[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6217169A - Surface coating method for metallic material - Google Patents

Surface coating method for metallic material

Info

Publication number
JPS6217169A
JPS6217169A JP15593585A JP15593585A JPS6217169A JP S6217169 A JPS6217169 A JP S6217169A JP 15593585 A JP15593585 A JP 15593585A JP 15593585 A JP15593585 A JP 15593585A JP S6217169 A JPS6217169 A JP S6217169A
Authority
JP
Japan
Prior art keywords
aluminum
film
oxide
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15593585A
Other languages
Japanese (ja)
Other versions
JPH07830B2 (en
Inventor
Yuji Fukuda
祐治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP15593585A priority Critical patent/JPH07830B2/en
Publication of JPS6217169A publication Critical patent/JPS6217169A/en
Publication of JPH07830B2 publication Critical patent/JPH07830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve the erosion resistance of the surface of a heat transfer pipe of a boiler to fly ash, etc. by forming an Al film on the surface of said pipe, forming a mixed layer composed of the oxide of a specific metal and Al metal thereon and subjecting the film and the mixed layer to a sealing treatment than oxidizing the remaining Al. CONSTITUTION:The film 2 of Al or Al alloy is formed by a thermal spraying, vapor deposition or plating method on the surface of the in-boiler heat transfer pipe 1 made of an alloy steel contg. at least one kind among Fe, Cr, Ni, Co, Mn, Ti and Cu. The mixed layer 3 composed of the Al or Al alloy and the metallic oxide such as ZrO2, TiO2 or Cr2O3 is formed thereon and is heated in a reducing or inert gaseous atmosphere to form an counter diffusion layer 4 between the Al of the film 2 and the Fe of the alloy steel; at the same time, the layer is subjected to the sealing treatment by penetrating the Al into the pores in the film 2 and the layer 3. Such pipe is heated at 500-650 deg.C in an oxidizing atmosphere to oxide the Al remaining in the film 2 and the layer 3, by which an Al2O3 layer 5 is formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、金属材料の表面に密着性が良く、気孔が少な
くて緻密で、かつ皮膜を構成する金属酸化物粒子間の結
合力の高い、耐エロージヨン性ならびに耐熱性に優れた
金属酸化物皮膜を形成させる方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a coating that has good adhesion to the surface of a metal material, is dense with few pores, and has a high bonding force between metal oxide particles constituting the coating. The present invention relates to a method for forming a metal oxide film having excellent erosion resistance and heat resistance.

〔発明の背景〕[Background of the invention]

石炭、または重油と石炭との混合物を燃料として燃焼さ
せるボイラにおいては1石炭中に含まれる灰分がフライ
アッシュとなって燃焼ガスの流れに乗って飛散する際に
、ボイラ内に設置されている伝熱管群に衝突し、その伝
熱管の表面を摩耗、減肉する現象、すなわち、アッシュ
エロージョンが生じることはよく知られている。このア
ッシュエロージョン現象は、主に1次過熱器や節炭器が
設けられているボイラ燃焼室壁面付近の燃焼ガス流が集
中したり、あるいは偏流して燃焼ガスの流れが速くなる
部位において特に問題となっている。
In a boiler that burns coal or a mixture of heavy oil and coal as fuel, when the ash contained in the coal becomes fly ash and scatters in the flow of combustion gas, the It is well known that ash erosion occurs, which is a phenomenon in which ash collides with a group of heat transfer tubes and wears out and thins the surface of the heat transfer tubes. This ash erosion phenomenon is a particular problem in areas where the combustion gas flow is concentrated or unevenly flowing near the wall of the boiler combustion chamber, where the primary superheater and economizer are installed, and where the flow of combustion gas becomes faster. It becomes.

アッシュエロージョンによる伝熱管の摩耗、減肉速度は
、石炭の燃焼によって生じる燃焼ガス中の灰分組成、形
状、大きさ、ボイラ伝熱管の温度。
The rate of wear and thinning of heat transfer tubes due to ash erosion depends on the ash composition, shape, and size of the combustion gas produced by coal combustion, and the temperature of the boiler heat transfer tubes.

