JPS62182240A - Conductive high-tensile copper alloy - Google Patents
Conductive high-tensile copper alloyInfo
- Publication number
- JPS62182240A JPS62182240A JP2478286A JP2478286A JPS62182240A JP S62182240 A JPS62182240 A JP S62182240A JP 2478286 A JP2478286 A JP 2478286A JP 2478286 A JP2478286 A JP 2478286A JP S62182240 A JPS62182240 A JP S62182240A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- strength
- content
- copper alloy
- conductive high
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 12
- 229910001122 Mischmetal Inorganic materials 0.000 claims abstract 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 238000007747 plating Methods 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 229910052787 antimony Inorganic materials 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 229910052715 tantalum Inorganic materials 0.000 abstract description 2
- 229910052725 zinc Inorganic materials 0.000 abstract description 2
- 229910052804 chromium Inorganic materials 0.000 abstract 2
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 229910052785 arsenic Inorganic materials 0.000 abstract 1
- 229910052790 beryllium Inorganic materials 0.000 abstract 1
- 229910052698 phosphorus Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 abstract 1
- 229910052718 tin Inorganic materials 0.000 abstract 1
- 229910052726 zirconium Inorganic materials 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 32
- 239000000956 alloy Substances 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910017985 Cu—Zr Inorganic materials 0.000 description 2
- 229910001096 P alloy Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910019878 Cr3Si Inorganic materials 0.000 description 1
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電子機器の導体、リート、導電性ばね、端子等
に用いられる導電性高力銅合金に関し、特に小型高密度
化された半導体リードフレームに適した銅合金を提供す
るものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to conductive high-strength copper alloys used for conductors, leads, conductive springs, terminals, etc. of electronic devices, and in particular, relates to conductive high-strength copper alloys used for conductors, leads, conductive springs, terminals, etc. of electronic devices, and in particular, for use in small and high-density semiconductor leads. It provides a copper alloy suitable for frames.
電子機器、例えば半導体のリード、各種は型部品の端子
、コネクター、スイッチ等の導電性ばねには銅合金が広
く利用され、特にリン青銅は50〜65Kg/−の強度
と浸れた加工性を有するところから広く普及している。Copper alloys are widely used for conductive springs in electronic devices, such as semiconductor leads, terminals for various type parts, connectors, switches, etc. Phosphor bronze in particular has a strength of 50 to 65 kg/- and excellent workability. It has become widespread since then.
しかしながらこの合金は導電率が10〜20%と低いた
め、導電性(伝熱性)を必要とする部材には用いられず
特に小型化、高集積化された半導体用途には使用できな
い。このためCU−Fe系、Cu−Zr系、Cu−N
i −3i系等の合金か一部で利用されている。However, since this alloy has a low electrical conductivity of 10 to 20%, it cannot be used for members that require electrical conductivity (thermal conductivity), and cannot be used particularly for miniaturized and highly integrated semiconductor applications. Therefore, CU-Fe series, Cu-Zr series, Cu-N
It is used in some alloys such as i-3i series.
(発明が解決しようとする問題点)
Cu−Fe系合金、例えばC−194(Cu−2,4w
t%F e −0,12wt%Zn−P合金)やC−1
95(Cu −1,5wt%−o、awt%Co−0,
6wt% S n −p合金)は導電率50〜65″3
GIAC3、強度45〜55 Kg/ miの特性を示
すも、より高強度化すると加工性及び半田付は性を低下
する。(Problems to be solved by the invention) Cu-Fe alloys, such as C-194 (Cu-2,4w
t%Fe-0,12wt%Zn-P alloy) and C-1
95(Cu-1,5wt%-o, awt%Co-0,
6wt% Sn-p alloy) has a conductivity of 50-65″3
Although it exhibits properties of GIAC3 and strength of 45 to 55 Kg/mi, higher strength results in lower workability and solderability.
