[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6217334Y2 - - Google Patents

Info

Publication number
JPS6217334Y2
JPS6217334Y2 JP1977094417U JP9441777U JPS6217334Y2 JP S6217334 Y2 JPS6217334 Y2 JP S6217334Y2 JP 1977094417 U JP1977094417 U JP 1977094417U JP 9441777 U JP9441777 U JP 9441777U JP S6217334 Y2 JPS6217334 Y2 JP S6217334Y2
Authority
JP
Japan
Prior art keywords
pump
pressure
rod
diameter piston
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977094417U
Other languages
Japanese (ja)
Other versions
JPS5422738U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1977094417U priority Critical patent/JPS6217334Y2/ja
Publication of JPS5422738U publication Critical patent/JPS5422738U/ja
Application granted granted Critical
Publication of JPS6217334Y2 publication Critical patent/JPS6217334Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、車両におけるかじ取り装置に関す
る。
[Detailed Description of the Invention] This invention relates to a steering device for a vehicle.

車両かじ取り装置には、かじ取り歯車等を直結
した機械式かじ取り装置および油圧ポンプを動力
源にした動力かじ取り装置がある。前者装置にお
いては、車輪の旋回抵抗がハンドルに直接加わる
ので、それに打勝つための操舵力は一定の関係で
増大し、したがつてある旋回抵抗以上になるとか
じ取りが困難となり、また旋回抵抗と操舵力との
関係はその車両に固有であつて変えられない。後
者装置においては、車輪旋回抵抗が増大してもか
じ取りは可能であるが、動力源を確保するために
当然エンジンの出力を増さねばならず、また装置
自体の価格が高い等の点から小型のの車両に必ず
しも適用し難い。
Vehicle steering devices include mechanical steering devices that are directly connected to a steering gear or the like, and power steering devices that use a hydraulic pump as a power source. In the former device, since the turning resistance of the wheels is directly applied to the steering wheel, the steering force required to overcome it increases in a certain relationship.Therefore, when the turning resistance exceeds a certain level, it becomes difficult to steer, and the turning resistance and steering force increase. The relationship to force is unique to the vehicle and cannot be changed. With the latter device, steering is possible even if the wheel turning resistance increases, but the engine output must naturally be increased to secure a power source, and the device itself is expensive, so it is not suitable for small size. It is not necessarily applicable to other vehicles.

