[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62182252A - Corrosion resistant metal coating material for equipment relating to oil production - Google Patents

Corrosion resistant metal coating material for equipment relating to oil production

Info

Publication number
JPS62182252A
JPS62182252A JP2432986A JP2432986A JPS62182252A JP S62182252 A JPS62182252 A JP S62182252A JP 2432986 A JP2432986 A JP 2432986A JP 2432986 A JP2432986 A JP 2432986A JP S62182252 A JPS62182252 A JP S62182252A
Authority
JP
Japan
Prior art keywords
corrosion resistance
coating
oil production
corrosion
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2432986A
Other languages
Japanese (ja)
Inventor
Junichi Sakai
潤一 酒井
Yutaka Osanawa
長縄 裕
Katsumi Shomura
正村 克身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2432986A priority Critical patent/JPS62182252A/en
Publication of JPS62182252A publication Critical patent/JPS62182252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To remarkably improve corrosion resistance of oil well tube, etc., used in corrosive atmosphere, by coating the surface thereof with Fe-Cr-Ni-Mo alloy steel having a specified compsn. CONSTITUTION:For improving corrosion resistance of equipment relating to oil production used in corrosive circumstance such as oil well pipe, piping in oil refining equipment, alloy steel having the following compsn. is coated by thermal spraying. Namely, alloy steel composed of, by weight 20-35% Cr, 22-60% Ni, 1-10% Mo, <=0.005% C, <=1.0% Si, <=1.0% Mn, <=0.02% P, <=0.01% S and the balance Fe and satisfying the following inequality 60>=Cr+3XMo>=35 as compsn. condition of component elements and having adjusted components so that value DELTA obtd. by an equation [1] is attained to >=7 is coated. By the coating, corrosion resistance of equipment relating to oil production is remarkably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油井管、石油精製設備における配管等の石油
生産関連機器に耐食金属コーティングするためのコーテ
ィング材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coating material for coating oil production-related equipment such as oil country tubular goods and piping in oil refining equipment with a corrosion-resistant metal.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

近年、高深度サワーガス井、油井が開発されるようにな
り、油井管等の機器類の腐食環境はその苛酷度を増し、
このためこれら機器類薯こは、より高度の耐食性(耐孔
食性、耐応力腐食割れ性(以下、耐SCC性と称す))
が要求されるよう番こなってきた。
In recent years, with the development of deep sour gas wells and oil wells, the corrosive environment for equipment such as oil country tubular goods has become increasingly severe.
For this reason, these devices have higher corrosion resistance (pitting corrosion resistance, stress corrosion cracking resistance (hereinafter referred to as SCC resistance)).
Now it's my turn to be required.

この種の機器類では、上記のような高度な耐食性ととも
に、内圧や自重に耐え得るための強度が要求され、この
ため、従来では2相ステンレス鋼、高Niオーステナイ
ト合金等の高耐食性材料を冷間加工したものが用いられ
ている。
This type of equipment requires not only high corrosion resistance as described above, but also strength to withstand internal pressure and its own weight.For this reason, conventionally, highly corrosion-resistant materials such as duplex stainless steel and high Ni austenite alloys have been used for cooling. The partially processed one is used.

しかし、このような従来の材料は、高価な素材を大量に
使う上、強度を出すため難加工材を冷間加工するもので
あるためコストが非常に高いという難点がある。
However, such conventional materials use a large amount of expensive materials, and have the disadvantage that they are extremely expensive because they involve cold working difficult-to-process materials to increase strength.

このような問題に対し、例えば管体内側に耐食合金製の
板材を嵌め込みこれを熱間押出したり、或いは管体内側
に耐食合金を溶射(プラズマ溶射等)することにより、
油井管等の機器類の表面に耐食性合金をコーティングす
る方法が知られており、この方法によれば高価な耐食性
合金の使用量を少なくでき、製品を低コストで得ること
ができる利点がある。
To solve this problem, for example, by fitting a plate made of a corrosion-resistant alloy inside the tube and hot extruding it, or by thermally spraying a corrosion-resistant alloy inside the tube (plasma spraying, etc.),
A method of coating the surface of equipment such as oil country tubular goods with a corrosion-resistant alloy is known, and this method has the advantage that the amount of expensive corrosion-resistant alloy used can be reduced and products can be obtained at low cost.