CU−Cr系合金は80〜90%rAcs程度の導電性
を示すも、Crの粗大結晶が析出し易く、Crを0.7
wt%(以下W[%を%と略記)以上として強度を55
に3/IruA以上にしようとすると、加工性や桐材の
均質性、等方性を阻害する。Cu−Zr系合金は90%
lAC3以上の導電率を示すも、強度が40Ky/−以
下と小さい。CLJ−N i −3i系合金はN1zS
iを析出する合金でNiと81の配合及び製造条件によ
り導電率や半田付は性を低下する。即ち未反応のNi、
3iに起因し、不可避的に半田接合部の強度を経口、r
的に低下し、これがプリント基板などに半田付けする通
常の実装形態において致命的な欠陥となる。Although the CU-Cr alloy shows conductivity of about 80 to 90% rAcs, coarse Cr crystals are likely to precipitate, and Cr is 0.7
wt% (hereinafter W [% is abbreviated as %) or more and the strength is 55
If an attempt is made to increase the ratio to 3/IruA or more, the workability, homogeneity, and isotropy of the paulownia material will be impaired. Cu-Zr alloy is 90%
Although it exhibits a conductivity of lAC3 or more, its strength is as low as 40 Ky/- or less. CLJ-N i -3i alloy is N1zS
In alloys that precipitate 81, the electrical conductivity and solderability decrease depending on the combination of Ni and 81 and manufacturing conditions. That is, unreacted Ni,
3i, which inevitably reduces the strength of the solder joint,
This is a fatal flaw in normal mounting methods such as soldering to printed circuit boards.
これに鑑み強度、伸びなどの機械的特性と熱、電気伝導
性に優れ、かつ半田付は性、メッキ性、スケール1俗看
斗、応力13食υ]れなどの耐食訃等が優れた特性をも
する合金、例えば高度の特性が要求される半導体リート
伺【こ好適な合金の開発が強く望まれている。In view of this, it has excellent mechanical properties such as strength and elongation, as well as thermal and electrical conductivity, as well as excellent solderability, plating properties, corrosion resistance such as scale 1 resistance and stress 13 corrosion resistance. There is a strong desire to develop alloys that are suitable for semiconductor REITs, for example, where advanced properties are required.
(問題点を解決するための手段)
本発明はこれに鑑み種々検シ1の結果、小型、高密度化
された半導体リードフレームに好適な導電性高力銅合金
を開発したもので、CrO91〜5%と3i0.02〜
1.0%を含み、更にp 0.01〜0.15%、A
50.01〜0.15%、Sb0.01〜0.15%、
Ni0.05〜1%、Co0.05〜1%、Z ro、
01〜0.5%、M q0.01〜0.5%、Fe0.
01〜1%、Zn0.05〜3%、3nO105〜3%
、AJo、05〜1%、[3e0.05〜0.3%、M
no、01〜1%、Ta0.01〜1%、Nb0.01
〜1%、Te0.01〜1%、Ag0.01〜1%、ミ
ツシュメタル(以下MMと略記)0.01〜1%、T
i 0.01〜1%の範囲内で何れか1種又は2種以上
を合i10.01〜3%含み、残部Cuからなることを
特徴とするものであり、特に上記組織範囲内においてS
i爵をCrの化学量論以下とし、02 量を0.003
%以下とすることが望ましい。(Means for Solving the Problems) In view of this, the present invention has developed a conductive high-strength copper alloy suitable for small, high-density semiconductor lead frames as a result of various tests. 5% and 3i0.02~
Contains 1.0%, further p 0.01-0.15%, A
50.01-0.15%, Sb0.01-0.15%,
Ni0.05-1%, Co0.05-1%, Zro,
01-0.5%, Mq0.01-0.5%, Fe0.
01-1%, Zn0.05-3%, 3nO105-3%
, AJo, 05-1%, [3e0.05-0.3%, M
no, 01-1%, Ta0.01-1%, Nb0.01
~1%, Te0.01~1%, Ag0.01~1%, Mitshu Metal (hereinafter abbreviated as MM) 0.01~1%, T
It is characterized by containing any one type or two or more types within the range of i 0.01 to 1% in a total amount of i 10.01 to 3%, and the balance being Cu, especially S within the above tissue range.