例えば後者装置において、エンジンが車輪の旋
回抵抗増大時に出力不足で停止しないようにする
ため操舵用油圧ポンプに可変容量形のものを用
い、車輪旋回抵抗に応じた負荷圧力を該ポンプの
吐出量制御部へ導いて、負荷圧力変化に応じてポ
ンプの理論押しのけ容積を変化させ、エンジンの
出力特性に応じた最適のポンプ軸入力でポンプを
回転させるようにしたものが特開昭51−69837号
公報に開示されている。そこでこのような負荷圧
感応形の可変容量液圧ポンプを、エンジン駆動に
よらない手動の簡易液圧かじ取り装置に用いる場
合を考えてみると、普通のかじ取りハンドルに手
動駆動の可変容量液圧ポンプを連結し、操縦者が
ハンドルに加えた操舵トルクで該ポンプを駆動し
て流体エネルギに変換し、これを液圧アクチユエ
ータに導いてリンク機構等を介して車輪旋回抵抗
に打勝つて旋回させる方式のものが考えられる。
その一例を示すと、第1図において、ハンドル2
に正逆回転自在な可変容量液圧ポンプ1、例えば
斜板型アキシヤルピストンポンプを該ハンドルの
回動に応じて回転駆動自在に装着し、前記ポンプ
が吐出する圧液を液圧アクチユエータ3に導入し
て作動させ、ついで該アクチユエータに連結した
リンク機構4を動作させて車輪5に伝えるもの
で、前記ポンプの吸入および吐出側配管を方向制
御弁6で接続して車輪旋回抵抗に応じて発生する
高圧側の液体だけを後述する制御機構7Aに流入
させ、前記制御機構はシリンダ内部を摺動するピ
ストン9と該ピストンに装着して付勢するばね1
0からなり、前記ピストンは前記の液圧ポンプ1
の斜板11に係合してその傾角αを変化させるよ
うにしている。
For example, in the latter device, in order to prevent the engine from stopping due to insufficient output when the turning resistance of the wheels increases, a variable displacement type hydraulic pump is used for steering, and the discharge amount of the pump is controlled by the load pressure according to the wheel turning resistance. Japanese Unexamined Patent Publication No. 51-69837 discloses a system in which the theoretical displacement of the pump is changed according to changes in load pressure, and the pump is rotated with the optimum pump shaft input according to the output characteristics of the engine. has been disclosed. Therefore, if we consider the case where such a load pressure-sensitive variable displacement hydraulic pump is used in a simple manual hydraulic steering device that is not driven by an engine, it is possible to use a manually driven variable displacement hydraulic pump on an ordinary steering handle. A system in which the pump is driven by the steering torque applied by the operator to the steering wheel, converting it into fluid energy, which is guided to a hydraulic actuator and rotates by overcoming the wheel turning resistance via a link mechanism etc. The following are possible.
For example, in Fig. 1, the handle 2
A variable displacement hydraulic pump 1, such as a swash plate type axial piston pump, which can be rotated in forward and reverse directions is attached to the holder so as to be rotatable according to the rotation of the handle, and the pressure liquid discharged by the pump is delivered to the hydraulic actuator 3. The link mechanism 4 connected to the actuator is then operated to transmit the information to the wheels 5, and the suction and discharge side pipes of the pump are connected by a directional control valve 6 to generate a rotation resistance according to the wheel turning resistance. Only the liquid on the high pressure side flows into a control mechanism 7A to be described later, and the control mechanism includes a piston 9 sliding inside the cylinder and a spring 1 attached to the piston to bias it
0, the piston is the hydraulic pump 1
The swash plate 11 is engaged with the swash plate 11 to change its inclination angle α.

この第1図に示した例の制御方式の理論につい
て述べると、いま操舵トルクT、操舵力をf、ハ
ンドル半径をrH、液圧ポンプ吐出圧力をP、ポ
ンプ1回転当りの吐出容積をqとすると、 T=f・rH=P・q/2π ………(1) の関係があることが知られている。
Describing the theory of the control system for the example shown in Figure 1, let us now assume that the steering torque is T, the steering force is f, the handle radius is rH, the hydraulic pump discharge pressure is P, and the discharge volume per revolution of the pump is q. Then, it is known that the following relationship exists: T=f・rH=P・q/2π (1).

また、車輪の旋回抵抗をR、比例定数をkとす
ると、前記抵抗とそれに打勝つための液圧力、す
なわちポンプ吐出圧力との間には、 R=k・P ………(2) の関係があり、(1)式で操舵力fの上限をfmaxと
すると、ハンドル半径rHが一定であるから、操
舵トルクTの上限Tmaxが決定でき、また前記
Tmaxの範囲内でより大きな旋回抵抗Rに打勝つ
ためには、ポンプ1回転当りの吐出容積qを小さ
くしていけば発生できる吐出圧力Pの最大値をよ
り大きくすることができ、したがつて(2)式から大
きな車輪旋回抵抗でも小さいトルクで操舵可能に
なる。(1)式において、Tmax=P・q/2π=一
定としたときのPとqとには、第2図に示すA〜
A′曲線の関係があり、吐出容積qの上限をq3
決めれば、同図において−−−−A′に
沿うようにPとqの関係を制御すればよいことに
なる。ピストン9を付勢しているばね10の取付
荷重をF、ピストン9の断面積をSとすると、該
ピストンに作用する圧力P1がP1>F/Sになれ
ば、ピストンはばね力に抗して斜板11の傾角α
を変化させることによつてポンプの吐出量が自動
的に第2図の−−−A′に沿つて変化す
る。
Furthermore, if the turning resistance of the wheel is R and the proportionality constant is k, then the relationship between the resistance and the hydraulic pressure to overcome it, that is, the pump discharge pressure, is R=k・P (2) If the upper limit of the steering force f is fmax in equation (1), then since the steering wheel radius rH is constant, the upper limit Tmax of the steering torque T can be determined, and the above
In order to overcome a larger turning resistance R within the range of Tmax, the maximum value of the discharge pressure P that can be generated can be increased by decreasing the discharge volume q per pump revolution, and therefore, the maximum value of the discharge pressure P that can be generated can be increased. From equation (2), it is possible to steer with small torque even with large wheel turning resistance. In equation (1), when Tmax=P・q/2π=constant, P and q are expressed as A~ as shown in Figure 2.
There is a relationship expressed by the A' curve, and if the upper limit of the discharge volume q is determined to be q3 , then the relationship between P and q can be controlled so as to follow A' in the figure. If the installed load of the spring 10 that biases the piston 9 is F, and the cross-sectional area of the piston 9 is S, then if the pressure P 1 acting on the piston becomes P 1 >F/S, the piston will not respond to the spring force. The inclination angle α of the swash plate 11 against
By changing , the discharge amount of the pump automatically changes along line A' in FIG.