材質(通常は炭素鋼または低合金鋼が使用される)およ
び燃焼ガス流速などによって異なるが、甚だしい場合に
は年間の減肉量が数mに達する例もあり、ボイラの運転
上重大な問題となっている。このような、アッシュエロ
ージョンによる伝熱管の減肉を防止する一つの方法とし
て、伝熱管の外側に耐摩耗性に優れた材料からなるプロ
テクタを設ける方式がある。この方式によると、プロテ
クタと伝熱管の間に空隙が生じ、伝熱管の熱吸収を著し
く低下させることになり、伝熱管が広範囲にわたってア
ッシュエロージョンを起こすような場合に、このプロテ
クタを用いると伝熱管群の熱交換効率が悪くなり、技術
的にも経済的にも問題が生じる。また、伝熱管のアッシ
ュエロージョンによる減肉を防止する他の方法として、
伝熱管の外管を耐摩耗性の良い金属材料となし、内管を
通常の伝熱管材料とした2重管を使用する方式があるが
、2重管は非常に高価であり、これを大量に用いると伝
熱管群の材料費が著しく高くなり、結果としてボイラの
設備コストが上昇するという問題が発生する。そして、
上述のプロテクタ方式または2重管方式にすることによ
って、灰分の高い低品位の石炭を燃料に使用するボイラ
における伝熱管、あるいは燃焼ガス流速が非常に速い箇
所に使用する伝熱管のある程度の減肉速度の軽減をはか
ることはできるが、アッシュエロージョン防止の恒久的
な対策とはなり得ないという欠点がある。また、ボイラ
伝熱管の場合においては、伝熱管の材料温度が最高で6
00℃と高温下で使用されるために。
This varies depending on the material (usually carbon steel or low-alloy steel) and combustion gas flow rate, but in severe cases, the amount of wall thinning can reach several meters per year, which poses a serious problem for boiler operation. It has become. One method for preventing such thinning of heat exchanger tubes due to ash erosion is to provide a protector made of a material with excellent wear resistance on the outside of the heat exchanger tubes. According to this method, a gap is created between the protector and the heat exchanger tube, which significantly reduces the heat absorption of the heat exchanger tube.If the heat exchanger tube causes ash erosion over a wide area, this protector can be used. The heat exchange efficiency of the group deteriorates, causing both technical and economical problems. In addition, as another method to prevent wall thinning due to ash erosion of heat exchanger tubes,
There is a method of using a double tube in which the outer tube of the heat transfer tube is made of a metal material with good wear resistance and the inner tube is made of a normal heat transfer tube material, but the double tube is very expensive and cannot be used in large quantities. When used in a heat exchanger tube group, the material cost of the heat exchanger tube group increases significantly, resulting in a problem that the boiler equipment cost increases. and,
By adopting the above-mentioned protector method or double tube method, a certain degree of wall thinning can be achieved in heat transfer tubes used in boilers that use low-grade coal with a high ash content as fuel, or in locations where the combustion gas flow rate is extremely high. Although it is possible to reduce the speed, it has the disadvantage that it cannot be used as a permanent measure to prevent ash erosion. In addition, in the case of boiler heat exchanger tubes, the maximum material temperature of the heat exchanger tubes is 6.
To be used at temperatures as high as 00℃.

耐摩耗性の他に耐熱性が要求されることになる。Heat resistance is required in addition to wear resistance.

上記のプロテクタ方式あるいは2重管方式に比べ、比較
的に安価で7ツシユエロージヨン防止に適した方法とし
て、ボイラ伝熱管の表面に耐摩耗性ならびに耐熱性に優
れた材料を溶射して皮膜を形成させる方法がある。この
アッシュエロージョン防止に適用できる耐熱、耐摩耗性
の溶射材料は、(1)Fe  Cr系あるいはNi−C
r系などの合金系の材料、(2)WC−Co系、Cr5
G、−NiCr系などのサーメット系の材料、および(
3)アルミナ、ジルコニアなどの金属酸化物系の材料の
3種に大別される。
Compared to the above-mentioned protector method or double tube method, a method that is relatively inexpensive and suitable for preventing structural erosion is to thermally spray a material with excellent wear resistance and heat resistance on the surface of the boiler heat transfer tubes. There is a way to form it. Heat-resistant and wear-resistant thermal spraying materials that can be used to prevent ash erosion include (1) Fe-Cr-based or Ni-C
Alloy materials such as r-based, (2) WC-Co-based, Cr5
G, cermet-based materials such as -NiCr-based, and (
3) Roughly divided into three types: metal oxide materials such as alumina and zirconia.

上記(1)の合金系の溶射材料を用いる例として、クロ
ム鋼またはニッケルクロム鋼をボイラ管壁に溶射肉盛し
、さらにその上にAflを溶射した後。
As an example of using the alloy-based thermal spray material of (1) above, chromium steel or nickel-chromium steel is thermally sprayed overlay on the boiler pipe wall, and Afl is further thermally sprayed thereon.

Mの融点以上に加熱して、溶射肉盛層に形成されている
空気孔に晟を浸透させ、溶射肉盛層とボイラ管壁との接
着性の向上をはかる方法が提案されている(特公昭49
−32174)。しかし、この方法によると耐熱性なら
びに耐食性は比較的改善されるが、溶射肉盛層が合金で
あるために、上記のサーメット系材料(2)あるいは金
属酸化物系の材料(3)に比べて軟らかく耐二ローショ
ン性が良くなく、かつ金属酸化物系の材料と比較して耐
熱性に劣るという欠点があった。
A method has been proposed in which M is heated above the melting point of M to infiltrate the air holes formed in the sprayed overlay to improve the adhesion between the sprayed overlay and the boiler pipe wall. Kosho 49
-32174). However, although this method relatively improves heat resistance and corrosion resistance, since the thermal sprayed overlay is an alloy, it is less effective than the cermet-based material (2) or metal oxide-based material (3) described above. It has the drawbacks of being soft and having poor lotion resistance, and inferior heat resistance compared to metal oxide materials.

