JPS62182252A - Corrosion resistant metal coating material for equipment relating to oil production - Google Patents
Corrosion resistant metal coating material for equipment relating to oil productionInfo
- Publication number
- JPS62182252A JPS62182252A JP2432986A JP2432986A JPS62182252A JP S62182252 A JPS62182252 A JP S62182252A JP 2432986 A JP2432986 A JP 2432986A JP 2432986 A JP2432986 A JP 2432986A JP S62182252 A JPS62182252 A JP S62182252A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- coating
- oil production
- corrosion
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 47
- 230000007797 corrosion Effects 0.000 title claims abstract description 47
- 239000011248 coating agent Substances 0.000 title claims abstract description 19
- 238000000576 coating method Methods 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 239000000463 material Substances 0.000 title claims description 21
- 229910052751 metal Inorganic materials 0.000 title claims description 5
- 239000002184 metal Substances 0.000 title claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract 2
- 229910052759 nickel Inorganic materials 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 2
- 238000007751 thermal spraying Methods 0.000 abstract description 5
- 239000003129 oil well Substances 0.000 abstract description 3
- 238000007670 refining Methods 0.000 abstract description 2
- 229910000851 Alloy steel Inorganic materials 0.000 abstract 3
- 229910003296 Ni-Mo Inorganic materials 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、油井管、石油精製設備における配管等の石油
生産関連機器に耐食金属コーティングするためのコーテ
ィング材料に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coating material for coating oil production-related equipment such as oil country tubular goods and piping in oil refining equipment with a corrosion-resistant metal.
近年、高深度サワーガス井、油井が開発されるようにな
り、油井管等の機器類の腐食環境はその苛酷度を増し、
このためこれら機器類薯こは、より高度の耐食性(耐孔
食性、耐応力腐食割れ性(以下、耐SCC性と称す))
が要求されるよう番こなってきた。In recent years, with the development of deep sour gas wells and oil wells, the corrosive environment for equipment such as oil country tubular goods has become increasingly severe.
For this reason, these devices have higher corrosion resistance (pitting corrosion resistance, stress corrosion cracking resistance (hereinafter referred to as SCC resistance)).
Now it's my turn to be required.
この種の機器類では、上記のような高度な耐食性ととも
に、内圧や自重に耐え得るための強度が要求され、この
ため、従来では2相ステンレス鋼、高Niオーステナイ
ト合金等の高耐食性材料を冷間加工したものが用いられ
ている。This type of equipment requires not only high corrosion resistance as described above, but also strength to withstand internal pressure and its own weight.For this reason, conventionally, highly corrosion-resistant materials such as duplex stainless steel and high Ni austenite alloys have been used for cooling. The partially processed one is used.
しかし、このような従来の材料は、高価な素材を大量に
使う上、強度を出すため難加工材を冷間加工するもので
あるためコストが非常に高いという難点がある。However, such conventional materials use a large amount of expensive materials, and have the disadvantage that they are extremely expensive because they involve cold working difficult-to-process materials to increase strength.
このような問題に対し、例えば管体内側に耐食合金製の
板材を嵌め込みこれを熱間押出したり、或いは管体内側
に耐食合金を溶射(プラズマ溶射等)することにより、
油井管等の機器類の表面に耐食性合金をコーティングす
る方法が知られており、この方法によれば高価な耐食性
合金の使用量を少なくでき、製品を低コストで得ること
ができる利点がある。To solve this problem, for example, by fitting a plate made of a corrosion-resistant alloy inside the tube and hot extruding it, or by thermally spraying a corrosion-resistant alloy inside the tube (plasma spraying, etc.),
A method of coating the surface of equipment such as oil country tubular goods with a corrosion-resistant alloy is known, and this method has the advantage that the amount of expensive corrosion-resistant alloy used can be reduced and products can be obtained at low cost.
しかし、このように耐食性合金のコーティングをする場
合、熱間押出方式ではコーティングの対象となる本体に
加工性の悪い材料を用いることができないという大きな
問題がある。However, when coating with a corrosion-resistant alloy as described above, there is a major problem in that the hot extrusion method cannot use materials with poor workability for the main body to be coated.