このような特性は一般に定トルク特性と呼ばれ
るものであるが、ここで操舵トルクの入力が手動
操作力であることを考え合わせると、フオークリ
フトなどでの空荷時と積荷時、或いはトラクター
での普通道路走行時と田畑内走行時とにおける車
輪旋回抵抗の大巾な違いに対応した広いポンプ吐
出量変化巾を制御範囲とし且つエンジン駆動方式
に比べて操舵トルク上限値を低くして手動操舵駆
動方式に適合したものとするためには、第1図の
ものではその制御機構7Aのばね10を大形のも
のにする必要があるという欠点が避けられない。
Such a characteristic is generally called a constant torque characteristic, but considering that the input of steering torque is a manual operation force, it is difficult to determine whether the steering torque is applied when a forklift is unloaded or loaded, or when a tractor is loaded. Manual steering drive with a wide control range of pump discharge amount variation corresponding to the large difference in wheel turning resistance when driving on ordinary roads and driving in fields, and with a lower upper limit of steering torque compared to engine drive systems. In order to adapt the control mechanism 7A to the system shown in FIG. 1, the spring 10 of the control mechanism 7A must be large in size, which is an unavoidable drawback.

この考案は上述の欠点を除去して特にトラクタ
ー等の作業用小型車両に好適な手動操舵力による
液圧かじ取り装置を提供しようとするものであ
り、負荷圧に対抗する制御機構のばねを不要とし
或いは用いても小形のばねで済むようにして、車
輪旋回抵抗の大巾な変化に感応するトルク変換機
構付きのかじ取り装置を提供することを目的とし
ている。
This invention aims to eliminate the above-mentioned drawbacks and provide a hydraulic steering device using manual steering force that is particularly suitable for small working vehicles such as tractors, and eliminates the need for a spring in the control mechanism that counters the load pressure. Alternatively, it is an object of the present invention to provide a steering device with a torque conversion mechanism that is sensitive to large changes in wheel turning resistance and that only requires a small spring.

すなわちこの考案のかじ取り装置では、第1図
に示した方式において制御機構7Aの代りに、可
変容量液圧ポンプの吐出容積制御用のロツドに大
口径ピストンと小口径ピストンを組み合わせ、負
荷圧が予じめ定められた切換圧力値に達したとき
大口径ピストンに負荷圧を作用させて前記ロツド
を或る予じめ定められた中途の吐出容積位置まで
移動させることによりポンプ吐出量を階段状に減
じる第1のパイロツト操作切換弁と、負荷圧がさ
らに上昇して前記切換圧力値より高い予じめ定め
られた圧力に達したとき小口径ピストンに負荷圧
を作用させて前記ロツドをさらに移動させること
によりポンプの吐出量をさらに減じる第2のパイ
ロツト操作切換弁とを設けてなる制御機構を用い
るものである。
That is, in the steering device of this invention, instead of the control mechanism 7A in the system shown in FIG. When a predetermined switching pressure value is reached, load pressure is applied to the large-diameter piston to move the rod to a predetermined intermediate discharge volume position, thereby changing the pump discharge amount in a stepwise manner. a first pilot-operated switching valve for reducing the switching pressure and applying the load pressure to the small diameter piston to further move the rod when the load pressure increases further to reach a predetermined pressure higher than the switching pressure value; Accordingly, a control mechanism is used which is provided with a second pilot-operated switching valve that further reduces the discharge amount of the pump.