ボイラ伝熱管の耐二ローション性ならびに耐熱性を向上
させるのにJi′を適な溶射材料である金属酸化物系の
材料の溶射被覆法としては、火炎溶射法およびプラズマ
溶射法があるが、上記した金屓酸化物系の粉末は高融点
材料であるために、火炎溶射法では被覆される母材との
密着性が良くなく、かつ皮膜を構成する金属酸化物粒子
相互の結合力が弱く、強固な皮膜が形成できないという
問題があった。また、プラズマ溶射法は、10000℃
を超える超高温のプラズマアークを噴流にし、その中に
溶射粉末を送り込み溶融させて高速で噴出して溶射皮膜
を形成させる方法であるために、セラミックスなどの高
融点材料の溶射には適しているが、プラズマ溶射時に被
覆される母材の温度が120〜200℃程度であるため
に、溶射した粉末は母材表面で瞬時に再凝固するので、
凝固した酸化物粒子の粒子間に空隙(気孔)が生じ易く
、溶射皮膜中に数%の気孔が生じるのは避けられない。
There are flame spraying methods and plasma spraying methods as thermal spray coating methods for metal oxide materials, which are suitable thermal spray materials for improving the lotion resistance and heat resistance of boiler heat exchanger tubes. Since the metal oxide powder is a high melting point material, it does not adhere well to the base material to be coated using flame spraying, and the bonding strength between the metal oxide particles that make up the coating is weak. There was a problem that a strong film could not be formed. In addition, the plasma spraying method uses 10,000℃
This method is suitable for thermal spraying of high-melting point materials such as ceramics, as it is a method in which a plasma arc with an extremely high temperature exceeding However, since the temperature of the base material coated during plasma spraying is approximately 120 to 200°C, the sprayed powder instantly re-solidifies on the surface of the base material.
Voids (pores) are likely to be formed between the solidified oxide particles, and it is inevitable that several percent of pores will be formed in the sprayed coating.

したがって、燃焼ガス流速が速く、プライアッシュの衝
突力の強い個所のボイラ伝熱管にプラズマ溶射法を適用
しても、溶射皮膜を構成する金属酸化物の粒子間にかな
りの空隙(気孔)が発生し、その粒子間の結合力が弱く
なるために、上記フライアッシュの衝突時に皮膜が剥離
されてしまい、十分な耐摩耗性ならびに耐熱性を示さな
くなるという欠点があった。
Therefore, even if plasma spraying is applied to boiler heat transfer tubes in locations where the combustion gas flow rate is high and the collision force of ply ash is strong, considerable voids (pores) will occur between the metal oxide particles that make up the sprayed coating. However, since the binding force between the particles becomes weak, the film is peeled off when the fly ash collides with the fly ash, resulting in a drawback that sufficient wear resistance and heat resistance are not exhibited.

この溶射皮膜を構成する金属酸化物粒子の粒子間の結合
力を一向上させるには、溶射速度を極めて大きくする必
要があり、そのために溶射装置が大型になって非常に高
価となり、その上大電力を必要とするので、実機におけ
る広範囲のボイラ伝熱管の表面被覆に適用するためには
、特に経済性の面において問題が生じる。また、溶射す
る金属酸化物と溶射される母材金属との熱膨張係数の差
が大きい場合には、プラズマ溶射皮膜の場合であっても
、皮膜形成中または溶射の起動停止の熱サイクル時にお
いて、形成された皮膜は容易に剥離されてしまう。これ
を防止するためには、金属酸化物を溶射する前に、母材
金属とほぼ同じ熱膨張係数を有する材料を結合材として
溶射しておき、その後に金属酸化物と上記結合材との混
合割合を変えなから溶射被覆を行なわねばならず、溶射
操作が非常に複雑になると同時に、作業性が極めて悪く
なるという欠点があった。
In order to improve the bonding strength between the metal oxide particles that make up this sprayed coating, it is necessary to increase the spraying speed extremely high, which makes the spraying equipment large and very expensive. Since it requires electric power, it poses a problem particularly in terms of economic efficiency when applied to the surface coating of a wide range of boiler heat exchanger tubes in actual equipment. In addition, if the difference in thermal expansion coefficient between the metal oxide to be sprayed and the base metal to be sprayed is large, even in the case of plasma sprayed coatings, during coating formation or during thermal cycles of starting and stopping thermal spraying, , the formed film is easily peeled off. In order to prevent this, before spraying the metal oxide, a material having approximately the same coefficient of thermal expansion as the base metal is sprayed as a binder, and then the metal oxide and the binder are mixed. Thermal spray coating must be carried out without changing the ratio, which makes the thermal spraying operation very complicated and at the same time has the disadvantage of extremely poor workability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の欠点を解消し、金
属材料の表面に、密着性が良く、気孔が少なくて緻密で
、かつ皮膜を構成する金属酸化物粒子間の結合力の高い
、耐二ローション性ならびに耐熱性に優れた金属酸化物
皮膜を容易に形成させる方法を提供するにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a coating to the surface of a metal material that has good adhesion, is dense with few pores, and has a high bonding force between metal oxide particles constituting the coating. An object of the present invention is to provide a method for easily forming a metal oxide film having excellent lotion resistance and heat resistance.

〔発明の概要〕[Summary of the invention]