I count is less than the stoichiometry of Cr, and the amount of 02 is 0.003
% or less.
上記合金は常法により容易に製造され、所望の寸法形状
と機械的特性がイリ句される。例えば溶解鋳造したイン
ゴットを熱間加工した後急冷し、次に冷間加工を施して
から350〜650℃の温度で熱質理し、続いて時効析
出処理する。尚製造工程の途中で800〜950℃の溶
体化処理、水焼入れを行なうこともできる。The above alloys are easily manufactured by conventional methods and have the desired dimensions and mechanical properties. For example, an ingot that has been melted and cast is hot-worked and then rapidly cooled, then cold-worked, heat-treated at a temperature of 350 to 650°C, and then subjected to an aging precipitation treatment. Note that solution treatment at 800 to 950° C. and water quenching can also be performed during the manufacturing process.
本発明合金は上記組成範囲からなり、待にCr3Siヤ
Cr5Si2の化合物の析出による析出硬化作用により
強度と熱・電気伝導性を高度に発揮せしめた−5ので、
Cr含有量をX%とするときの3iの化学量論量はX/
5.6となるのて、1hにS1含有吊を化学ω論量以
下に抑えることにより、固溶5iffiを最小限として
熱電気伝導性を高めることかできる。更にはCr−3i
化合物に加えてCrが析出して強化と熱・電気伝導性の
向上に触ぎ、粗大析出は強化効果に乏しく、加工性や均
質性を阻害するが、上記2種の析出が併存するため微細
分散した析出物が容易に得られる。しかしてCr含有量
は0.1〜5%、特に望ましくは1〜/1%とし、3i
含有量は0.02〜1.0%、特に望ましくは0.1〜
0.8%であり、何れも下限未満では十分な強度が得ら
れず、上限を越えると製造加工性を低下する。The alloy of the present invention has the above composition range, and exhibits high strength and thermal and electrical conductivity due to the precipitation hardening effect caused by the precipitation of Cr3Si and Cr5Si2 compounds.
When the Cr content is X%, the stoichiometric amount of 3i is X/
5.6, the thermoelectric conductivity can be increased by minimizing the solid solution 5iffi by suppressing the S1 content to below the stoichiometric amount in 1 h. Furthermore, Cr-3i
In addition to the compound, Cr precipitates and strengthens and improves thermal and electrical conductivity. Coarse precipitates have a poor strengthening effect and impede workability and homogeneity. A dispersed precipitate is easily obtained. Therefore, the Cr content is 0.1 to 5%, particularly preferably 1 to 1%, and 3i
The content is 0.02 to 1.0%, particularly preferably 0.1 to 1.0%.
If the content is less than the lower limit, sufficient strength will not be obtained, and if the content exceeds the upper limit, the manufacturing processability will be reduced.