このように本考案では、操舵駆動力が手動操作
力であつて負荷圧が或る設定値を超えるとポンプ
吐出量がステツプ状に切換り、かじ取りハンドル
を軽くすることができるものであり、これは本考
案で対象とするフオークリフシやトラクタでは旋
回抵抗の上昇現象を起すのが積荷状態ないし田畑
内などの低速走行状態に限られるので必要な旋回
を果たすのにハンドル回転数が多数回になつても
一向に差しつかえないという事実に基づいてい
る。
In this way, in the present invention, the steering drive force is a manual operation force, and when the load pressure exceeds a certain set value, the pump discharge amount changes in steps, making it possible to lighten the steering wheel. In the case of forklifts and tractors targeted by this invention, the phenomenon of increased turning resistance occurs only when the vehicle is loaded or when running at low speeds such as in fields, so the number of rotations of the steering wheel is large to complete the necessary turn. It is based on the fact that there is absolutely no impediment.

次にこの考案を実施例図面と共に説明すれば、
この考案のかじ取り装置では第1図において制御
機構7Aの代りに第4図の制御機構7B又は第5
図の制御機構7Cを接続するもので、各制御機構
7B,7Cについて述べれば以下の通りである。
Next, this invention will be explained with reference to the drawings of the embodiment.
In the steering device of this invention, instead of the control mechanism 7A in FIG. 1, the control mechanism 7B in FIG.
It connects the control mechanism 7C shown in the figure, and each control mechanism 7B, 7C will be described as follows.

第4図において、制御機構7Bは、液圧ポンプ
1の斜板11に係合して制御するロツド12に大
口径ピストン13および小口径ピストン14を配
設して夫々の摺動室13′,14′内に収容し、前
者室はパイロツト操作切換弁15に、また後者室
はパイロツト操作切換弁8に接続している。
In FIG. 4, the control mechanism 7B includes a large-diameter piston 13 and a small-diameter piston 14 disposed on a rod 12 that engages with and controls the swash plate 11 of the hydraulic pump 1. The former chamber is connected to the pilot operation switching valve 15, and the latter chamber is connected to the pilot operation switching valve 8.

大口径ピストン13は負荷圧が予じめ定められ
た切換力P1になつたときに切換るパイロツト操作
切換弁15を介して負荷圧を受けたとき斜板11
を或る吐出量位置に立てるべくロツド12を図中
右方へ移動させ、小口径ピストン14は負荷圧が
設定最高圧力P3に達したときに切換るパイロツト
操作切換弁8を介してこの最高圧の負荷圧を受け
たとき斜板11をアンロード位置まで立てるべく
ロツド12を図中右方へ更に移動させるものであ
る。
When the large-diameter piston 13 receives a load pressure via a pilot-operated switching valve 15 that switches when the load pressure reaches a predetermined switching force P1 , the swash plate 11
The rod 12 is moved to the right in the figure in order to set the piston at a certain discharge amount position, and the small diameter piston 14 is moved to this maximum position via the pilot operated switching valve 8 which is switched when the load pressure reaches the set maximum pressure P3 . When receiving a high load pressure, the rod 12 is further moved to the right in the figure in order to raise the swash plate 11 to the unloading position.