また溶射方式では1本体の加工性の面での制約はないが
、コーティングされる耐食合金が凝固組織となり、従来
知られている組成の合金ではその耐食性が著しく劣化し
てしまうという問題があり、目的とする使用条件で十分
な耐食性を有するコーティング用金属材料番こついては
未だ満足し得るものは提案されていないのが現状である
。In addition, although there are no restrictions on the workability of a single body in the thermal spraying method, there is a problem in that the corrosion-resistant alloy coated becomes a solidified structure, and the corrosion resistance of alloys with conventionally known compositions is significantly deteriorated. At present, no metal material for coating that has sufficient corrosion resistance under the intended usage conditions has yet been proposed.
本発明はこのような従来の問題に鑑みなされたもので、
溶射等によりコーティングされた状態で高度の耐食性を
得ることができる耐食金属コーティング材料を提供せん
とするものである。The present invention was made in view of such conventional problems,
It is an object of the present invention to provide a corrosion-resistant metal coating material that can obtain a high degree of corrosion resistance when coated by thermal spraying or the like.
このため本発明は、C4: 20〜35 wt%、Nt
:22〜60 wt%、Mo : 1〜1(1wt%、
C: 0.05wt96以下、 Si : 1.0wt
9b以下1Mn : 1.0wt%以下、 P :
0.02wt%以下、S:0.01wt%以下。Therefore, in the present invention, C4: 20 to 35 wt%, Nt
: 22-60 wt%, Mo: 1-1 (1 wt%,
C: 0.05wt96 or less, Si: 1.0wt
9b or less 1Mn: 1.0wt% or less, P:
0.02wt% or less, S: 0.01wt% or less.
残部Fe及び不可避不純物からなり、 Cr及びMoが
、
60 > にr +3 X Mo:> 35の条件を満
足し、且つ・
Δ=(Nl+30C+25N)−[[CCr+tsMo
−19)”/12}+13 〕
で求められるΔの値が7以上である組成としたことをそ
の基本的特徴とする。The remainder consists of Fe and unavoidable impurities, Cr and Mo satisfy the following conditions: 60 > r + 3
-19)''/12}+13] The basic feature is that the composition has a Δ value of 7 or more.
以下1本発明の成分組成の限定理由を詳細に説明する。Below, the reason for limiting the component composition of the present invention will be explained in detail.
Crは耐孔食性を維持するために必要な元素であり、そ
の含有率が20 wt%を下回ると十分な耐孔食性が得
られない。しかし、 Cr を35 wt%を超えて
添加するとσ相を生じ、逆に耐食性が著しく劣化してし
まう、このためcr ハ20〜35vrt%の範囲で添
加される。Cr is an element necessary to maintain pitting corrosion resistance, and if its content is less than 20 wt%, sufficient pitting corrosion resistance cannot be obtained. However, if Cr is added in an amount exceeding 35 wt%, a σ phase is generated, and the corrosion resistance is significantly deteriorated. Therefore, Cr is added in a range of 20 to 35 vrt%.
Niは耐SCC性を向上させるのに有効な元素であり、
22wt嘩以上の[株]有象でその効果が顕著になる。Ni is an effective element for improving SCC resistance,
The effect becomes noticeable when the strain is 22wt or more.
一方、60wt%を超えて含有せしめてもそれ以上の効
果は期待できず、却って経済性を損うことになる。この
ためNlは22〜60 wt憾の範囲とする。On the other hand, even if the content exceeds 60 wt%, no further effect can be expected, and on the contrary, it will impair economic efficiency. Therefore, Nl is set in the range of 22 to 60 wt.
Moは耐孔食性と酊SCC性を大きく向上させる元素で
あり、1wt%以上の含有量でその効果が顕著になるが
、10wt%を超えて含有させるとσ相を生じ一1食性
を著しく劣化させてしまい、このため!7IOは1〜1
0wt%とする。Mo is an element that greatly improves pitting corrosion resistance and corrosion resistance, and its effect becomes noticeable when the content exceeds 1 wt%, but when it is contained in excess of 10 wt%, it forms a σ phase and significantly deteriorates the corrosion resistance. Because of this! 7IO is 1-1
It is set to 0wt%.