またP 0.01〜0.15%、A S 0.O1〜0
.15%、S b 0.01〜0.15%、N i 0
.05〜1%、CO0,05〜1%、Z r0.01〜
0.5%、Mg0.01〜0.5%、Fe0.01〜1
%、Zn0.05〜3%、3n0.05〜3%、Al0
.05〜1%、Be0.05〜1%、Mn0101〜1
%、Ta0.01〜1%、Nb0.旧〜1%、”l e
o、01〜0.5%、A Q 0.01〜1 %、M
M 0.01〜1 ”6 z T i 0101〜1%
(以下これ等をY等と略記)の範囲内で何れか1杯又は
2種以上の合計含有量を0.01〜3%としたのは、こ
れ等は何れも強度を向上するためでおり、これ等Y等の
うらPは更に脱酸剤として作用するばかりか、Crとの
化合物を析出し、分散性の高い析出物を生じ、待にCr
111体の析出か製造加工時に加工方向に配向して線状
に変形し、vi14の等方均買性やメッキ性を低下する
も、Pの添hnはこれを防止する。Mn、3b、7−n
等は更に脱酸剤として作用すると共に、半田接続強度の
経時劣化を防止し、待にMnは酸化抑止及びスケールの
密着性を向上する。Zr、MQ、[3e、Ta、Nbは
更に補助的に析出して結晶粒を微細化すると共に耐熱性
及び折り曲げ性を向上し、待にMg、BCはZnと同様
に酸化抑制とスケールの密着性を向上する。Δ1、Ni
、C0.Fe、Ti等は更に補助的な強化成分として作
用し、&1〜1、Asは更に結晶の微細化として動き、
Te、AcN;1更に耐熱性を向上する。3nは更に固
溶成分として熱・電気伝導性を低下するも析出物の分散
性を高め、固溶強化作用と相持って強度、伸び等の機械
的1<r性を向上し、特に強度を必要とづる場合、例え
ば60〜701つ/′−級、又はぞれ以上の場合には0
75〜3′xOを含イjけし。Also, P 0.01-0.15%, A S 0. O1~0
.. 15%, Sb 0.01-0.15%, Ni 0
.. 05~1%, CO0.05~1%, Z r0.01~
0.5%, Mg0.01~0.5%, Fe0.01~1
%, Zn0.05-3%, 3n0.05-3%, Al0
.. 05-1%, Be0.05-1%, Mn0101-1
%, Ta0.01-1%, Nb0. Old ~ 1%, “le
o, 01-0.5%, AQ 0.01-1%, M
M 0.01~1''6 z T i 0101~1%
(Hereinafter, these are abbreviated as Y, etc.) The reason why the total content of one or more of these is set at 0.01 to 3% is to improve the strength. , P behind these Y, etc. not only acts as a deoxidizing agent, but also precipitates compounds with Cr, producing highly dispersible precipitates, and eventually Cr.
Although the precipitation of 111 particles is oriented in the processing direction during manufacturing and processing and deforms into a linear shape, deteriorating the isotropic uniformity and plating properties of VI14, the addition of P prevents this. Mn, 3b, 7-n
Further, Mn acts as a deoxidizing agent and prevents deterioration of solder connection strength over time, and Mn inhibits oxidation and improves scale adhesion. Zr, MQ, [3e, Ta, and Nb further precipitate auxiliarily to refine the crystal grains and improve heat resistance and bendability, and Mg and BC, like Zn, suppress oxidation and adhesion of scale. Improve your sexuality. Δ1, Ni
, C0. Fe, Ti, etc. further act as auxiliary reinforcing components, &1~1, As further acts as crystal refinement,
Te, AcN; 1 further improves heat resistance. Furthermore, as a solid solution component, 3n reduces thermal and electrical conductivity, but increases the dispersibility of precipitates, and together with its solid solution strengthening effect, improves mechanical 1<r properties such as strength and elongation. If necessary, for example, 60 to 701/'-grade, or 0 if each or more
Contains 75-3'xO.
める。しかしてこれ等添加元素はそれぞれに下限未満て
も合ii’l含イj吊がo、oio6木’jIJ”d
Cも上記効果か不十分となり、各添加元素か」ニ限を越
えても、合h1含有弔か3 ”()を越えても熱・電気
伝導性及び加工°[(1の低下が署しくなる。Melt. However, even if these additive elements are below the lower limit, they may not be included.
The above effect is also insufficient, and even if each additive element exceeds the limit, the thermal/electrical conductivity and processability decrease significantly even if the total amount exceeds the limit (). Become.
[実施例]
第1表に示す合金を配合溶解し、金型に鋳造して厚さ2
5mm、幅110簡、良さ300mmのj’J Buと
して面側を行なった。これを加熱して約700 ’C以
上で厚さ5mまで熱間圧延を行なって水冷した後酸洗し
、しかる後厚さ0.811117I+まて冷間圧延して
から350°Cて4時間加熱処理し、続いて厚さ0.3
1m/nまて冷間圧延した。[Example] The alloys shown in Table 1 were blended and melted, and cast into a mold to a thickness of 2.