即ち、切換弁15は前記方向制御弁6を介して
導入される負荷圧がその設定圧力P1に達すると開
いて摺動室13′に負荷圧を導入し、また切換弁
8は負荷圧がその設定圧力P3(>P1)に達すると
開いて摺動室14′に負荷圧を導入する。そして
この場合、大口径ピストン13はロツド12上に
すべり軸受13aで相対摺動可能に嵌つている
が、摺動室13′内の負荷圧によつて図中右方へ
移動する際には、大口径ピストン13がロツド1
2の途中に固定されているストツパ12aとその
内径部で衝合して、該ロツド12をポンプの図示
しない斜板付勢用ばねに抗して一緒に図中右方へ
移動させる。大口径ピストン13は、前記吐出量
位置に対応して反対側のタンク側に通じた摺動室
内の途中に設けられた内壁段部18に達するとそ
れ以上の右方への移動はしない。これに対して小
口径ピストン14は、その図中右方への移動によ
つてロツド12を大口径ピストン13内径部と相
対摺動させながら更に図中右方へ移動させ、斜板
11をカツトオフ状態にできるようになつてい
る。尚、小口径ピストン14は、切換弁8が切換
つて摺動室14′内がタンクに通じたときにロツ
ド12が前記ポンプの斜板11の付勢用ばねによ
つて押し戻されることにより後退し、このとき大
口径ピストン13はロツド12が戻る際に途中で
ロツドのストツパ12aと衝合して後退される。
That is, the switching valve 15 opens when the load pressure introduced via the directional control valve 6 reaches its set pressure P 1 and introduces the load pressure into the sliding chamber 13', and the switching valve 8 opens when the load pressure introduced via the directional control valve 6 reaches the set pressure P1. When the set pressure P 3 (>P 1 ) is reached, it opens to introduce load pressure into the sliding chamber 14'. In this case, the large-diameter piston 13 is fitted on the rod 12 with a sliding bearing 13a so as to be able to slide relative to each other, but when it moves to the right in the figure due to the load pressure in the sliding chamber 13', Large diameter piston 13 is rod 1
The rod 12 collides with a stopper 12a fixed in the middle of the rod 2 at its inner diameter portion, and moves the rod 12 together to the right in the figure against a swash plate biasing spring (not shown) of the pump. When the large-diameter piston 13 reaches an inner wall stepped portion 18 provided halfway in the sliding chamber communicating with the opposite tank side corresponding to the discharge amount position, it does not move further to the right. On the other hand, by moving the small diameter piston 14 to the right in the figure, the rod 12 is slid relative to the inner diameter part of the large diameter piston 13, and is further moved to the right in the figure, and the swash plate 11 is cut off. It is becoming possible to do so. The small diameter piston 14 is retracted by the rod 12 being pushed back by the biasing spring of the swash plate 11 of the pump when the switching valve 8 is switched and the inside of the sliding chamber 14' communicates with the tank. At this time, when the rod 12 returns, the large diameter piston 13 collides with the stopper 12a of the rod and is moved back.

また、制御機構のさらに他例を示す第5図にお
いては、制御機構7cは、前述例と同様のロツド
12の小口径ピストン14をばね16で弾圧し、
摺動室13′に前記切換弁15を、摺動室14′に
は他のパイロツト操作切換弁17に接続してなつ
ている。
Further, in FIG. 5 showing still another example of the control mechanism, the control mechanism 7c presses the small diameter piston 14 of the rod 12 similar to the above example with the spring 16,
The switching valve 15 is connected to the sliding chamber 13', and another pilot operated switching valve 17 is connected to the sliding chamber 14'.

この場合、切換弁17は負荷圧が前述の例の切
換弁8で設定した最高圧力P3より低い別の設定圧
力値P2(>P1)に達したとき切換り、以後の負荷
圧上昇に対して小口径ピストン14がばね16の
ばね力により近似的な定トルク特性に従つて斜板
11を立てるべくロツド12を図中右方へ移動さ
せるようにしてある。
In this case, the switching valve 17 switches when the load pressure reaches another set pressure value P 2 (>P 1 ) lower than the maximum pressure P 3 set by the switching valve 8 in the above example, and the subsequent load pressure increase On the other hand, the small diameter piston 14 moves the rod 12 to the right in the figure in order to raise the swash plate 11 according to an approximate constant torque characteristic by the spring force of the spring 16.