本発明は、耐二ローション性、耐熱性被覆を施す金属材
料の表面に、(1)まず、アルミニウムまたはアルミニ
ウム合金などの皮膜を形成させ、(2)次に、上記(1
)の皮膜の上に、アルミニウムまたはアルミニウム合金
などに、耐摩耗性、耐熱性を有する酸化アルミニウム、
酸化ジルコニウム、酸化チタンまたは酸化クロム、もし
くはそれらを主成分とする金属酸化物などを混合した混
合層を形成させた後に、(3)還元性雰囲気または不活
性雰囲気中で加熱して、被覆される金属材料と、上記(
1)のアルミニウムまたはアルミニウム合金皮膜とを相
互拡散させて、固溶体もしくは金属間化合物などの生成
による強固な合金層を形成させると同時に、上記(1)
の皮膜ならびに(2)の混合層に生じた気孔中にアルミ
ニウムまたはその合金を浸透させて緻密な皮膜となし、
(4)さらに引き続き酸化性の雰囲気中において、アル
ミニウムもしくはアルミニウム合金の融点以下の温度で
加熱して、残存するアルミニウムもしくはアルミニウム
合金成分を酸化物の形に変化させることによって、被覆
される金属材料との密着性が良く、緻密で、かつ皮膜を
構成する金属酸化物粒子間の結合力の高い、耐二ローシ
ョン性ならびに耐熱性に優れた皮膜を形成させることを
基本とするものである。
The present invention involves (1) first forming a film of aluminum or aluminum alloy on the surface of a metal material to which a lotion-resistant and heat-resistant coating is to be applied;
) on aluminum or aluminum alloy, aluminum oxide, which has wear resistance and heat resistance,
After forming a mixed layer of zirconium oxide, titanium oxide, chromium oxide, or metal oxides containing these as main components, (3) heating in a reducing atmosphere or inert atmosphere to coat. Metal materials and the above (
At the same time, by mutually diffusing the aluminum or aluminum alloy film of 1) to form a strong alloy layer by forming a solid solution or an intermetallic compound, etc.
Infiltrating aluminum or its alloy into the pores formed in the film and the mixed layer of (2) to form a dense film;
(4) The metal material to be coated is further heated in an oxidizing atmosphere at a temperature below the melting point of aluminum or aluminum alloy to convert the remaining aluminum or aluminum alloy components into oxides. The basic idea is to form a film that has good adhesion, is dense, has a high bonding force between the metal oxide particles constituting the film, and has excellent two-lotion resistance and heat resistance.

本発明において、耐二ローション性および耐熱性皮膜を
形成させる金属材料としては、アルミニウムもしくはア
ルミニウム合金と反応して、固溶体または金属間化合物
を形成する元素、例えばFe、Cr、Ni、Go、Mn
、Ti、Cuなどの元素を含む金属材料であればよく、
また、これらの元素は、被覆される金属材料の表面に形
成させるアルミニウムまたはアルミニウム合金皮膜中に
含まれていてもよい。
In the present invention, the metal material forming the lotion-resistant and heat-resistant film is an element that reacts with aluminum or an aluminum alloy to form a solid solution or an intermetallic compound, such as Fe, Cr, Ni, Go, Mn.
Any metal material containing elements such as , Ti, or Cu may be used.
Further, these elements may be included in the aluminum or aluminum alloy film formed on the surface of the metal material to be coated.

そして本発明において、アルミニウムまたはアルミニウ
ム合金との混合層を形成させる金属酸化物は、An20
3、TiO2、ZrO2またはCr、03などの酸化物
、もしくはそれらの酸化物を主成分とする耐摩耗性、耐
熱性を有する金属酸化物であればよく、特にその成分組
成を限定するものではない。
In the present invention, the metal oxide forming the mixed layer with aluminum or aluminum alloy is An20
3. Any oxide such as TiO2, ZrO2 or Cr, 03, or a metal oxide having wear resistance and heat resistance based on these oxides is sufficient, and there are no particular limitations on the composition thereof. .

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例を挙げ、図面を参照しながらさ
らに具体的に説明する。
An embodiment of the present invention will be described below in more detail with reference to the drawings.

第1図(a)、(b)、(c)および(d)は、本発明
による耐熱、耐二ローション性皮膜を金属材料表面に形
成させる方法の一例を段階的に示す説明図である。
FIGS. 1(a), (b), (c) and (d) are explanatory diagrams showing step-by-step an example of a method for forming a heat-resistant, lotion-resistant film on the surface of a metal material according to the present invention.

市販の炭素鋼1の表面をショツトブラスト処理した後、
アセチレンガスによる火炎溶射法により、金属アルミニ
ウムを0.2mm厚さに溶射してアルミニウム層2を形
成させた〔第1図(a)〕。次に、アルミニウム層2の
上に、酸化アルミニウムと金属アルミニウムとの混合比
を10=1とした混合物を、アセチレンガスによる火炎
溶射法で溶射し、厚さ約0.3nwnの酸化アルミニウ
ムと金属アルミニウムとの混合層3を形成させた〔第1
図(b)〕。
After shot blasting the surface of commercially available carbon steel 1,
Metal aluminum was sprayed to a thickness of 0.2 mm by flame spraying using acetylene gas to form an aluminum layer 2 [FIG. 1(a)]. Next, a mixture of aluminum oxide and metal aluminum with a mixing ratio of 10=1 was sprayed onto the aluminum layer 2 by flame spraying using acetylene gas, and the aluminum oxide and metal aluminum were sprayed to a thickness of about 0.3 nwn. A mixed layer 3 was formed with [first
Figure (b)].

その後、上記のアルミニウム層2および混合層3を形成
させた炭素鋼1を、熱処理炉に挿入し、水素ガスを通し
ながら約900℃で5時間熱処理し、アルミニウム層2
と炭素mlとの間に、アルミニウムと鉄との合金層4を
形成させた〔第1図(c)〕。次に、熱処理炉の雰囲気
を酸化性となし、約600℃で5時間加熱して、酸化ア
ルミニウムと金属アルミニウムとの混合層3内のアルミ
ニウムを酸化して、酸化アルミニウムの単一層5に変化
させた〔第1図(d)〕。
Thereafter, the carbon steel 1 on which the aluminum layer 2 and the mixed layer 3 have been formed is inserted into a heat treatment furnace, and heat treated at about 900°C for 5 hours while passing hydrogen gas.
An alloy layer 4 of aluminum and iron was formed between the aluminum and carbon ml [FIG. 1(c)]. Next, the atmosphere in the heat treatment furnace is made oxidizing and heated at about 600° C. for 5 hours to oxidize the aluminum in the mixed layer 3 of aluminum oxide and metal aluminum and transform it into a single layer 5 of aluminum oxide. [Figure 1(d)].