The surface side was prepared as j'J Bu with a width of 5 mm, a width of 110 mm, and a height of 300 mm. This was heated and hot-rolled at about 700'C or above to a thickness of 5m, cooled with water, pickled, then cold-rolled to a thickness of 0.811117I+, then heated at 350°C for 4 hours. processed, followed by a thickness of 0.3
It was cold rolled by 1 m/n.
上記板材について導電率、引張強ざ及び伸びを測定する
と共に、底角90°のV溝グイと各種先端半径(R)の
V型ボンデを用いてプレスにより折り曲げIJO工し、
該曲げ部の割れを実体検鏡した。曲げは圧延方向及び該
方向と直角方向とし、板厚(1)と先端半径(R)の比
(R/l)を求めた。また半田イ」け性を見るため、幅
5mmの部分にリード銅線を共晶半田付けした後、15
0°Cに500時間放置してからプルテストを行なった
。またスケールの密着性を調べるため、250〜400
’Cのポットプレート上で種々の時間処理し、テープ剥
離試験を行なって粘着テープ上にスケールが剥離する最
小酸化厚さを求めた。The electrical conductivity, tensile strength, and elongation of the above board materials were measured, and they were bent using a press using a V-groove gouer with a base angle of 90° and a V-shaped bonder with various tip radii (R), and subjected to IJO processing.
A physical microscope was used to detect cracks in the bent portion. The bending was performed in the rolling direction and in a direction perpendicular to the rolling direction, and the ratio (R/l) between the plate thickness (1) and the tip radius (R) was determined. In addition, in order to check the solderability, after eutectic soldering of a lead copper wire to a 5 mm wide part,
After being left at 0°C for 500 hours, a pull test was performed. In addition, in order to check the adhesion of the scale,
The samples were treated on a pot plate of 'C for various times and a tape peeling test was conducted to determine the minimum oxidation thickness at which the scale would peel off on the adhesive tape.
尚酸化膜の厚さはカソード還元法により測定した。更に
メッキ性を調ぺるためHz SO+ −1−1202液
で表面を厚さ0.1μ溶解した後、KCN溶液で中和し
てから3μの厚さにAgメッキし、これを475°Cに
加熱したホットプレー1〜上で5分間加熱してからフレ
クの有無を検鏡した。応力腐食割れは30vo i%の
硝酸塩中で301(ff/−の荷車をかけながら300
時間保持し、割れ梵生の時間を比較した。これ等の結果
を従来のリードフレーム祠で必るC194 (Cu−
2,4%Fe−0,12%Zn−0,03P合金)、M
F202 (CU−2,1%3n−0,22%N i
−0,08%P合金) 、C510(Cu−5,2%
3n−0,15%合金合金Cl−1−3,5%N i
−0,61%3 i −〇、03P合金)と比較して第
2表に示す。The thickness of the oxide film was measured by a cathode reduction method. In order to further examine the plating properties, the surface was dissolved to a thickness of 0.1μ with Hz SO+ -1-1202 solution, neutralized with KCN solution, and then Ag plated to a thickness of 3μ, which was then heated to 475°C. The sample was heated for 5 minutes on Hot Play 1 to above, and then examined under a microscope to check for flakes. Stress corrosion cracking occurred in 30vo i% nitrate while applying a cart of 301 (ff/-).
The time was kept and the time of cracking Brahma was compared. C194 (Cu-
2,4%Fe-0,12%Zn-0,03P alloy), M
F202 (CU-2,1%3n-0,22%N i
-0,08% P alloy), C510 (Cu-5,2%
3n-0,15% alloy Alloy Cl-1-3,5%N i
-0,61%3i-〇,03P alloy) as shown in Table 2.
尚比較合金No、26を除き07含有早は0.001〜
0.0025%であった。In addition, except for comparison alloy No. 26, the 07 content is 0.001~
It was 0.0025%.
第 ]j。 ]j.