しかし、このように耐食性合金のコーティングをする場
合、熱間押出方式ではコーティングの対象となる本体に
加工性の悪い材料を用いることができないという大きな
問題がある。
However, when coating with a corrosion-resistant alloy as described above, there is a major problem in that the hot extrusion method cannot use materials with poor workability for the main body to be coated.

また溶射方式では1本体の加工性の面での制約はないが
、コーティングされる耐食合金が凝固組織となり、従来
知られている組成の合金ではその耐食性が著しく劣化し
てしまうという問題があり、目的とする使用条件で十分
な耐食性を有するコーティング用金属材料番こついては
未だ満足し得るものは提案されていないのが現状である
In addition, although there are no restrictions on the workability of a single body in the thermal spraying method, there is a problem in that the corrosion-resistant alloy coated becomes a solidified structure, and the corrosion resistance of alloys with conventionally known compositions is significantly deteriorated. At present, no metal material for coating that has sufficient corrosion resistance under the intended usage conditions has yet been proposed.

〔問題を解決するための手段〕[Means to solve the problem]

本発明はこのような従来の問題に鑑みなされたもので、
溶射等によりコーティングされた状態で高度の耐食性を
得ることができる耐食金属コーティング材料を提供せん
とするものである。
The present invention was made in view of such conventional problems,
It is an object of the present invention to provide a corrosion-resistant metal coating material that can obtain a high degree of corrosion resistance when coated by thermal spraying or the like.

このため本発明は、C4: 20〜35 wt%、Nt
:22〜60 wt%、Mo : 1〜1(1wt%、
C: 0.05wt96以下、 Si : 1.0wt
 9b以下1Mn : 1.0wt%以下、  P :
 0.02wt%以下、S:0.01wt%以下。
Therefore, in the present invention, C4: 20 to 35 wt%, Nt
: 22-60 wt%, Mo: 1-1 (1 wt%,
C: 0.05wt96 or less, Si: 1.0wt
9b or less 1Mn: 1.0wt% or less, P:
0.02wt% or less, S: 0.01wt% or less.

残部Fe及び不可避不純物からなり、 Cr及びMoが
、 60 > にr +3 X Mo:> 35の条件を満
足し、且つ・ Δ=(Nl+30C+25N)−[[CCr+tsMo
−19)”/12}+13 〕 で求められるΔの値が7以上である組成としたことをそ
の基本的特徴とする。
The remainder consists of Fe and unavoidable impurities, Cr and Mo satisfy the following conditions: 60 > r + 3
-19)''/12}+13] The basic feature is that the composition has a Δ value of 7 or more.

以下1本発明の成分組成の限定理由を詳細に説明する。Below, the reason for limiting the component composition of the present invention will be explained in detail.

Crは耐孔食性を維持するために必要な元素であり、そ
の含有率が20 wt%を下回ると十分な耐孔食性が得
られない。しかし、 Cr  を35 wt%を超えて
添加するとσ相を生じ、逆に耐食性が著しく劣化してし
まう、このためcr ハ20〜35vrt%の範囲で添
加される。
Cr is an element necessary to maintain pitting corrosion resistance, and if its content is less than 20 wt%, sufficient pitting corrosion resistance cannot be obtained. However, if Cr is added in an amount exceeding 35 wt%, a σ phase is generated, and the corrosion resistance is significantly deteriorated. Therefore, Cr is added in a range of 20 to 35 vrt%.

Niは耐SCC性を向上させるのに有効な元素であり、
22wt嘩以上の[株]有象でその効果が顕著になる。
Ni is an effective element for improving SCC resistance,
The effect becomes noticeable when the strain is 22wt or more.

一方、60wt%を超えて含有せしめてもそれ以上の効
果は期待できず、却って経済性を損うことになる。この
ためNlは22〜60 wt憾の範囲とする。
On the other hand, even if the content exceeds 60 wt%, no further effect can be expected, and on the contrary, it will impair economic efficiency. Therefore, Nl is set in the range of 22 to 60 wt.