Cは、コーテイング材の凝固時に炭化物を生じ耐食性を
著しく劣化させるものであり、このため0.05wt%
以下に抑えられる。C forms carbides during solidification of the coating material and significantly deteriorates corrosion resistance, so 0.05wt%
It can be kept below.
St、Mn は耐食性に直接に大きな影響を与えるもの
ではないが、 Stは熱間加工性を劣化させ、またMn
はマンガン硫化物等の析出物が孔食の起点となり易いと
いう問題があり、このためそれぞれ1. 0wt%が上
限とされる。Although St and Mn do not have a large direct effect on corrosion resistance, St deteriorates hot workability, and Mn
There is a problem that precipitates such as manganese sulfide easily become the starting point of pitting corrosion, and therefore 1. The upper limit is 0 wt%.
p、sは耐食性tこ有害な元素であって極力低下させる
必要があり、このためPは0.02wt%、Sは0.0
IWt’%をそれぞれ上限とする。P and s are elements that are harmful to corrosion resistance and must be reduced as much as possible. Therefore, P is 0.02wt% and S is 0.0%.
The upper limit is IWt'%.
本発明では、以上のような成分元素の組成条件に、さら
に次のような条件を満足させる必要がある。In the present invention, it is necessary to satisfy the following conditions in addition to the composition conditions of the component elements as described above.
まず、Cr及びMoが次の(11式の条件を満足させる
必要がある。First, Cr and Mo must satisfy the following condition (11).
60〉cr+3×Mo≧35・・・・・・・・・・・・
・・・(1)上記Cr + 3 X Moの値が35を
下回ると凝固組織たるコーテイング材の耐孔食性が十分
得られない。一方、上記値が60を超えると。60〉cr+3×Mo≧35・・・・・・・・・・・・
(1) If the value of Cr + 3 X Mo is less than 35, sufficient pitting corrosion resistance of the coating material, which is a solidified structure, cannot be obtained. On the other hand, if the above value exceeds 60.
σ相を生じてしまい耐食性が著しく劣化する。This results in the formation of a σ phase, which significantly deteriorates corrosion resistance.
第1図は上記(1)式で表わされる値とコーテイング後
の耐孔食性(腐食度)との関係を示すもので、この場合
の耐孔食性は50℃の6%塩化第二鉄溶液中に24時間
浸漬した後の重音減少により判定したものである。なお
、あわせて圧延材に関する結果も示す、同図から明らか
なように本発明が対象とするコーテイング材ではCr+
3XMo(%)の値が35をこえるとコーテイング材の
耐孔食性は著しく改善される。Figure 1 shows the relationship between the value expressed by equation (1) above and the pitting corrosion resistance (corrosion degree) after coating. The judgment was based on the reduction in heavy sound after immersion in water for 24 hours. In addition, results regarding rolled materials are also shown. As is clear from the figure, the coating materials targeted by the present invention contain Cr+
When the value of 3XMo (%) exceeds 35, the pitting corrosion resistance of the coating material is significantly improved.
さらに本発明では、
Δ= on+aoc+25N)−C((cr+ 1.s
Mo−19)” /12 ) + 13 ] ・・−−
(2Jの式で定義されるΔが7以上となるよう組成条件
が調整される必要があり、組成条件上このΔ値を満足し
ないと、H2S環境において十分な耐SCC性が得られ
ない。Furthermore, in the present invention, Δ=on+aoc+25N)−C((cr+1.s
Mo-19)” /12) + 13] ・・−
(The compositional conditions must be adjusted so that Δ defined by the formula 2J is 7 or more, and if this Δ value is not satisfied in the compositional conditions, sufficient SCC resistance cannot be obtained in the H2S environment.
第2図は上記Δ値とコーテイング後の耐SCC性との関
係を、 (Cr+1.5Mo )をX軸に。Figure 2 shows the relationship between the above Δ value and the SCC resistance after coating, with (Cr+1.5Mo) on the X axis.
また(Ni+30C+25N)をY軸に取って表わした
ものであり、この場合、SCC感受性は1気圧の硫化水
素ガスと平衡する230℃の20%Na CL溶液中に
応力を負荷した試験片を720時間浸77? した後に
割れの有無を確認するこ吉により判定したちのである。Also, (Ni + 30C + 25N) is expressed on the Y axis, and in this case, SCC susceptibility is measured by applying stress to a test piece in a 20% NaCl solution at 230°C in equilibrium with 1 atm of hydrogen sulfide gas for 720 hours. Soaking 77? After that, the judgment was made by Kokichi, who checked for cracks.