第4図の制御機構7Bでポンプ制御をする本考
案によれば、ポンプ吐出量qを第2図の−−
−−のように階段上に所定圧力まで制御す
ることができ、ポンプ圧がP1になると切換弁15
が開いて大口径ピストン13がロツド12を第4
図に対面して右方に摺動させ、したがつて斜板1
1の傾角が小さくなり、さらに最高圧力P3まで上
昇すると切換弁8が開いて小口径ピストン14を
右方に摺動させることで前記斜板傾角がさらに小
さくなる。なお、他のパイロツト操作切換弁を用
いることで前記P1とP3との間にさらに一段階をも
つ複数段の制御が可能である。
According to the present invention, in which the pump is controlled by the control mechanism 7B shown in FIG. 4, the pump discharge amount q is controlled by the --
--It can be controlled up to a predetermined pressure on the stairs, and when the pump pressure reaches P 1 , the switching valve 15
opens and the large diameter piston 13 moves the rod 12 into the fourth position.
Slide the swash plate 1 to the right while facing the figure.
When the inclination angle of 1 becomes smaller and further rises to the maximum pressure P3, the switching valve 8 opens and the small diameter piston 14 slides to the right, thereby further reducing the swash plate inclination angle. Note that by using another pilot-operated switching valve, it is possible to perform multi-stage control with one additional stage between P1 and P3 .

またもうひとつの例の第5図の制御機構7cで
ポンプ制御をすれば、ポンプ吐出量qを第2図の
−−−−−A′のように制御すること
ができ、切換弁15をP1に、切換弁17をP2に設
定すると、小口径ピストン14を弾圧しているば
ね16のばね力により、圧力P2以上では第2図の
−−A′の曲線に近似的に沿つて変化する。
If the pump is controlled by the control mechanism 7c in FIG. 5, which is another example, the pump discharge amount q can be controlled as shown in A' in FIG. 1 and the switching valve 17 is set to P 2 , due to the spring force of the spring 16 pressing against the small diameter piston 14, the pressure approximately follows the curve -A' in Fig. 2 when the pressure exceeds P 2. Change.