Moは耐孔食性と酊SCC性を大きく向上させる元素で
あり、1wt%以上の含有量でその効果が顕著になるが
、10wt%を超えて含有させるとσ相を生じ一1食性
を著しく劣化させてしまい、このため!7IOは1〜1
0wt%とする。
Mo is an element that greatly improves pitting corrosion resistance and corrosion resistance, and its effect becomes noticeable when the content exceeds 1 wt%, but when it is contained in excess of 10 wt%, it forms a σ phase and significantly deteriorates the corrosion resistance. Because of this! 7IO is 1-1
It is set to 0wt%.

Cは、コーテイング材の凝固時に炭化物を生じ耐食性を
著しく劣化させるものであり、このため0.05wt%
以下に抑えられる。
C forms carbides during solidification of the coating material and significantly deteriorates corrosion resistance, so 0.05wt%
It can be kept below.

St、Mn は耐食性に直接に大きな影響を与えるもの
ではないが、 Stは熱間加工性を劣化させ、またMn
はマンガン硫化物等の析出物が孔食の起点となり易いと
いう問題があり、このためそれぞれ1. 0wt%が上
限とされる。
Although St and Mn do not have a large direct effect on corrosion resistance, St deteriorates hot workability, and Mn
There is a problem that precipitates such as manganese sulfide easily become the starting point of pitting corrosion, and therefore 1. The upper limit is 0 wt%.

p、sは耐食性tこ有害な元素であって極力低下させる
必要があり、このためPは0.02wt%、Sは0.0
IWt’%をそれぞれ上限とする。
P and s are elements that are harmful to corrosion resistance and must be reduced as much as possible. Therefore, P is 0.02wt% and S is 0.0%.
The upper limit is IWt'%.

本発明では、以上のような成分元素の組成条件に、さら
に次のような条件を満足させる必要がある。
In the present invention, it is necessary to satisfy the following conditions in addition to the composition conditions of the component elements as described above.

まず、Cr及びMoが次の(11式の条件を満足させる
必要がある。
First, Cr and Mo must satisfy the following condition (11).

60〉cr+3×Mo≧35・・・・・・・・・・・・
・・・(1)上記Cr + 3 X Moの値が35を
下回ると凝固組織たるコーテイング材の耐孔食性が十分
得られない。一方、上記値が60を超えると。
60〉cr+3×Mo≧35・・・・・・・・・・・・
(1) If the value of Cr + 3 X Mo is less than 35, sufficient pitting corrosion resistance of the coating material, which is a solidified structure, cannot be obtained. On the other hand, if the above value exceeds 60.

σ相を生じてしまい耐食性が著しく劣化する。This results in the formation of a σ phase, which significantly deteriorates corrosion resistance.

第1図は上記(1)式で表わされる値とコーテイング後
の耐孔食性(腐食度)との関係を示すもので、この場合
の耐孔食性は50℃の6%塩化第二鉄溶液中に24時間
浸漬した後の重音減少により判定したものである。なお
、あわせて圧延材に関する結果も示す、同図から明らか
なように本発明が対象とするコーテイング材ではCr+
3XMo(%)の値が35をこえるとコーテイング材の
耐孔食性は著しく改善される。
Figure 1 shows the relationship between the value expressed by equation (1) above and the pitting corrosion resistance (corrosion degree) after coating. The judgment was based on the reduction in heavy sound after immersion in water for 24 hours. In addition, results regarding rolled materials are also shown. As is clear from the figure, the coating materials targeted by the present invention contain Cr+
When the value of 3XMo (%) exceeds 35, the pitting corrosion resistance of the coating material is significantly improved.

さらに本発明では、 Δ= on+aoc+25N)−C((cr+ 1.s
Mo−19)” /12 ) + 13 ] ・・−−
(2Jの式で定義されるΔが7以上となるよう組成条件
が調整される必要があり、組成条件上このΔ値を満足し
ないと、H2S環境において十分な耐SCC性が得られ
ない。
Furthermore, in the present invention, Δ=on+aoc+25N)−C((cr+1.s
Mo-19)” /12) + 13] ・・−
(The compositional conditions must be adjusted so that Δ defined by the formula 2J is 7 or more, and if this Δ value is not satisfied in the compositional conditions, sufficient SCC resistance cannot be obtained in the H2S environment.