同図から明らかなように、Δ〉7のp囲において満足す
べき耐SCC性が得られており、本発明が目的とする耐
SCC性を十分満足させるためには少なくとも上記組成
条件を満足しなければならないことが判る。As is clear from the figure, satisfactory SCC resistance is obtained in the p range of Δ>7, and in order to fully satisfy the SCC resistance aimed at by the present invention, at least the above composition conditions must be satisfied. It turns out that it has to be done.
第1表は本発明の実施例を示すもので、このうちNo、
1〜14は本発明による材料を低圧プラズマ浴穿;によ
りコーティングしたものの耐食性を示している。本発明
材は塩化第二鉄溶液中で判定した孔食値がいずれも05
?/m”hr以下の値を示し、優わた耐孔食性を有して
いることが判る。また、第2図で示した条件で判定した
耐応力腐食割れ性についても、いずれの材料も割れを生
じておらず、優れた耐SCC性を有していることが判る
・一方、陽15〜20は従来の材料をコーティングした
ものの耐食性を示すもので、いずれも激しい孔食または
応力腐食割れを生じていることが判る。Table 1 shows examples of the present invention, among which No.
Nos. 1 to 14 show the corrosion resistance of materials coated with the material according to the present invention by low-pressure plasma bath perforation. All of the materials of the present invention have a pitting corrosion value of 05 when determined in a ferric chloride solution.
? /m”hr or less, indicating that they have excellent pitting corrosion resistance.Also, regarding stress corrosion cracking resistance determined under the conditions shown in Figure 2, none of the materials exhibited cracking.・On the other hand, marks 15 to 20 indicate the corrosion resistance of conventional materials coated with severe pitting corrosion or stress corrosion cracking. It can be seen that
以上述べた本発明によれば、溶射によりコーティングさ
れた状態でも高度の耐食性を得ることができるものであ
り、溶射法によればあらゆる材料に対してコーティング
が可能であることから、加工が容易でしかも安価な材料
に対し耐食金属をコーティングすることにより、耐食性
に優れた油井管等の石油関連機器を低コストに得ること
ができる効果がある。According to the present invention described above, it is possible to obtain a high degree of corrosion resistance even when coated by thermal spraying, and since it is possible to coat any material by thermal spraying, processing is easy. Moreover, by coating an inexpensive material with a corrosion-resistant metal, it is possible to obtain petroleum-related equipment such as oil country tubular goods with excellent corrosion resistance at a low cost.
第1図は(Cr+3xMo) の値とコーテイング後
の耐孔食性との関係を示すものである。第2図はΔ値と
コーテイング後の耐SCC性との関係を示すものである
・
特許出願人 日本鋼管株式会社
発 明 者 酒 井 潤 −同
長 縄 裕第 1
図
Cr+3M。FIG. 1 shows the relationship between the value of (Cr+3xMo) and the pitting corrosion resistance after coating. Figure 2 shows the relationship between Δ value and SCC resistance after coating. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Jun Sakai
Yutaka Naganawa 1
Figure Cr+3M.
Claims (1)
o:1〜10wt%、C:0.05wt%以下、Si:
1.0wt%以下、Mn:1.0wt%以下、P:0.
02wt%以下、S:0.01wt%以下、残部Fe及
び不可避不純物からなり、Cr及びMoが、60≧Cr
+3×Mo≧35 の条件を満足し、且つ Δ=(Ni+30C+25N)−〔{(Cr+1.5M
o−19)^2/12}+13〕 で求められるΔの値が7以上である組成の 石油生産関連機器用耐食金属コーティング 材料。[Claims] Cr: 20 to 35 wt%, Ni: 22 to 60 wt%, M
o: 1 to 10 wt%, C: 0.05 wt% or less, Si:
1.0 wt% or less, Mn: 1.0 wt% or less, P: 0.
