valence electrons on the surface of the substrate or the surface of a thin film. Comparative measurement according to (13) makes it possible to observe the surface state or crystalline state of the grown thin film in situ. By the device of the present invention
, a Si substrate (3) cut out along the (111) crystal plane.
) When performing MBE on Si, the substrate temperature should be raised to 500°C.
The temperature was set at 550°C, and the intensity of ultraviolet light incident on the surface of the substrate (3) was set at 80 to 120°C using a high-pressure mercury lamp having a peak at 31 nm and a wavelength of 360 nm as the ultraviolet light source (10).
When n+W/Cl11, the rate of formation of Si thin film is TO
~BOnm/min. Figure 3 shows that the (111') crystal of ζSi was improved using the apparatus of the present invention at a substrate temperature of 500.
℃, 100mW/ca! 75nm/ with ultraviolet irradiation
A backscattered electron diffraction image of a thin film grown with a growth rate of min, ie RHEI! D (Reflectio
n High Energy Electron Di
A photographic diagram of the ff-raction) pattern is shown. In addition, Figure 4 shows that the growth rate is 75 nm/min when the substrate temperature is 500°C and MBE is performed without UV irradiation.
A RIIEED'J4-1 diagram of a Si grown thin film obtained by a conventional apparatus is shown. As shown in Fig. 3, the Si grown thin film obtained using the apparatus of the present invention has a streak pattern compared to that obtained using the conventional apparatus shown in Fig. 4, indicating that the surface smoothness is extremely superior. .

向、上述した例でSi基板上にSi@膜をMBEした場
合であるが、このSi薄膜の育成に当り、図ボしないが
Si分子線源に近接して、不純物分子線源を設けること
によって、不純物がドープされた薄膜育成を行うことが
でき、この不純物としてAs或いはBを用いた場合でも
、紫外線照射によってその活性化率を60〜70%にも
高め得るものであることが確められた。
For example, in the case of MBE of a Si film on a Si substrate in the above example, when growing this Si thin film, an impurity molecular beam source is provided close to the Si molecular beam source (not shown in the figure). It has been confirmed that thin films doped with impurities can be grown, and even when As or B is used as the impurity, the activation rate can be increased to 60-70% by UV irradiation. Ta.

また、上述した例では、St基板(3)上にSi薄膜の
MBEを行った場合であるが、分子線源として他の物質
の分子線源を用いることによって■−■族化合物のGa
As等に通用することもできる。
In addition, in the above example, MBE of a Si thin film was performed on the St substrate (3), but by using a molecular beam source of another substance as a molecular beam source, it is possible to
It can also be applied to As, etc.

〔発明の効果〕〔Effect of the invention〕

紫外線を照射しない従来方法では、エピタキシーの成長
速度を高めるには、ダングリングボンドが多く生じるよ
うに基板温度を商めることが必要となったものであるに
比し、本発明装置によれば、基板温度を高めずに成長速
度を高めることができるので、基板(3)が大面積化し
た場合でも、低温加熱によってMBEをなし得ることに
よって基板(3)に「反り」を発生させるなどの不都合
が回避でき、基板上に各種半導体テバイスを作製する場
合において各部において特性が不均一になったり、不良
品が発生したりする不都合が回避される。したがって、
薄膜成長速度が高められることが相俟って工業的に充分
実用化できるMBEを行うことができる。
In conventional methods that do not irradiate ultraviolet rays, increasing the epitaxial growth rate requires adjusting the substrate temperature so that many dangling bonds occur, but with the device of the present invention, Since the growth rate can be increased without increasing the substrate temperature, even if the substrate (3) has a large area, MBE can be performed by low-temperature heating, thereby preventing the occurrence of "warpage" in the substrate (3). Inconveniences can be avoided, and inconveniences such as non-uniformity of characteristics in various parts and generation of defective products when various semiconductor devices are manufactured on a substrate can be avoided. therefore,
Combined with the fact that the thin film growth rate is increased, it is possible to perform MBE that can be fully put into practical use industrially.

更に、不純物ドープを行う場合には、その活性化率が格
段に高められることによって、活性化のための熱処理を
特段に行うことをなくドナー或いはアクセプター濃度の
選定の自由度が商められる。
Furthermore, when impurity doping is performed, the activation rate is greatly increased, and the degree of freedom in selecting the donor or acceptor concentration is increased without the need for special heat treatment for activation.

また、紫外線の反射を利用することによっ゛ζ育成状態
のその場観測がFiJ能となるので、製造過程の管理、
研究考察など、その利するところは極めて大である。
In addition, by utilizing the reflection of ultraviolet rays, in-situ observation of the ζ growth state becomes a FiJ function, so it is possible to control the manufacturing process.
The benefits of research and consideration are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例の構成図、第2図は31基撮
表面の価電子の結合・未結合状態のモデル図、第3図及
び第4図は夫々本発明装置及び従来装置によって育成し
たMBE薄膜のRII E E Dによる表面結晶構造
写真図である。 illは超高真空槽、(2)は分子線源、(3)は基板
、(5)は紫外線照射手段である。
Fig. 1 is a configuration diagram of an example of the present invention device, Fig. 2 is a model diagram of the bonded/unbonded state of valence electrons on the surface of 31 images, and Figs. It is a surface crystal structure photograph taken by RII EED of the grown MBE thin film. ill is an ultra-high vacuum chamber, (2) is a molecular beam source, (3) is a substrate, and (5) is an ultraviolet irradiation means.

