JPS62171999A - Epitaxy of iii-v compound semiconductor - Google Patents
Epitaxy of iii-v compound semiconductorInfo
- Publication number
- JPS62171999A JPS62171999A JP1375186A JP1375186A JPS62171999A JP S62171999 A JPS62171999 A JP S62171999A JP 1375186 A JP1375186 A JP 1375186A JP 1375186 A JP1375186 A JP 1375186A JP S62171999 A JPS62171999 A JP S62171999A
- Authority
- JP
- Japan
- Prior art keywords
- group
- layer
- semiconductor
- semiconductor layer
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 53
- 150000001875 compounds Chemical class 0.000 title claims abstract description 22
- 238000000407 epitaxy Methods 0.000 title description 2
- 239000013078 crystal Substances 0.000 claims abstract description 18
- 229910021478 group 5 element Inorganic materials 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000001179 sorption measurement Methods 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 claims description 32
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000000875 corresponding effect Effects 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 5
- 208000025174 PANDAS Diseases 0.000 description 4
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 4
- 240000004718 Panda Species 0.000 description 4
- 235000016496 Panda oleosa Nutrition 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 2
- -1 M-V group compound Chemical class 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004943 liquid phase epitaxy Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はM−V族化合物半導体のエピタキシャル結晶成
長方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for epitaxial crystal growth of M-V group compound semiconductors.
(従来技術及び発明が解決しようとする問題点)GaA
s +GaPに代表されるI−V族化合物半導体は、電
気的、光学的に優れた特性を有する反面、高価であるば
か)でなく、機械的に脆く熱伝導性も悪い等の欠点があ
る。このため、安価で且つ機械的、熱的特性にも優れ7
t st +Goの■族半導体を基板とし、この上にJ
[−V化合物半導体をエピタキシャル成長させることに
より、安価で機械的、熱的特性に優れた璽−v族化合物
半導体を実現させようという試みがなされている。(Prior art and problems to be solved by the invention) GaA
Although IV group compound semiconductors represented by s+GaP have excellent electrical and optical properties, they are not only expensive, but also have drawbacks such as being mechanically brittle and having poor thermal conductivity. Therefore, it is inexpensive and has excellent mechanical and thermal properties.
A group III semiconductor of t st +Go is used as a substrate, and J
Attempts have been made to realize a -V group compound semiconductor that is inexpensive and has excellent mechanical and thermal properties by epitaxially growing a -V compound semiconductor.
しかしながら、従来、■族半導体基板上に形成された夏
−v族化合物半導体層は、電気的。However, conventionally, a X-V group compound semiconductor layer formed on a group I semiconductor substrate has an electrical property.
光学的に極めて活性なアンチフェイ)e/4ンダリと呼
ばれる面欠陥を多数含んでおり、デバイス形成に適用で
きる高品位の結晶を得るまでには至っていない。It contains a large number of planar defects called anti-phase (e/4) defects that are extremely optically active, and it has not yet been possible to obtain a high-quality crystal that can be applied to device formation.
以下、面方位<Zoo>のst基板上KGaPをエピタ
キシャル成長させる場合を例に上記アンチ7エイズパン
ダリについて説明する。Hereinafter, the above-mentioned anti-7AIDS pandry will be explained using as an example a case where KGaP is epitaxially grown on a st substrate with a surface orientation <Zoo>.
一般に、化学的表面処理によって得られる81基板の表
面には、原子的スケールでみると無秩序な凹凸が存在す
る。このような表面状態のsi基板上にGaPをエピタ
キシャル成長させ念場合、GaPはGa原子層とP原子
層とが順次交互に積層された結晶構造である之め、得ら
れ九〇aP結晶内に本来あってはならないGaとGaあ
るいはPとPとが隣接するような結晶面が形成されてし
まう。この結晶面が上述したアンチ7エイズパンダリと
呼ばれる面欠陥である。アンチフェイズパンダリは上述
したように電気的、光学的に極めて活性な面欠陥である
ので、このような欠陥を多数含むGaP結晶を用いて作
製したデバイスはとても実用に耐えがたい。Generally, the surface of an 81 substrate obtained by chemical surface treatment has irregular irregularities on an atomic scale. If GaP is epitaxially grown on a Si substrate with such a surface condition, since GaP has a crystal structure in which Ga atomic layers and P atomic layers are sequentially and alternately stacked, the resulting 90aP crystal will contain Crystal planes are formed in which Ga and Ga or P and P are adjacent to each other, which should not exist. This crystal plane is the above-mentioned plane defect called the anti-7AIDS pandary. As described above, antiphase pandas are planar defects that are extremely active electrically and optically, and therefore devices fabricated using GaP crystals containing many such defects are extremely difficult to put into practical use.