以上のプロセスによって作製した本発明による耐熱、耐
エロージヨン性皮膜の気孔率(%)、密着性および耐摩
耗性の試験結果を第1表に示す。
Table 1 shows the test results of the porosity (%), adhesion, and abrasion resistance of the heat-resistant and erosion-resistant film of the present invention produced by the above process.

なお、皮膜の気孔率(%)は、光学顕微鏡により皮膜断
面の気孔数を測定した。皮膜の密着性は、皮膜に繰返し
の急熱、急冷(500℃に加熱、20℃に冷却および7
00℃に加熱、20℃に冷却)を行ない、皮膜が剥離す
るまでの回数を測定した。また、皮膜の耐摩耗性は、 
1100t1前後の粒径のSiO□を20m/sの流速
の空気中に加え、各皮膜に2時間吹き付けて、その前後
の重量変化を測定することによって求めた。
The porosity (%) of the film was determined by measuring the number of pores in the cross section of the film using an optical microscope. The adhesion of the film is determined by repeated rapid heating and cooling (heating to 500°C, cooling to 20°C, and
00°C and cooled to 20°C), and the number of times until the film peeled off was measured. In addition, the abrasion resistance of the film is
It was determined by adding SiO□ with a particle size of around 1100 t1 into air at a flow rate of 20 m/s, spraying it onto each film for 2 hours, and measuring the weight change before and after that.

第1表 て作製した皮膜は、気孔率が1〜3%と極めて低く、非
常に緻密な皮膜が形成されていることを示している。ま
た、皮膜と母材の炭素鋼との密着性は500℃、700
℃のいずれの加熱、急冷試験においても、10回で剥離
せず極めて良好な密着性を示しており、皮膜の耐摩耗性
は、炭素鋼100に対して7という優れた値を示し、耐
二ローション性は格段に向上していることがわかる。
The films produced as shown in Table 1 had extremely low porosity of 1 to 3%, indicating that a very dense film was formed. In addition, the adhesion between the coating and the base material carbon steel is 500°C and 700°C.
In both heating and quenching tests at ℃, it showed extremely good adhesion without peeling after 10 times, and the abrasion resistance of the film was an excellent value of 7 compared to 100% carbon steel. It can be seen that the lotion properties are significantly improved.

以上実施例において示したごとく1本発明の方法により
形成した皮膜が母材の金属に対して優れた密着性を示す
理由は、還元性雰囲気である水素ガス中で熱処理を行な
うことによって、アルミニウム層2と炭素鋼1との間に
相互拡散が生じ、FeAnzの金属間化合物またはF 
e −Anの固溶体が、アルミニウム層2と炭素鋼1と
の境界に形成され、強固なアルミニウムと鉄の合金層4
が形成されるからである。また、耐熱、耐二ローション
性皮膜を形成する母材の金属材料としては、アルミニウ
ムと金属間化合物または固溶体を形成するFe、Cr、
Ni、Co、Mn、Ti、Cuなどの元素を含む合金で
あれば密着性の良い皮膜を形成させることができる。
As shown in the examples above, the reason why the film formed by the method of the present invention exhibits excellent adhesion to the base metal is that the aluminum layer is coated by heat treatment in a reducing atmosphere of hydrogen gas. Interdiffusion occurs between 2 and carbon steel 1, and intermetallic compounds of FeAnz or F
A solid solution of e-An is formed at the boundary between the aluminum layer 2 and the carbon steel 1, forming a strong aluminum-iron alloy layer 4.
This is because it is formed. In addition, as the base metal material forming the heat-resistant and lotion-resistant film, Fe, Cr, which forms an intermetallic compound or solid solution with aluminum,
An alloy containing elements such as Ni, Co, Mn, Ti, and Cu can form a film with good adhesion.

本実施例においてはアルミニウムをアセチレンガスによ
る火炎溶射法で溶射しているが、皮膜を形成させる金属
材料との熱膨張率が大きく異なる場合には、その熱膨張
率の差が小さいアルミニウムを主成分とする合金を溶射
することによって、皮膜の密着性をより向上させること
ができる。また、本実施例においてはアルミニウムの溶
射被覆法として、アセチレンガス火炎溶射法を用いてい
るが、蒸着法、浸漬めっき法、電気めっき法などによっ
ても良好な密着性を有する皮膜を形成させることができ
る。
In this example, aluminum was sprayed by flame spraying using acetylene gas, but if the coefficient of thermal expansion is significantly different from that of the metal material on which the film is to be formed, aluminum, which has a small difference in coefficient of thermal expansion, may be used as the main component. By thermal spraying the alloy, the adhesion of the film can be further improved. In addition, although acetylene gas flame spraying is used as the thermal spray coating method for aluminum in this example, a film with good adhesion can also be formed by vapor deposition, dip plating, electroplating, etc. can.

本実施例において、アルミニウムと鉄の合金層4を形成
させるための熱処理雰囲気として、水素ガスを用いたが
、窒素、アルゴンなどの不活性ガス雰囲気であっても有
効である。また、熱処理温度もアルミニウムまたはアル
ミニウム合金と被覆される金属材料とが合金化される温
度以上であれば良く、この温度は被覆される金属材料の
種類によって異なり、特に限定するものではない。
In this embodiment, hydrogen gas was used as the heat treatment atmosphere for forming the aluminum-iron alloy layer 4, but an atmosphere of an inert gas such as nitrogen or argon is also effective. Further, the heat treatment temperature may be at least the temperature at which aluminum or aluminum alloy and the metal material to be coated are alloyed, and this temperature varies depending on the type of metal material to be coated and is not particularly limited.