Claims (1)

【特許請求の範囲】 1、超高真空槽内に薄膜成長材料の分子線源と基板の配
置部とが設けられ、上記基板の薄膜成長面に向って紫外
線照射を行う紫外線照射手段を具備し、上記基板上に紫
外線照射を行いこの状態で上記分子線源からの上記薄膜
成長材料の分子線照射による分子線エピキタシーを行う
ようにした薄膜成長装置。 2、超高真空槽内に薄膜成長材料の分子線源と基板の配
置部とが設けられ、上記基板の薄膜成長面に向って紫外
線照射を行う紫外線照射手段を具備し、上記基板上に紫
外線照射を行いこの状態で上記分子線源からの上記薄膜
成長材料の分子線照射による分子線エピキタシーを行う
ようになされ、上記基板表面もしくは薄膜の成長表面か
らの上記紫外線の反射光を検出してこれら面の表面状態
を判断ないしは観察する紫外線検出手段を具備する薄膜
成長装置。
[Claims] 1. A molecular beam source for a thin film growth material and a substrate placement section are provided in an ultra-high vacuum chamber, and an ultraviolet irradiation means is provided for irradiating ultraviolet light toward the thin film growth surface of the substrate. . A thin film growth apparatus, wherein ultraviolet rays are irradiated onto the substrate, and in this state, molecular beam epitaxy is performed by molecular beam irradiation of the thin film growth material from the molecular beam source. 2. A molecular beam source for a thin film growth material and a substrate arrangement part are provided in an ultra-high vacuum chamber, and an ultraviolet irradiation means for irradiating ultraviolet light toward the thin film growth surface of the substrate is provided. irradiation, and in this state, molecular beam epitaxis is performed by molecular beam irradiation of the thin film growth material from the molecular beam source, and the reflected light of the ultraviolet rays from the substrate surface or the thin film growth surface is detected and A thin film growth apparatus equipped with ultraviolet detection means for determining or observing the surface condition of a surface.
JP3857386A 1986-02-24 1986-02-24 Thin-film growth device Pending JPS62196815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3857386A JPS62196815A (en) 1986-02-24 1986-02-24 Thin-film growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3857386A JPS62196815A (en) 1986-02-24 1986-02-24 Thin-film growth device

Publications (1)

Publication Number Publication Date
JPS62196815A true JPS62196815A (en) 1987-08-31

Family

ID=12529032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3857386A Pending JPS62196815A (en) 1986-02-24 1986-02-24 Thin-film growth device

Country Status (1)

Country Link
JP (1) JPS62196815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344919A (en) * 1989-06-30 1991-02-26 American Teleph & Telegr Co <Att> Semiconductor device and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163427A (en) * 1984-02-06 1985-08-26 Canon Inc Crystal growing device
JPS61137314A (en) * 1984-12-07 1986-06-25 Sharp Corp Semiconductor crystal growth apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163427A (en) * 1984-02-06 1985-08-26 Canon Inc Crystal growing device
JPS61137314A (en) * 1984-12-07 1986-06-25 Sharp Corp Semiconductor crystal growth apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344919A (en) * 1989-06-30 1991-02-26 American Teleph & Telegr Co <Att> Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
US8709904B2 (en) Method for producing semiconductor substrate, semiconductor substrate, method for manufacturing electronic device, and reaction apparatus
JPH0834180B2 (en) Method for growing compound semiconductor thin film
JPS6134929A (en) Growing device of semiconductor device
Pinizzotto et al. Subgrain boundaries in laterally seeded silicon‐on‐oxide formed by graphite strip heater recrystallization
US5578521A (en) Semiconductor device with vaporphase grown epitaxial
US5707900A (en) Method of heat-treating semiconductor crystal of a group II-group VI compound
CN1965111A (en) Manufacture of cadmium mercury telluride
JPS62196815A (en) Thin-film growth device
WO1999059199A1 (en) CdTe CRYSTAL OR CdZnTe CRYSTAL AND METHOD FOR PREPARING THE SAME
CN112160030A (en) Molecular beam epitaxy system and temperature control method of molecular beam epitaxy surface
JPH10284425A (en) Manufacture of semiconductor device
JPH0831410B2 (en) Method for manufacturing semiconductor device
JPS62214616A (en) Organo metallic vapor phase epitaxy equipment
JPH05152304A (en) Manufacture of semiconductor substrate
JPS61286297A (en) Chemical vapor deposition process
Komatsu et al. Infrared radiation annealing for extended‐defect reduction in As‐implanted Si crystals
KR960003467Y1 (en) Apparatus for sheltering of radiation of machine for growing crystal-layer
JPS62212293A (en) Epitaxial growth with molecular rays
JPH0374838A (en) Epitaxial growth method
JPS61141119A (en) Device for crystal growth by molecular beam
JPH05182910A (en) Molecular beam epitaxtially growing method
JPH01239093A (en) Method for crystal growth
JPH02230719A (en) Thin-film growing and machining apparatus
JPS6246993A (en) Apparatus for growing thin filmlike crystal
JPH05243148A (en) Formation of delta-doped multilayered film semiconductor single crystal