(問題点を解決するための手段)
本発明は上述した問題点を解決するために提案され念も
のであ夛、その目的はIT族半導体基板の上にアンチ7
エイズパンダリの無い高品位のl−v族化合物半導体層
を成長形成せしめるI−V族化合物半導体のエピタキシ
ャル結晶成長方法を提供することにある。(Means for Solving the Problems) The present invention has been proposed in order to solve the above-mentioned problems, and its purpose is to provide an anti-7
An object of the present invention is to provide a method for epitaxial crystal growth of an IV group compound semiconductor, which allows the growth and formation of a high-quality L-V group compound semiconductor layer without AIDS pandas.
上記目的を達成するために本発明者等は種々実験をなし
た結果、面方位400>または411>のIV族半導体
基板の表面上に、これと同種かまたは異種の■族半導体
層を、その成長表面上に発生する段差が該■族半導体層
の二原子層分に相等する厚さの整数倍となるようにエピ
タキシャル成長させ、さらに、前記■族半導体層の表面
上にV族元素の単原子層を吸着形成させた上で、該V族
元素を構成元素とするI−V族化合物半導体層をエピタ
キシャル成長させれば、■族半導体基板の上にアンチ7
エイズパンダリの無い高品位のII’族化合物半導体層
を得られることを発見した。この発見にもとすき、少な
くとも、面方位400>または411>の1v族半導体
基板の表面上に、これと同種かまたは異種の1v族半導
体層を、その成長表面上に発生する段差をモニタしなが
ら、前記の段差が該■族半導体層の二原子層分に相等す
る厚さの整数倍となるようにエピタキシャル成長させる
第一の工程と、前記第一の工程により形成された■族半
導体層の表面上にV族元素の単原子層を吸着形成させる
第二の工程と、前記V族元素を構成元素とするl−V族
化合物半導体層を前記第二の工程によ)形成された前記
V族元素の単原子層の表面上にエピタキシャル成長させ
る第三の工程とを具備することを特徴とする、I−v族
化合物半導体のエピタキシャル結晶成長方法を提案する
ものである。In order to achieve the above object, the present inventors conducted various experiments and found that a group IV semiconductor layer of the same type or a different type was formed on the surface of a group IV semiconductor substrate with a plane orientation of 400> or 411>. Epitaxial growth is performed so that the step generated on the growth surface is an integer multiple of the thickness equivalent to a diatomic layer of the group (1) semiconductor layer, and a single atom of a group V element is further grown on the surface of the group (1) semiconductor layer. If a group IV compound semiconductor layer having the group V element as a constituent element is epitaxially grown after forming the layer by adsorption, an anti-7
It has been discovered that a high-quality Group II' compound semiconductor layer without AIDS pandas can be obtained. In order to make this discovery, at least a 1V group semiconductor layer of the same type or a different type is grown on the surface of a 1V group semiconductor substrate with a plane orientation of 400> or 411>, and the step difference that occurs on the growth surface is monitored. However, a first step of epitaxially growing the step so that the step is an integral multiple of the thickness equivalent to a diatomic layer of the group (I) semiconductor layer, and a step of growing the group (I) semiconductor layer formed by the first step. a second step of adsorbing and forming a monoatomic layer of a group V element on the surface; and a second step of forming a l-V group compound semiconductor layer containing the group V element as a constituent element. The present invention proposes a method for epitaxial crystal growth of a group I-v compound semiconductor, which is characterized by comprising a third step of epitaxial growth on the surface of a monoatomic layer of a group element.
第2図は、si基板上の段差が1原子層に相等する厚さ
の例を示す。この場合P原子層とGa原子層とを交互に
正しく積層していても、P原子相互が隣接するような結
晶面、すなわちアンチフェイズパンダリが形成される。FIG. 2 shows an example in which the step on the Si substrate has a thickness equivalent to one atomic layer. In this case, even if P atomic layers and Ga atomic layers are alternately and correctly stacked, crystal planes in which P atoms are adjacent to each other, that is, antiphase pandries are formed.