次に、酸化アルミニウムと金属アルミニウムの混合層3
の気孔率の減少と酸化アルミニウム粒子間の結合力が向
上する理由は1本実施例における水素ガス中での熱処理
(900℃×5時間)によって、アルミニウム(融点6
60℃)が再溶融し、上記混合M3中の気孔中に浸透し
、気孔率が著しく減少すると同時に、再溶融したアルミ
ニウムを介して酸化アルミニウム粒子は強固に結合され
るからである。以上の処理で、皮膜の密着性ならびに酸
化アルミニウム粒子間の結合力は増強されるが、上記混
合層3中には金属アルミニウムが残存しているために、
皮膜の耐二ローション性および耐熱性は十分であるとは
言えない。そこで、次に酸化性の雰囲気中で熱処理(6
00℃×5時間)を行ない、残存するアルミニウムを酸
化して上記混合層3を酸化アルミニウムの単一層5に変
化させて、耐二ローション性ならびに耐熱性を有する皮
膜を形成させるものである。この酸化雰囲気中での熱処
理は、低温ではアルミニウムの酸化速度が遅く、十分な
酸化アルミニウムの形成が困難であるので。
Next, a mixed layer 3 of aluminum oxide and metal aluminum
The reason why the porosity of aluminum oxide decreases and the bonding strength between aluminum oxide particles increases is due to the heat treatment (900°C x 5 hours) in hydrogen gas in this example.
This is because the aluminum oxide particles are remelted and penetrated into the pores in the mixture M3, significantly reducing the porosity, and at the same time, the aluminum oxide particles are firmly bonded via the remelted aluminum. The above treatment enhances the adhesion of the film and the bonding force between aluminum oxide particles, but since metallic aluminum remains in the mixed layer 3,
The two-lotion resistance and heat resistance of the film cannot be said to be sufficient. Therefore, we next performed heat treatment in an oxidizing atmosphere (6
00° C. for 5 hours) to oxidize the remaining aluminum and transform the mixed layer 3 into a single layer 5 of aluminum oxide, thereby forming a film having lotion resistance and heat resistance. This heat treatment in an oxidizing atmosphere is because the oxidation rate of aluminum is slow at low temperatures, making it difficult to form sufficient aluminum oxide.

アルミニウムの酸化速度が時間に対して直線的に変化す
る500℃以上にすることが望ましく、一方、アルミニ
ウムの融点である660℃以上に加熱すると、アルミニ
ウムの酸化が急激に進行し、皮膜の劣化を起こす恐れが
あるので、加熱の上限はアルミニウムの融点直下の65
0℃とすることが望ましい。
It is desirable to heat the aluminum to 500°C or higher, at which point the oxidation rate of aluminum changes linearly with time.On the other hand, heating to 660°C or higher, which is the melting point of aluminum, will rapidly oxidize the aluminum and cause deterioration of the film. To prevent this, the upper limit of heating is 65°C, which is just below the melting point of aluminum.
It is desirable to set the temperature to 0°C.

本実施例においては混合層3を、酸化アルミニウムと金
属アルミニウムの混合物としているが、還元性または不
活性雰囲気中での熱処理において再溶融する混合層3中
のアルミニウムは、他の耐エロージョン性、耐熱性の良
い酸化物、例えば酸化クロム、酸化チタン、酸化ジルコ
ニウムなどに対してもぬれ性が良く、強固な金属酸化物
粒子間の結合力を得ることができるので、本発明の方法
に利用することができる。また、アルミニウムと金属酸
化物形成元素との合金1例えば酸化クロムに対しては、
アルミニウムとクロムとの合金を使用しても本発明の目
的を達成することができる。
In this example, the mixed layer 3 is a mixture of aluminum oxide and metal aluminum, but the aluminum in the mixed layer 3, which is remelted during heat treatment in a reducing or inert atmosphere, has other erosion-resistant and heat-resistant properties. It has good wettability even with oxides with good properties such as chromium oxide, titanium oxide, and zirconium oxide, and can provide strong bonding strength between metal oxide particles, so it can be used in the method of the present invention. I can do it. In addition, for alloy 1 of aluminum and metal oxide-forming elements, for example, chromium oxide,
Alloys of aluminum and chromium can also be used to achieve the objectives of the invention.