第2図は上記Δ値とコーテイング後の耐SCC性との関
係を、  (Cr+1.5Mo )をX軸に。
Figure 2 shows the relationship between the above Δ value and the SCC resistance after coating, with (Cr+1.5Mo) on the X axis.

また(Ni+30C+25N)をY軸に取って表わした
ものであり、この場合、SCC感受性は1気圧の硫化水
素ガスと平衡する230℃の20%Na CL溶液中に
応力を負荷した試験片を720時間浸77? した後に
割れの有無を確認するこ吉により判定したちのである。
Also, (Ni + 30C + 25N) is expressed on the Y axis, and in this case, SCC susceptibility is measured by applying stress to a test piece in a 20% NaCl solution at 230°C in equilibrium with 1 atm of hydrogen sulfide gas for 720 hours. Soaking 77? After that, the judgment was made by Kokichi, who checked for cracks.

同図から明らかなように、Δ〉7のp囲において満足す
べき耐SCC性が得られており、本発明が目的とする耐
SCC性を十分満足させるためには少なくとも上記組成
条件を満足しなければならないことが判る。
As is clear from the figure, satisfactory SCC resistance is obtained in the p range of Δ>7, and in order to fully satisfy the SCC resistance aimed at by the present invention, at least the above composition conditions must be satisfied. It turns out that it has to be done.

〔実施例〕〔Example〕

第1表は本発明の実施例を示すもので、このうちNo、
1〜14は本発明による材料を低圧プラズマ浴穿;によ
りコーティングしたものの耐食性を示している。本発明
材は塩化第二鉄溶液中で判定した孔食値がいずれも05
?/m”hr以下の値を示し、優わた耐孔食性を有して
いることが判る。また、第2図で示した条件で判定した
耐応力腐食割れ性についても、いずれの材料も割れを生
じておらず、優れた耐SCC性を有していることが判る
・一方、陽15〜20は従来の材料をコーティングした
ものの耐食性を示すもので、いずれも激しい孔食または
応力腐食割れを生じていることが判る。
Table 1 shows examples of the present invention, among which No.
Nos. 1 to 14 show the corrosion resistance of materials coated with the material according to the present invention by low-pressure plasma bath perforation. All of the materials of the present invention have a pitting corrosion value of 05 when determined in a ferric chloride solution.
? /m”hr or less, indicating that they have excellent pitting corrosion resistance.Also, regarding stress corrosion cracking resistance determined under the conditions shown in Figure 2, none of the materials exhibited cracking.・On the other hand, marks 15 to 20 indicate the corrosion resistance of conventional materials coated with severe pitting corrosion or stress corrosion cracking. It can be seen that

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、溶射によりコーティングさ
れた状態でも高度の耐食性を得ることができるものであ
り、溶射法によればあらゆる材料に対してコーティング
が可能であることから、加工が容易でしかも安価な材料
に対し耐食金属をコーティングすることにより、耐食性
に優れた油井管等の石油関連機器を低コストに得ること
ができる効果がある。
According to the present invention described above, it is possible to obtain a high degree of corrosion resistance even when coated by thermal spraying, and since it is possible to coat any material by thermal spraying, processing is easy. Moreover, by coating an inexpensive material with a corrosion-resistant metal, it is possible to obtain petroleum-related equipment such as oil country tubular goods with excellent corrosion resistance at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(Cr+3xMo)  の値とコーテイング後
の耐孔食性との関係を示すものである。第2図はΔ値と
コーテイング後の耐SCC性との関係を示すものである
・ 特許出願人  日本鋼管株式会社 発  明 者   酒   井   潤   −同  
       長   縄        裕第 1 
図 Cr+3M。
FIG. 1 shows the relationship between the value of (Cr+3xMo) and the pitting corrosion resistance after coating. Figure 2 shows the relationship between Δ value and SCC resistance after coating. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Jun Sakai
Yutaka Naganawa 1
Figure Cr+3M.