とれに対して第3図ではSt基板上の段差が二原子層に
相等する厚さの例を示し、この場合には、P原子層とG
a原子層が交互に正しく積層していれば、アンチ7エイ
ズパンダリは形成されないものである。In contrast, FIG. 3 shows an example in which the step on the St substrate has a thickness equivalent to a diatomic layer, and in this case, the P atomic layer and the G
If the a-atomic layers are stacked alternately and correctly, anti-7AIDS pandaries will not be formed.
以下、エピタキシャル成長装置として分子線工♂タキシ
ャル装置を用い、81基板上にGaPをエピタキシャル
成長させる場合を例に、本発明の実施例について説明す
る。なお、本実施例は一つの例示であって、本発明の精
神を逸脱しない範囲内で他の結晶成長装置及び他の■−
v族化合物半導体材料の工ぎタキシャル成長にも適用で
きることは言うまでもない。Embodiments of the present invention will be described below, taking as an example a case where GaP is epitaxially grown on an 81 substrate using a molecular beam ♂taxial apparatus as an epitaxial growth apparatus. Note that this example is just an illustration, and other crystal growth apparatuses and other methods may be used without departing from the spirit of the present invention.
Needless to say, the present invention can also be applied to the taxial growth of group V compound semiconductor materials.
第1図は面方位400>のsi基板上に形成されたGa
P半導体層の断面を表わしている。図中、1は■族半導
体基板の一例としてsi基板、2は同種もしくは異種の
■族半導体層を、その成長表面上に発生する段差が該■
族半導体層の二原子層分に相当する厚さの整数倍となる
ようにエピタキシャル成長させる第一の工程の一例とし
てSiエピタキシャル層を、3は前記第一の工程にょシ
形成された■族半導体層の表面上にV族元素の単原子層
を吸着形成させる第二の工程の一例としてP単原子層を
、4は前記V族元素を構成元素とする1−V族化合物半
導体層を前記第二の工程により形成された前記V族元素
の単原子層の表面上にエピタキシャル成長させる第三の
工程の一例としてGaPをエピタキシャル層させたもの
であり、以下の様に形成した。まず、at基板を有機溶
剤によ)脱脂洗浄した後、酸化膜形成、エツチングの工
程を数回繰シかえし、Sl基板表面に汚れのない酸化膜
を形成した後、前記分子線エビタキンヤル装置に挿入し
た。次にlO″″ Torr以下の超高真空下で上記S
1基板を700℃〜900℃の温度範囲で加熱処理し、
St基板の表面に形成された酸化膜を除去した。次に、
電子ビーム蒸着源を用いてSlを蒸発させ、 81工ピ
タキシヤル層を成長速度0.5X/S〜IO!/8.
St基板温度を300°0〜700℃の範囲で、反射高
速電子線の<100>方向入射による回折像の鏡面反射
点の振動強度を観察しながら、その成長表面上に発生す
る段差がSiエピタキシャル層の二原子層外に相当する
厚さの整数倍となるように上記Sl基板上にStをエピ
タキシャル成長させた。この結果、成長速度3.0 X
/S 以下、基板温度400℃〜500℃の条件下で反
射高速電子線回折像の安定した振動が得られ、S1工ピ
タキシヤル層の成長表面上に発生する段差が81工ピタ
キシヤル層の二原子層外に相当する厚さの整数倍となる
様にエピタキシャル成長されていることが明らかになっ
た。次に、クヌードセンセルを用いてPを蒸発させ、s
i基板温度を500℃で、前記第一の工程により形成さ
れたSiエピタキシャル層の表面上にPの単原子層を吸
着形成させた。次に、クヌードセンセルを用いてGaお
よびPを蒸発させ、成長速度0.5X/S〜IOX/8
.SL基板温度3り0℃〜700°Cの範囲で、璽族元
素とV族元素の分圧比を10に設定し、 GaPエピタ
キシャル層をエピタキシャル成長させた。その結果、第
三の工程においてsi基板温度を550°0以下で成長
速度が5.0X/S以下の条件であれば、その成長表面
が極めて平滑なGaPエピタキシャル層が得られた。さ
らに、得られたGaPエピタキシャル層を溶融KOHK
:よるエツチングを行なっ念結果、GaP工ぎタキシャ
ル層にはアンチ7エイズパンダリが存在しないことが明
らかになった。また、得られたGaPエピタキシャル層
の結晶性を評価するため、二結晶X線回折、HatA測
定を行なった結果、単結晶と比肩する(400)回折線
の半値幅、キャリア濃度が得られ、高品位の結晶性が得
られていることが明らかとなった。Figure 1 shows Ga formed on a Si substrate with a plane orientation of 400>.