本発明における金属酸化物と、アルミニウムまたはアル
ミニウム合金との混合割合は、金属酸化物粒子の大きさ
が比較的大きい場合には、アルミニウムまたはその合金
の含有量を多くする必要があるが1通常の場合、金属酸
化物の粒径は10碑前後であるので、金属酸化物に対し
て数%程度添加すればよい。また、金属酸化物と、アル
ミニウムまたはアルミニウム合金との混合物を、アセチ
レンガスの火炎溶射法で溶射する場合に、混合層3中の
気孔率は10%程度、プラズマによる溶射の場合には、
気孔率が5%程度の気孔が生じるので、その封孔処理と
して、アルミニウムまたはその合金を、粉末またはイオ
ンとして含む溶液を、溶射後塗布して含浸させた後、上
記の熱処理を施すことによって、本発明の皮膜の特性を
より向上させることも可能である。
The mixing ratio of the metal oxide and aluminum or aluminum alloy in the present invention is such that when the size of the metal oxide particles is relatively large, it is necessary to increase the content of aluminum or its alloy. In this case, since the particle size of the metal oxide is around 10 mm, it is sufficient to add about several percent to the metal oxide. Further, when a mixture of metal oxide and aluminum or aluminum alloy is sprayed by flame spraying using acetylene gas, the porosity in the mixed layer 3 is about 10%, and when spraying using plasma, the porosity is about 10%.
Since pores with a porosity of about 5% are generated, as a sealing treatment, a solution containing aluminum or its alloy in the form of powder or ions is applied after thermal spraying to impregnate it, and then the above heat treatment is performed. It is also possible to further improve the properties of the film of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明の金属材料の表面被
覆法によれば、従来の溶射方法と比較して、被覆される
金属材料に対する密着性が良く、金属酸化物層の気孔が
少なく緻密で、かつ皮膜を構成する金属酸化物粒子間の
結合力が極めて大きい耐二ローション性および耐熱性に
優れた皮膜を容易に形成することができるので、これを
ボイラ伝熱管に適用した場合には、その耐用年数を飛躍
的に向上させることができる。
As explained in detail above, the surface coating method for metal materials of the present invention has better adhesion to the metal material to be coated than conventional thermal spraying methods, and the metal oxide layer has fewer pores and is denser. , and the bonding strength between the metal oxide particles constituting the film makes it possible to easily form a film with excellent lotion resistance and heat resistance, so when this film is applied to boiler heat exchanger tubes, Its service life can be dramatically improved.

さらに、本発明の方法はアルミニウムと固溶体または金
属間化合物を形成する元素を含む金属材料の表面被覆に
も適用できるので、上記ボイラ伝熱管に限らず他の耐摩
耗性、耐熱性を必要とする分野においても広く応用する
ことができ、工業°上の利用価値は極めて大きい。
Furthermore, the method of the present invention can be applied to the surface coating of metal materials containing elements that form a solid solution or intermetallic compound with aluminum, so it is not limited to the boiler heat exchanger tubes mentioned above, but can also be applied to other materials that require wear resistance and heat resistance. It can be widely applied in various fields, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、(c)および(d)は本発明の
実施例における耐二ローション性ならびに耐熱性皮膜を
形成する工程を段階的に示す説明図である。 1・・・炭素鋼      2・・・アルミニウム層3
・・・酸化アルミニウムと金属アルミニウムの混合層
FIGS. 1(a), (b), (c) and (d) are explanatory diagrams showing step by step the process of forming a two-lotion resistant and heat resistant film in an example of the present invention. 1... Carbon steel 2... Aluminum layer 3
...Mixed layer of aluminum oxide and metallic aluminum

Claims (5)

【特許請求の範囲】[Claims] (1)被覆を施す金属材料の表面に、アルミニウムもし
くはアルミニウム合金の皮膜を形成させ、さらに上記皮
膜の上に、アルミニウムもしくはアルミニウム合金と金
属酸化物とからなる混合層を形成させた後に、還元性雰
囲気もしくは不活性雰囲気中で加熱して、上記金属材料
と上記皮膜との相互拡散、ならびに上記皮膜および上記
混合層の気孔中に上記アルミニウムもしくはアルミニウ
ム合金を浸透させる封孔熱処理を行ない、ついで酸化性
雰囲気中で、アルミニウムもしくはアルミニウム合金の
融点以下の温度で、上記皮膜ならびに混合層に残存する
アルミニウムもしくはアルミニウム合金を酸化物にする
酸化熱処理を行なうことを特徴とする金属材料の表面被
覆法。
(1) After forming a film of aluminum or aluminum alloy on the surface of the metal material to be coated and further forming a mixed layer of aluminum or aluminum alloy and metal oxide on the film, A pore-sealing heat treatment is performed by heating in an atmosphere or an inert atmosphere to cause interdiffusion between the metal material and the coating and to infiltrate the aluminum or aluminum alloy into the pores of the coating and the mixed layer, and then the oxidizing A method for surface coating a metal material, comprising performing an oxidation heat treatment in an atmosphere at a temperature below the melting point of the aluminum or aluminum alloy to convert the aluminum or aluminum alloy remaining in the film and the mixed layer into an oxide.
(2)被覆を施す金属材料は、Fe、Cr、Ni、Co
、Mn、Ti、Cuの内より選ばれる元素を少なくとも
1種含有する合金であることを特徴とする特許請求の範
囲第1項に記載の金属材料の表面被覆法。
(2) The metal material to be coated is Fe, Cr, Ni, Co
2. The method of surface coating a metal material according to claim 1, wherein the alloy is an alloy containing at least one element selected from among , Mn, Ti, and Cu.
(3)アルミニウムもしくはアルミニウム合金と混合層
を構成する金属酸化物は、酸化アルミニウム、酸化ジル
コニウム、酸化チタン、酸化クロムの内より選ばれる酸
化物を少なくとも1種含有するか、もしくは上記酸化物
を主成分とする金属酸化物であることを特徴とする特許
請求の範囲第1項に記載の金属材料の表面被覆法。
(3) The metal oxide constituting the mixed layer with aluminum or aluminum alloy contains at least one oxide selected from aluminum oxide, zirconium oxide, titanium oxide, and chromium oxide, or mainly contains the above oxides. 2. The method for surface coating a metal material according to claim 1, wherein the metal oxide is a component.
(4)アルミニウムもしくはアルミニウム合金の皮膜な
らびにアルミニウムもしくはアルミニウム合金と金属酸
化物とからなる混合層の形成は、溶射法、蒸着法、溶融
浸漬めっき法、電気めっき法の内より選ばれる少なくと
も一つの方法によることを特徴とする特許請求の範囲第
1項に記載の金属材料の表面被覆法。
(4) Formation of the aluminum or aluminum alloy film and the mixed layer of aluminum or aluminum alloy and metal oxide is performed by at least one method selected from thermal spraying, vapor deposition, hot-dip plating, and electroplating. A method for surface coating a metal material according to claim 1, characterized in that:
(5)酸化熱処理の温度範囲が500〜650℃である
ことを特徴とする特許請求の範囲第1項に記載の金属材
料の表面被覆法。
(5) The method for surface coating a metal material according to claim 1, wherein the temperature range of the oxidation heat treatment is 500 to 650°C.
JP15593585A 1985-07-17 1985-07-17 Surface coating method for metallic materials Expired - Lifetime JPH07830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15593585A JPH07830B2 (en) 1985-07-17 1985-07-17 Surface coating method for metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15593585A JPH07830B2 (en) 1985-07-17 1985-07-17 Surface coating method for metallic materials