第 1 表 (2)
第1表及び第2表から明らかなように本発明合金N0.
1〜21は何れの特性においても満足する結果を示して
おり、このことは従来合金N0.30〜33と比較すれ
ば明らかである。即ち本発明合金はN 0.11,14
を除きOr過剰組成のもので、何れも満足できる特性を
示し、特に3n含有量の多い本発明合金No、’3〜4
では導電率は低いが強度及び加工性が優れており、3i
過剰の本発明合金N o、 11.14も導電率は低い
がその他の特性が優れている。Table 1 (2) As is clear from Tables 1 and 2, the alloy of the present invention No.
Nos. 1 to 21 showed satisfactory results in all properties, and this is clear when compared with conventional alloys No. 30 to 33. That is, the alloy of the present invention has N 0.11,14
Except for the Or-excess compositions, all of them showed satisfactory properties, especially the invention alloys Nos. 3 to 4, which had a high 3n content.
Although the conductivity is low, the strength and workability are excellent, and the 3i
Excess inventive alloy No. 11.14 also has low conductivity but excellent other properties.
これに対し本発明合金の組成範囲から外れる比較合金N
o、 22〜30では特性の何れか一つ以上が劣るこ
とが判る。即ちY等を含まない比較合金N0.22,3
i含有量の少ない比較合金N 0.23,02含有量の
多い比較合金N o、 26.3n含有量が少ない比較
合金N 0.27、Ni含有量の少ない比較合金N o
、 29及びNi含有量の多い比較合金N o、 30
は何れも加工性及び等方性が劣り、3i含有量の多い比
較合金N 0.24及びSn含有邑の多い比較合金N0
.25では何れも導電性が劣り、更にZnとMnを含む
もその含有量が少ない比較合金N o、 28では半田
付(ブ性か劣ることか判る。On the other hand, comparative alloy N, which is outside the composition range of the alloy of the present invention,
o, 22 to 30, it can be seen that one or more of the characteristics is inferior. That is, comparative alloy No. 22, 3 which does not contain Y etc.
Comparative alloy with low i content No. 0.23,02 Comparative alloy with high content of 26.3n Comparative alloy No. 0.27, comparative alloy with low Ni content No.
, 29 and comparative alloy with high Ni content No, 30
Comparative alloy N0.24 with a high 3i content and comparative alloy N0 with a high Sn content are inferior in workability and isotropy.
.. Comparative alloy No. 25 has poor conductivity, and comparative alloy No. 28 contains Zn and Mn in small amounts, and it can be seen that the solderability is poor in No. 28.
(発明の効果)
このように本発明によれば、従来両立させることが困難
な強度と熱電気伝導性を共に向上し、かつ銅合金が広く
用いられる電子・電気機器部品として不可欠な加工性、
半田(=Jけ性、メッキ性等の諸性性を充分満足できる
レベルに向上したもので、半導体リードフレーム、リー
ド線、各種端子、コネクター、導電性ばね等に使用し、
顕著な効果を奏するものである。(Effects of the Invention) As described above, the present invention improves both strength and thermoelectric conductivity, which have been difficult to achieve in the past, and improves workability, which is essential for electronic and electrical equipment parts in which copper alloys are widely used.
Solder (= J-type solder with improved properties such as soldering properties and plating properties to a sufficiently satisfactory level, used for semiconductor lead frames, lead wires, various terminals, connectors, conductive springs, etc.)
This has a remarkable effect.