A cross section of a P semiconductor layer is shown. In the figure, 1 is an Si substrate as an example of a group III semiconductor substrate, 2 is a group III semiconductor layer of the same type or different type, and the level difference generated on the growth surface is
As an example of the first step of epitaxially growing a Si epitaxial layer to have a thickness equivalent to a diatomic layer of the group semiconductor layer, 3 is a group semiconductor layer formed in the first step. As an example of the second step of adsorbing and forming a monoatomic layer of a group V element on the surface of the P monoatomic layer, 4 is a 1-V group compound semiconductor layer having the group V element as a constituent element. As an example of the third step of epitaxially growing the monoatomic layer of the group V element formed in the step, an epitaxial layer of GaP was formed as follows. First, after degreasing and cleaning the AT substrate (using an organic solvent), the steps of oxide film formation and etching are repeated several times to form a clean oxide film on the surface of the Sl substrate, and then it is inserted into the molecular beam Evita kinial apparatus. did. Next, the above S
One substrate is heat-treated in a temperature range of 700°C to 900°C,
The oxide film formed on the surface of the St substrate was removed. next,
Sl is evaporated using an electron beam evaporation source, and an 81-layer pitaxial layer is grown at a growth rate of 0.5X/S~IO! /8.
While observing the vibration intensity of the specular reflection point of the diffraction image due to the incidence of the reflected high-speed electron beam in the <100> direction while keeping the St substrate temperature in the range of 300° to 700°C, we observed that the steps generated on the growth surface of the Si epitaxial St was epitaxially grown on the above-mentioned Sl substrate so that the thickness was an integral multiple of the thickness corresponding to the outside of the diatomic layer. As a result, the growth rate was 3.0
/S Below, stable oscillations of the reflection high-speed electron diffraction image were obtained under the condition of the substrate temperature of 400°C to 500°C, and the step generated on the growth surface of the S1 pitaxial layer was a diatomic layer of the 81st pitaxial layer. It became clear that the epitaxial growth was made to be an integral multiple of the thickness corresponding to the outside. Next, P is evaporated using a Knudsen cell, and s
At a substrate temperature of 500° C., a monoatomic layer of P was adsorbed and formed on the surface of the Si epitaxial layer formed in the first step. Next, Ga and P were evaporated using a Knudsen cell, and the growth rate was 0.5X/S to IOX/8.
.. A GaP epitaxial layer was grown epitaxially with the SL substrate temperature in the range of 0° C. to 700° C. and the partial pressure ratio of the A-group element to the V-group element set to 10. As a result, a GaP epitaxial layer with an extremely smooth growth surface was obtained when the Si substrate temperature was 550° or less and the growth rate was 5.0X/S or less in the third step. Furthermore, the obtained GaP epitaxial layer was melted by KOHK.
As a result of etching, it was revealed that anti-7AIDS pandas do not exist in the GaP-engineered taxial layer. In addition, in order to evaluate the crystallinity of the obtained GaP epitaxial layer, we performed double-crystal X-ray diffraction and HatA measurements, and as a result, we obtained a half-value width of the (400) diffraction line and a carrier concentration comparable to that of a single crystal. It became clear that high-quality crystallinity was obtained.
以上の実施例では、分子線エビタキンヤル装置を用いて
エピタキシャル成長を行なっているが、例えば第三の工
程において、よシ高い成長速度と量産性が期待できる有
機金属化学気相成長装置もしくは液相成長装置を用いる
ことも可能である。In the above embodiments, epitaxial growth is performed using a molecular beam epitaxy apparatus, but for example, in the third step, a metal-organic chemical vapor deposition apparatus or a liquid phase epitaxy apparatus, which can be expected to have a higher growth rate and mass productivity, is used. It is also possible to use
また以上の実施例では、■族半導体基板としてSl基板
を、■族半導体層としてStエピタキシャル層を、V族
元素の単原子層としてP単原子層を、■−■族化合物半
導体層としてGaPエピタキシャル層の例について述べ
九が、■族半導体基板としてG@基板を、第一の工程に
よりエピタキシャル成長させる■族半導体層として81
゜Ge * S i 、□Gexを、第三の工程により
エピタキシャル成長させる■−V族化合物半導体層とし
てGaAs 、 1nPを選び結晶成長を試み、前記
実施例と同様の効果を得た。Furthermore, in the above embodiments, an Sl substrate is used as the group ■ semiconductor substrate, a St epitaxial layer is used as the group ■ semiconductor layer, a P monoatomic layer is used as the monoatomic layer of the group V element, and a GaP epitaxial layer is used as the group ■-■ compound semiconductor layer. Regarding the example of the layer, 9 describes a G@substrate as a group III semiconductor substrate and 81 as a group III semiconductor layer epitaxially grown in the first step.