したがつて、この考案によれば、操縦者がハン
ドルに加えた操舵トルクが可変容量液圧ポンプを
駆動して液体エネルギに変換し、該エネルギが液
圧アクチユエータを作動させてリンク機構等を介
して車輪旋回抵抗に抗して車輪を旋回することが
でき、前記液圧ポンプは車輪旋回抵抗に比例して
発生した液圧力を感知して導入し、その制御機構
を動作させてポンプ1回転当りの吐出容積を自動
的に或る負荷圧を境にして切換えて操舵トルクを
軽くすることができ、そのためのポンプ制御機構
に大きなばねを用いる必要がなく、大小ピストン
の口径の差で大巾な車輪旋回抵抗の変化に対処で
きるから設計が楽で構造も小形化でき、また予じ
め前記旋回抵抗の大小を推測してそれに打勝つポ
ンプ圧力を自動あるいは手動で設定圧力に変える
ことによつてポンプ1回転当りの吐出容積を変え
る制御をもでき、さらに旋回抵抗の増大に応じて
大液圧が要求されるが、そのためのポンプ1回転
当りの吐出量が液圧に応じて小さくなるために、
液圧と吐出量の積で表示されるポンプ駆動トルク
は比例的に増大することがないので、ハンドル操
舵力を大きくしないでも操舵可能である。したが
つて、農業用トラクタにおいては一般道路走行時
と田畑内走行時、あるいはフオークリフト、小型
車両における空荷時と荷物積載時場合等には、車
両からの旋回抵抗が路面状況、車輪荷重によつて
異なるから特に有効であつて、これら車両は一般
に低速走行であるのでハンドル回転数が車両旋回
半径に対して増大しても運転に支障がなく、また
旋回抵抗が大きくても小半径で旋回できるので、
田畑内隅角部の未耕地部の減少となるとともに、
作業場、通路等における旋回運転が容易であるな
ど、多くの実益をもつ考案である。
Therefore, according to this invention, the steering torque applied by the operator to the steering wheel drives the variable displacement hydraulic pump and is converted into liquid energy, and the energy actuates the hydraulic actuator and is transmitted through the link mechanism etc. The hydraulic pump senses and introduces the hydraulic pressure generated in proportion to the wheel turning resistance, and operates its control mechanism to turn the wheel against the wheel turning resistance. It is possible to reduce the steering torque by automatically switching the discharge volume at a certain load pressure, and there is no need to use a large spring in the pump control mechanism for this purpose. Since it can deal with changes in wheel turning resistance, the design is easy and the structure can be made compact.Also, by predicting the magnitude of the turning resistance in advance and automatically or manually changing the pump pressure to overcome it to the set pressure. It is also possible to control the discharge volume per pump revolution, and as the turning resistance increases, a large hydraulic pressure is required. ,
Since the pump drive torque, which is expressed as the product of the hydraulic pressure and the discharge amount, does not increase proportionally, the pump can be steered without increasing the steering force. Therefore, in agricultural tractors, when driving on general roads and in fields, or when forklifts and small vehicles are empty and loaded, the turning resistance from the vehicle is affected by the road surface condition and wheel load. Therefore, it is particularly effective because these vehicles generally run at low speeds, so even if the steering wheel rotation speed increases relative to the vehicle turning radius, there is no problem with driving, and even if the turning resistance is large, it is possible to turn with a small radius. Because you can
Along with the decrease in uncultivated land in the corners of fields,
This invention has many practical benefits, such as ease of turning operation in workplaces, aisles, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、手動操舵力で駆動する液圧かじ取り
装置の一例を示す説明用回路図、第2図は、液圧
ポンプ吐出力Pとポンプ1回転当りの吐出容積q
との関係図、第3図は、車輪の旋回抵抗Rと操舵
力fとの関係図、第4図は本考案の一実施例の要
部の制御機構を示す説明用回路図、第5図は、同
じくもうひとつの実施例の要部の制御機構を示す
説明用回路図である。 1:液圧ポンプ、2:ハンドル、3:液圧アク
チユエータ、4:リンク機構、5:車輪、6:方
向制御弁、7A,7B,7C:制御機構、8,1
5,17:パイロツト操作切換弁、9:ピスト
ン、11:斜板、12:ロツド、12a:ストツ
パ、13a:すべり軸受、14:小口径ピスト
ン。
Fig. 1 is an explanatory circuit diagram showing an example of a hydraulic steering device driven by manual steering force, and Fig. 2 shows the hydraulic pump discharge force P and the discharge volume q per pump rotation.
3 is a diagram showing the relationship between the turning resistance R of the wheels and the steering force f, FIG. 4 is an explanatory circuit diagram showing the control mechanism of the main part of an embodiment of the present invention, and FIG. FIG. 2 is an explanatory circuit diagram showing a control mechanism of a main part of another embodiment. 1: Hydraulic pump, 2: Handle, 3: Hydraulic actuator, 4: Link mechanism, 5: Wheel, 6: Directional control valve, 7A, 7B, 7C: Control mechanism, 8, 1
5, 17: Pilot operation switching valve, 9: Piston, 11: Swash plate, 12: Rod, 12a: Stopper, 13a: Sliding bearing, 14: Small diameter piston.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ハンドルに正逆回転自在な可変容量液圧ポンプ
を該ハンドルの回動に応じて回転駆動自在に装着
し、前記ポンプの吐出する圧液を導入して作動す
る液圧アクチユエータでリンク機構を介して車輪
を旋回させるように構成するとともに、車輪旋回
抵抗に応じて発生する高圧側液体だけを前記ポン
プに配備した方向制御弁を介して感知導入してそ
の液圧力に対応して前記ポンプ1回転当りの吐出
容積を変化させる制御機構を装備したものにおい
て、前記制御機構を、前記ポンプの吐出容積制御
用のロツドと、該ロツドに組み合わされた大口径
ピストンおよび小口径ピストンと、前記液圧力が
予じめ定められた切換圧力値に達したとき前記大
口径ピストンに前記液圧力を作用用させて前記ロ
ツドを予じめ定められた中途吐出容積位置まで移
動させることにより前記ポンプの吐出量を階段状
に減じる第1のパイロツト操作切換弁と、前記液
圧力がさらに上昇して前記切換圧力値より高い予
じめ定められた圧力に達したとき前記小口径ピス
トンに前記液圧力を作用させて前記ロツドをさら
に移動させることにより前記ポンプの吐出量をさ
らに減じる第2のパイロツト操作切換弁とにより
構成したことを特徴とする作業車両用かじ取り装
置。
A variable capacity hydraulic pump that can be rotated in forward and reverse directions is attached to the handle so that it can be rotated according to the rotation of the handle, and a hydraulic actuator that operates by introducing the pressure liquid discharged from the pump is operated via a link mechanism. The wheels are configured to turn, and only the high-pressure liquid generated in response to wheel turning resistance is sensed and introduced via a directional control valve provided in the pump, and the pump is configured to rotate per rotation of the pump in response to the liquid pressure. The control mechanism is equipped with a rod for controlling the discharge volume of the pump, a large-diameter piston and a small-diameter piston combined with the rod, and the hydraulic pressure is predetermined. When a predetermined switching pressure value is reached, the fluid pressure is applied to the large-diameter piston to move the rod to a predetermined intermediate discharge volume position, thereby increasing the discharge volume of the pump in steps. a first pilot-operated switching valve that reduces the switching pressure value to a predetermined value; A steering device for a work vehicle, comprising a second pilot operated switching valve that further reduces the discharge amount of the pump by further moving the rod.
JP1977094417U 1977-07-18 1977-07-18 Expired JPS6217334Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977094417U JPS6217334Y2 (en) 1977-07-18 1977-07-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977094417U JPS6217334Y2 (en) 1977-07-18 1977-07-18