Claims (2)
t%を含み、更にP0.01〜0.15wt%、As0
.01〜0.15wt%、Sb0.01〜0.15wt
%、Ni0.05〜1wt%、Co0.05〜1wt%
、Zr0.01〜0.5wt%、Mg0.01〜0.5
wt%、Fe0.01〜1wt%、Zn0.05〜3w
t%、Sn0.05〜3wt%、Al0.05〜1wt
%、Be0.05〜0.3wt%、Mn0.01〜1w
t%、Ta0.01〜1wt%、Nb0.01〜1wt
%、Te0.01〜0.5wt%、Ag0.01〜1w
t%、ミッシュメタル0.01〜1wt%、Ti0.0
1〜1wt%の範囲内で何れか1種又は2種以上を合計
0.01〜3wt%含み、残部Cuからなる導電性高力
銅合金。(1) Cr0.1-5wt% and Si0.02-1.0w
t%, further P0.01-0.15wt%, As0
.. 01-0.15wt%, Sb0.01-0.15wt
%, Ni0.05-1wt%, Co0.05-1wt%
, Zr0.01-0.5wt%, Mg0.01-0.5
wt%, Fe0.01-1wt%, Zn0.05-3w
t%, Sn0.05-3wt%, Al0.05-1wt
%, Be0.05-0.3wt%, Mn0.01-1w
t%, Ta0.01-1wt%, Nb0.01-1wt
%, Te0.01-0.5wt%, Ag0.01-1w
t%, misch metal 0.01-1wt%, Ti0.0
A conductive high-strength copper alloy containing 0.01 to 3 wt% of any one or more types within the range of 1 to 1 wt%, and the balance being Cu.
0.003wt%以下とする特許請求の範囲第1項記載
の導電性高力銅合金。(2) The conductive high-strength copper alloy according to claim 1, wherein the amount of Si is equal to or less than the stoichiometric ratio of Cr, and the amount of O_2 is equal to or less than 0.003 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2478286A JPS62182240A (en) | 1986-02-06 | 1986-02-06 | Conductive high-tensile copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2478286A JPS62182240A (en) | 1986-02-06 | 1986-02-06 | Conductive high-tensile copper alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62182240A true JPS62182240A (en) | 1987-08-10 |
Family
ID=12147752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2478286A Pending JPS62182240A (en) | 1986-02-06 | 1986-02-06 | Conductive high-tensile copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62182240A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338545A (en) * | 1986-08-04 | 1988-02-19 | Furukawa Electric Co Ltd:The | High strength conductive copper alloy |
JPS63103041A (en) * | 1986-10-17 | 1988-05-07 | ヴィーラント ウエルケ アクチーエン ゲゼルシャフト | Alloy of copper, chromium, titanium and silicon, and its production and use |
US6001196A (en) * | 1996-10-28 | 1999-12-14 | Brush Wellman, Inc. | Lean, high conductivity, relaxation-resistant beryllium-nickel-copper alloys |
US6099663A (en) * | 1997-09-16 | 2000-08-08 | Waterbury Rolling Mills, Inc. | Copper alloy and process for obtaining same |
WO2002012583A1 (en) * | 2000-08-09 | 2002-02-14 | Olin Corporation, A Corporation Of The Commonwealth Of Virginia | Silver containing copper alloy |
US6679956B2 (en) | 1997-09-16 | 2004-01-20 | Waterbury Rolling Mills, Inc. | Process for making copper-tin-zinc alloys |
JP2007270305A (en) * | 2006-03-31 | 2007-10-18 | Nikko Kinzoku Kk | Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT |
CN104392773A (en) * | 2014-11-13 | 2015-03-04 | 无锡信大气象传感网科技有限公司 | Copper alloy electric lead and manufacturing method |
CN109937262A (en) * | 2017-10-18 | 2019-06-25 | 株式会社豊山 | Copper alloy band with high heat resistance and heat dissipation performance |
CN111440963A (en) * | 2020-05-09 | 2020-07-24 | 中南大学 | High-heat-resistance high-conductivity CuCrNb-based copper alloy and preparation method thereof |
-
1986
- 1986-02-06 JP JP2478286A patent/JPS62182240A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331776B2 (en) * | 1986-08-04 | 1991-05-08 | Furukawa Electric Co Ltd | |
JPS6338545A (en) * | 1986-08-04 | 1988-02-19 | Furukawa Electric Co Ltd:The | High strength conductive copper alloy |
JPS63103041A (en) * | 1986-10-17 | 1988-05-07 | ヴィーラント ウエルケ アクチーエン ゲゼルシャフト | Alloy of copper, chromium, titanium and silicon, and its production and use |