Claims (1)

【特許請求の範囲】 Cr:20〜35wt%、Ni:22〜60wt%、M
o:1〜10wt%、C:0.05wt%以下、Si:
1.0wt%以下、Mn:1.0wt%以下、P:0.
02wt%以下、S:0.01wt%以下、残部Fe及
び不可避不純物からなり、Cr及びMoが、60≧Cr
+3×Mo≧35 の条件を満足し、且つ Δ=(Ni+30C+25N)−〔{(Cr+1.5M
o−19)^2/12}+13〕 で求められるΔの値が7以上である組成の 石油生産関連機器用耐食金属コーティング 材料。
[Claims] Cr: 20 to 35 wt%, Ni: 22 to 60 wt%, M
o: 1 to 10 wt%, C: 0.05 wt% or less, Si:
1.0 wt% or less, Mn: 1.0 wt% or less, P: 0.
02wt% or less, S: 0.01wt% or less, the balance consists of Fe and unavoidable impurities, and Cr and Mo are 60≧Cr
+3×Mo≧35 and Δ=(Ni+30C+25N)−[{(Cr+1.5M
o-19)^2/12}+13] A corrosion-resistant metal coating material for oil production-related equipment having a composition in which the value of Δ determined by the following is 7 or more.
JP2432986A 1986-02-06 1986-02-06 Corrosion resistant metal coating material for equipment relating to oil production Pending JPS62182252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2432986A JPS62182252A (en) 1986-02-06 1986-02-06 Corrosion resistant metal coating material for equipment relating to oil production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2432986A JPS62182252A (en) 1986-02-06 1986-02-06 Corrosion resistant metal coating material for equipment relating to oil production

Publications (1)

Publication Number Publication Date
JPS62182252A true JPS62182252A (en) 1987-08-10

Family

ID=12135141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2432986A Pending JPS62182252A (en) 1986-02-06 1986-02-06 Corrosion resistant metal coating material for equipment relating to oil production

Country Status (1)

Country Link
JP (1) JPS62182252A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092765B2 (en) 2007-08-09 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediates containing arsenic
US8092764B2 (en) 2007-07-13 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediate containing arsenic
US8097228B2 (en) 2007-07-13 2012-01-17 Dowa Metals and Mining Co., Ltd. Method of processing diarsenic trioxide
US8147779B2 (en) 2007-07-13 2012-04-03 Dowa Metals & Minning Co., Ltd. Method of alkali processing substance containing arsenic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092764B2 (en) 2007-07-13 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediate containing arsenic
US8097228B2 (en) 2007-07-13 2012-01-17 Dowa Metals and Mining Co., Ltd. Method of processing diarsenic trioxide
US8147779B2 (en) 2007-07-13 2012-04-03 Dowa Metals & Minning Co., Ltd. Method of alkali processing substance containing arsenic
US8092765B2 (en) 2007-08-09 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediates containing arsenic

Similar Documents

Publication Publication Date Title
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
WO1999041422A1 (en) Corrosion resisting steel and corrosion resisting oil well pipe having high corrosion resistance to carbon dioxide gas
JPS6134498B2 (en)
CA2462963C (en) Duplex stainless steels
WO2019065115A1 (en) Oil well pipe martensitic stainless seamless steel pipe and production method for same
JP3209433B2 (en) Austenitic stainless steel
WO2017179346A1 (en) Martensitic stainless steel sheet
KR20010083939A (en) Cr-mn-ni-cu austenitic stainless steel
EP1263999B1 (en) Corrosion resistant austenitic alloy
JPS62182252A (en) Corrosion resistant metal coating material for equipment relating to oil production
US6165288A (en) Highly corrosion and wear resistant chilled casting
US4500351A (en) Cast duplex stainless steel
JP2004099921A (en) Seawater resistant steel and manufacturing method
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPH01246343A (en) Stainless steel
JP2003268508A (en) Corrosion resistant and heat resistant cast steel
JPH0148345B2 (en)
JP3779043B2 (en) Duplex stainless steel
JPH09272956A (en) Seawater resistant precipitation hardening type high alloy steel and its production
JPH04224656A (en) Martensitic stainless steel for oil well casting, tubing and drill pipe
Shifler Structural Alloys in Marine Service
JPS62182251A (en) Corrosion resistant metal coating material for equipment relating to oil production
JP2833385B2 (en) Corrosion resistant austenitic Fe-based alloy
JPH05302150A (en) Duplex stainless steel excellent in hydrogen sulfide corrosion resistance
JPH0813099A (en) Corrosion resistant alloy for coal gasification plant superheater