゜Ge*S i ,□Gex is epitaxially grown in the third step ■GaAs, 1nP was selected as the -V group compound semiconductor layer and crystal growth was attempted, and the same effect as in the previous example was obtained.
(発明の効果)
以上説明したように、本発明による層−V族化合物半導
体のエピタキシャル結晶成長方法によれば、■族半導体
基板上に高品位の■−v族化合物半導体のエピタキシャ
ル結晶成長が可能となるため、大きな量産性、経済性を
もたらす効果を有するものである。(Effects of the Invention) As explained above, according to the method for epitaxial crystal growth of layer-V group compound semiconductors according to the present invention, it is possible to grow high-quality epitaxial crystals of ■-V group compound semiconductors on group ■ semiconductor substrates. Therefore, it has the effect of bringing about great mass productivity and economic efficiency.
第1図は面方位400>の81基板上に形成されたGa
Pエピタキシャル層の断面を表わす図で第2図はSl基
板上の段差が一原子層に相当する場合、第3図は二原子
層に相当する場合の原子配列を示す。
1・・・St基板、2・・・St基板上に第一の工程に
より形成されたSl工ぎタキシャル層、3・・・81工
ピタキシヤル層の上に第二の工程により形成されたSt
エピタキシャル層、3・・・8i工ピタキシヤル層の上
に第二の工程にょ)形成され之P単原子層、4・・・P
単原子層の上に第三の工程にょ)形成されたGaPエビ
タキンヤル層。
第1図
コ、−5i l引ンEイ乏。
2・−・Siエピ9えシ4Iし層
3・・・Pwi斤手層
4・−GOPエビタキシイル層Figure 1 shows Ga formed on an 81 substrate with a plane orientation of 400>.
FIG. 2 shows the atomic arrangement when the step on the Sl substrate corresponds to a monoatomic layer, and FIG. 3 shows the atomic arrangement when the step corresponds to a diatomic layer. DESCRIPTION OF SYMBOLS 1...St substrate, 2...Sl processed taxial layer formed on the St substrate in the first step, 3...St formed on the 81st layer pitaxial layer in the second step.
An epitaxial layer, 3...8i, is formed in a second step on the epitaxial layer, and a P monoatomic layer, 4...P
A GaP epitaxial layer formed in the third step on a monoatomic layer. Figure 1, -5i l pull E i deficiency. 2.--Si epitaxial layer 9 4I layer 3.Pwi layer 4.-GOP epitaxy layer
Claims (1)
半導体基板の表面上に、これと同種かまたは異種のIV族
半導体層を、その成長表面上に発生する段差をモニタし
ながら、前記の段差が該IV族半導体層の二原子層分に相
等する厚さの整数倍となるようにエピタキシャル成長さ
せる第一の工程と、前記第一の工程により形成されたI
V族半導体層の表面上にV族元素の単原子層を吸着形成
させる第二の工程と、前記V族元素を構成元素とするI
II−V族化合物半導体層を前記第二の工程により形成さ
れた前記V族元素の単原子層の表面上にエピタキシャル
成長させる第三の工程とを具備することを特徴とする、
III−V族化合物半導体のエピタキシャル結晶成長方法
。At least, a group IV semiconductor layer of the same type or a different type is grown on the surface of a group IV semiconductor substrate having a plane orientation of <100> or <111>, while monitoring the level difference occurring on the growth surface. a first step of growing epitaxially so that the thickness of the group IV semiconductor layer is an integral multiple of the diatomic layer thickness; and
a second step of adsorbing and forming a monoatomic layer of a group V element on the surface of a group V semiconductor layer; and a step of forming an atomic layer of a group V element by adsorption;
and a third step of epitaxially growing a group II-V compound semiconductor layer on the surface of the monoatomic layer of the group V element formed in the second step.