Publications (2)

Publication Number Publication Date
JPS5422738U JPS5422738U (en) 1979-02-14
JPS6217334Y2 true JPS6217334Y2 (en) 1987-05-02

Family

ID=29026397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977094417U Expired JPS6217334Y2 (en) 1977-07-18 1977-07-18

Country Status (1)

Country Link
JP (1) JPS6217334Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169837A (en) * 1974-11-06 1976-06-16 Trw Inc

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169837A (en) * 1974-11-06 1976-06-16 Trw Inc

Also Published As

Publication number Publication date
JPS5422738U (en) 1979-02-14

Similar Documents

Publication Publication Date Title
JP6049758B2 (en) Achieving maximum lifting speed using a single input
US4505111A (en) Hydraulic control system for industrial vehicle
NL7907780A (en) HYDRAULIC STEERING SYSTEM WITH RETURN ON THE OPERATING DEVICE.
US7246670B2 (en) Work vehicle with hydrostatic steering system
EP3104049B1 (en) Travel control unit of working vehicle
EP1539560B1 (en) A method, device and computer program product for controlling the steering of a vehicle
JP2802726B2 (en) Fluid type, especially hydraulic servo device
US20050139412A1 (en) Method, device and computer program product for controlling the steering of a vehicle
JP2001001918A (en) Hydraulic power steering device
JPS6217334Y2 (en)
JPH1045014A (en) Steering device capable of varying control angle of steering wheel
US4463559A (en) Hydrostatic transmission with inching control
GB2275761A (en) Improvements in braking vehicles with hydrostatic drive
JP3406271B2 (en) Industrial vehicle travel drive device
JP6002899B2 (en) Travel control device for work vehicle
JPH0147644B2 (en)
RU162693U1 (en) MUNICIPAL MACHINE HYDRAULIC SYSTEM
JP2650600B2 (en) Forklift control mechanism
JP6142168B2 (en) Travel control device for work vehicle
JPS6325178A (en) Power steering device
JPH0732240Y2 (en) Driving speed control device for hydraulically driven vehicle
JPH04306172A (en) Electric power steering for forklift
CN116334977A (en) Hydraulic drive for a roller press and roller press
JPH10278832A (en) Steering control device for working vehicle
JP3415175B2 (en) Forklift control device