US6001196A (en) * | 1996-10-28 | 1999-12-14 | Brush Wellman, Inc. | Lean, high conductivity, relaxation-resistant beryllium-nickel-copper alloys |
US6679956B2 (en) | 1997-09-16 | 2004-01-20 | Waterbury Rolling Mills, Inc. | Process for making copper-tin-zinc alloys |
US6099663A (en) * | 1997-09-16 | 2000-08-08 | Waterbury Rolling Mills, Inc. | Copper alloy and process for obtaining same |
CN1302145C (en) * | 2000-08-09 | 2007-02-28 | 奥林公司 | Silver containing copper alloy |
US6749699B2 (en) | 2000-08-09 | 2004-06-15 | Olin Corporation | Silver containing copper alloy |
WO2002012583A1 (en) * | 2000-08-09 | 2002-02-14 | Olin Corporation, A Corporation Of The Commonwealth Of Virginia | Silver containing copper alloy |
JP2007270305A (en) * | 2006-03-31 | 2007-10-18 | Nikko Kinzoku Kk | Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT |
CN104392773A (en) * | 2014-11-13 | 2015-03-04 | 无锡信大气象传感网科技有限公司 | Copper alloy electric lead and manufacturing method |
CN104392773B (en) * | 2014-11-13 | 2016-06-08 | 无锡信大气象传感网科技有限公司 | Copper alloy conduction line and manufacture method |
CN109937262A (en) * | 2017-10-18 | 2019-06-25 | 株式会社豊山 | Copper alloy band with high heat resistance and heat dissipation performance |
CN109937262B (en) * | 2017-10-18 | 2021-03-30 | 株式会社豊山 | Copper alloy strip with high heat resistance and heat dissipation |
US11697864B2 (en) | 2017-10-18 | 2023-07-11 | Poongsan Corporation | Copper alloy strip having high heat resistance and thermal dissipation properties |
CN111440963A (en) * | 2020-05-09 | 2020-07-24 | 中南大学 | High-heat-resistance high-conductivity CuCrNb-based copper alloy and preparation method thereof |
CN111440963B (en) * | 2020-05-09 | 2021-11-09 | 中南大学 | High-heat-resistance high-conductivity CuCrNb-based copper alloy and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3550233B2 (en) | Manufacturing method of high strength and high conductivity copper base alloy | |
KR950004935B1 (en) | Copper alloy for electronic instruments | |
JPS60245754A (en) | High strength copper alloy having high electric conductivity | |
JPS63149344A (en) | High strength copper alloy having high electrical conductivity | |
JPS63130739A (en) | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JP3797882B2 (en) | Copper alloy sheet with excellent bending workability | |
JPH036341A (en) | High strength and high conductivity copper-base alloy | |
JPH0784631B2 (en) | Copper alloy for electronic devices | |
JPS62182240A (en) | Conductive high-tensile copper alloy | |
JPH0425338B2 (en) | ||
JP2521880B2 (en) | Copper alloy for electronic and electrical equipment and its manufacturing method | |
JPH0830235B2 (en) | Copper alloy for conductive spring | |
JPH0830234B2 (en) | High strength and high conductivity copper alloy | |
JPS63149345A (en) | High strength copper alloy having high electrical conductivity and improved heat resistance | |
JPH0987814A (en) | Production of copper alloy for electronic equipment | |
JPS6338547A (en) | High strength conductive copper alloy | |
JPH0575812B2 (en) | ||
JPH0356294B2 (en) | ||
JPH06172896A (en) | High-strength and high-conductivity copper alloy | |
JPH0219432A (en) | High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material | |
JP2576853B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JPH0830233B2 (en) | High strength and high conductivity copper alloy | |
JPS63192835A (en) | Lead material for ceramic package | |
JPH0816255B2 (en) | Copper alloy for electronic devices |