02wt% or less, S: 0.01wt% or less, the balance consists of Fe and unavoidable impurities, and Cr and Mo are 60≧Cr
+3×Mo≧35 and Δ=(Ni+30C+25N)−[{(Cr+1.5M
o-19)^2/12}+13] A corrosion-resistant metal coating material for oil production-related equipment having a composition in which the value of Δ determined by the following is 7 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2432986A JPS62182252A (en) | 1986-02-06 | 1986-02-06 | Corrosion resistant metal coating material for equipment relating to oil production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2432986A JPS62182252A (en) | 1986-02-06 | 1986-02-06 | Corrosion resistant metal coating material for equipment relating to oil production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62182252A true JPS62182252A (en) | 1987-08-10 |
Family
ID=12135141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2432986A Pending JPS62182252A (en) | 1986-02-06 | 1986-02-06 | Corrosion resistant metal coating material for equipment relating to oil production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62182252A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8092765B2 (en) | 2007-08-09 | 2012-01-10 | Dowa Metals and Mining Co., Ltd. | Method of processing non-ferrous smelting intermediates containing arsenic |
US8092764B2 (en) | 2007-07-13 | 2012-01-10 | Dowa Metals and Mining Co., Ltd. | Method of processing non-ferrous smelting intermediate containing arsenic |
US8097228B2 (en) | 2007-07-13 | 2012-01-17 | Dowa Metals and Mining Co., Ltd. | Method of processing diarsenic trioxide |
US8147779B2 (en) | 2007-07-13 | 2012-04-03 | Dowa Metals & Minning Co., Ltd. | Method of alkali processing substance containing arsenic |
-
1986
- 1986-02-06 JP JP2432986A patent/JPS62182252A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8092764B2 (en) | 2007-07-13 | 2012-01-10 | Dowa Metals and Mining Co., Ltd. | Method of processing non-ferrous smelting intermediate containing arsenic |
US8097228B2 (en) | 2007-07-13 | 2012-01-17 | Dowa Metals and Mining Co., Ltd. | Method of processing diarsenic trioxide |
US8147779B2 (en) | 2007-07-13 | 2012-04-03 | Dowa Metals & Minning Co., Ltd. | Method of alkali processing substance containing arsenic |
US8092765B2 (en) | 2007-08-09 | 2012-01-10 | Dowa Metals and Mining Co., Ltd. | Method of processing non-ferrous smelting intermediates containing arsenic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5298093A (en) | Duplex stainless steel having improved strength and corrosion resistance | |
WO1999041422A1 (en) | Corrosion resisting steel and corrosion resisting oil well pipe having high corrosion resistance to carbon dioxide gas | |
JPS6134498B2 (en) | ||
CA2462963C (en) | Duplex stainless steels | |
WO2019065115A1 (en) | Oil well pipe martensitic stainless seamless steel pipe and production method for same | |
JP3209433B2 (en) | Austenitic stainless steel | |
WO2017179346A1 (en) | Martensitic stainless steel sheet | |
KR20010083939A (en) | Cr-mn-ni-cu austenitic stainless steel | |
EP1263999B1 (en) | Corrosion resistant austenitic alloy | |
JPS62182252A (en) | Corrosion resistant metal coating material for equipment relating to oil production | |
US6165288A (en) | Highly corrosion and wear resistant chilled casting | |
US4500351A (en) | Cast duplex stainless steel | |
JP2004099921A (en) | Seawater resistant steel and manufacturing method | |
JP3470418B2 (en) | High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance | |
JPH01246343A (en) | Stainless steel | |
JP2003268508A (en) | Corrosion resistant and heat resistant cast steel | |
JPH0148345B2 (en) | ||
JP3779043B2 (en) | Duplex stainless steel | |
JPH09272956A (en) | Seawater resistant precipitation hardening type high alloy steel and its production | |
JPH04224656A (en) | Martensitic stainless steel for oil well casting, tubing and drill pipe | |
Shifler | Structural Alloys in Marine Service | |
JPS62182251A (en) | Corrosion resistant metal coating material for equipment relating to oil production | |
JP2833385B2 (en) | Corrosion resistant austenitic Fe-based alloy | |
JPH05302150A (en) | Duplex stainless steel excellent in hydrogen sulfide corrosion resistance | |
JPH0813099A (en) | Corrosion resistant alloy for coal gasification plant superheater |