A method for epitaxial crystal growth of III-V compound semiconductors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1375186A JPS62171999A (en) | 1986-01-27 | 1986-01-27 | Epitaxy of iii-v compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1375186A JPS62171999A (en) | 1986-01-27 | 1986-01-27 | Epitaxy of iii-v compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62171999A true JPS62171999A (en) | 1987-07-28 |
Family
ID=11841952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1375186A Pending JPS62171999A (en) | 1986-01-27 | 1986-01-27 | Epitaxy of iii-v compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62171999A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6825134B2 (en) | 2002-03-26 | 2004-11-30 | Applied Materials, Inc. | Deposition of film layers by alternately pulsing a precursor and high frequency power in a continuous gas flow |
US7078302B2 (en) | 2004-02-23 | 2006-07-18 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal |
US7132338B2 (en) | 2003-10-10 | 2006-11-07 | Applied Materials, Inc. | Methods to fabricate MOSFET devices using selective deposition process |
US7166528B2 (en) | 2003-10-10 | 2007-01-23 | Applied Materials, Inc. | Methods of selective deposition of heavily doped epitaxial SiGe |
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US7846840B2 (en) | 2000-06-28 | 2010-12-07 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US8387557B2 (en) | 2005-06-21 | 2013-03-05 | Applied Materials | Method for forming silicon-containing materials during a photoexcitation deposition process |
US8501594B2 (en) | 2003-10-10 | 2013-08-06 | Applied Materials, Inc. | Methods for forming silicon germanium layers |
US9587310B2 (en) | 2001-03-02 | 2017-03-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
-
1986
- 1986-01-27 JP JP1375186A patent/JPS62171999A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846840B2 (en) | 2000-06-28 | 2010-12-07 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US9012334B2 (en) | 2001-02-02 | 2015-04-21 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US9587310B2 (en) | 2001-03-02 | 2017-03-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US6825134B2 (en) | 2002-03-26 | 2004-11-30 | Applied Materials, Inc. | Deposition of film layers by alternately pulsing a precursor and high frequency power in a continuous gas flow |
US7166528B2 (en) | 2003-10-10 | 2007-01-23 | Applied Materials, Inc. | Methods of selective deposition of heavily doped epitaxial SiGe |
US8501594B2 (en) | 2003-10-10 | 2013-08-06 | Applied Materials, Inc. | Methods for forming silicon germanium layers |
US7439142B2 (en) | 2003-10-10 | 2008-10-21 | Applied Materials, Inc. | Methods to fabricate MOSFET devices using a selective deposition process |
US7132338B2 (en) | 2003-10-10 | 2006-11-07 | Applied Materials, Inc. | Methods to fabricate MOSFET devices using selective deposition process |
US7611976B2 (en) | 2004-02-23 | 2009-11-03 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing |
US7078302B2 (en) | 2004-02-23 | 2006-07-18 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal |
US8387557B2 (en) | 2005-06-21 | 2013-03-05 | Applied Materials | Method for forming silicon-containing materials during a photoexcitation deposition process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62171999A (en) | Epitaxy of iii-v compound semiconductor | |
JP4213896B2 (en) | Manufacturing method of semiconductor substrate | |
JP3353527B2 (en) | Manufacturing method of gallium nitride based semiconductor | |
JPH0692278B2 (en) | Epitaxial growth method | |
JPS61189621A (en) | Compound semiconductor device | |
JPH0342818A (en) | Compound semiconductor device and its manufacture | |
CN113249793B (en) | Transition metal chalcogenide single crystal and method for producing same | |
JPH01170015A (en) | Epitaxial growth method | |
JPS6142910A (en) | Manufacture of semiconductor device | |
JP3985288B2 (en) | Semiconductor crystal growth method | |
JPH01120011A (en) | Inp semiconductor thin film | |
JPH0263115A (en) | Selective growth of thin film | |
JPH0443413B2 (en) | ||
JPH02210817A (en) | Inp epitaxial growth method | |
JP2747823B2 (en) | Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate | |
JPS63194322A (en) | Compound semiconductor substrate | |
JP2004259738A (en) | Process for producing nitride based iii-v group compound semiconductor and semiconductor device comprising it | |
JP3167350B2 (en) | Device manufacturing method | |
JP2730124B2 (en) | Method for producing indium antimony film | |
JPS589795B2 (en) | Molecular beam crystal growth method | |
JPH04324626A (en) | Manufacture of hetero epitaxial substrate | |
JPH0246720A (en) | Manufacture of compound semiconductor substrate | |
JPH05243148A (en) | Formation of delta-doped multilayered film semiconductor single crystal | |
JPS61220321A (en) | Selective vapor growth method | |
JPS6360197A (en) | Formation of compound semiconductor thin film |