Publications (2)

Publication Number Publication Date
JPS6217169A true JPS6217169A (en) 1987-01-26
JPH07830B2 JPH07830B2 (en) 1995-01-11

Family

ID=15616727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15593585A Expired - Lifetime JPH07830B2 (en) 1985-07-17 1985-07-17 Surface coating method for metallic materials

Country Status (1)

Country Link
JP (1) JPH07830B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101014A (en) * 1992-09-22 1994-04-12 Kubota Corp Alumina coating lining method on the inner surface of the cast iron pipe receiving part
WO2007052438A1 (en) * 2005-11-01 2007-05-10 Advanced Systems Japan Inc. Spiral contact and process for producing the same
WO2007075634A3 (en) * 2005-12-21 2008-01-10 Exxonmobil Res & Eng Co Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
US8201619B2 (en) 2005-12-21 2012-06-19 Exxonmobil Research & Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US8349267B2 (en) 2007-10-05 2013-01-08 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer
CN109396579A (en) * 2018-11-14 2019-03-01 广东石油化工学院 A kind of FeAl intermetallic compound anti-tartar coating and preparation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101014A (en) * 1992-09-22 1994-04-12 Kubota Corp Alumina coating lining method on the inner surface of the cast iron pipe receiving part
WO2007052438A1 (en) * 2005-11-01 2007-05-10 Advanced Systems Japan Inc. Spiral contact and process for producing the same
JP2007128684A (en) * 2005-11-01 2007-05-24 Advanced Systems Japan Inc Spiral contact and its manufacturing method
US8211548B2 (en) 2005-12-21 2012-07-03 Exxonmobil Research & Engineering Co. Silicon-containing steel composition with improved heat exchanger corrosion and fouling resistance
US8037928B2 (en) 2005-12-21 2011-10-18 Exxonmobil Research & Engineering Company Chromium-enriched oxide containing material and preoxidation method of making the same to mitigate corrosion and fouling associated with heat transfer components
US8201619B2 (en) 2005-12-21 2012-06-19 Exxonmobil Research & Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
WO2007075634A3 (en) * 2005-12-21 2008-01-10 Exxonmobil Res & Eng Co Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
US8286695B2 (en) 2005-12-21 2012-10-16 Exxonmobil Research & Engineering Company Insert and method for reducing fouling in a process stream
US8465599B2 (en) 2005-12-21 2013-06-18 Exxonmobil Research And Engineering Company Chromiun-enriched oxide containing material and preoxidation method of making the same to mitigate corrosion and fouling associated with heat transfer components
US8469081B2 (en) 2005-12-21 2013-06-25 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US8470097B2 (en) 2005-12-21 2013-06-25 Exxonmobil Research And Engineering Company Silicon-containing steel compostition with improved heat exchanger corrosion and fouling resistance
US8349267B2 (en) 2007-10-05 2013-01-08 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer
CN109396579A (en) * 2018-11-14 2019-03-01 广东石油化工学院 A kind of FeAl intermetallic compound anti-tartar coating and preparation method

Also Published As

Publication number Publication date
JPH07830B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
US4198442A (en) Method for producing elevated temperature corrosion resistant articles
US6355356B1 (en) Coating system for providing environmental protection to a metal substrate, and related processes
US4095003A (en) Duplex coating for thermal and corrosion protection
US4966820A (en) Ceramics-coated heat resisting alloy member
US4822689A (en) High volume fraction refractory oxide, thermal shock resistant coatings
WO1985004428A1 (en) Process for preparing high temperature materials
US5281487A (en) Thermally protective composite ceramic-metal coatings for high temperature use
US3977660A (en) Blast-furnace tuyere having excellent thermal shock resistance and high durability
JPS5837387B2 (en) Powder suitable for fire spraying
US5312653A (en) Niobium carbide alloy coating process for improving the erosion resistance of a metal surface
JPS6217169A (en) Surface coating method for metallic material
CA2053188C (en) Power feed composition for forming refractory oxide thermal shock resis tant coating, process and article
JP2001503816A (en) Coated wear-resistant parts of internal combustion engines, in particular piston rings and methods for their production
CA2096164C (en) Molten zinc resistant alloy and its manufactured method
US6007922A (en) Chromium boride coatings
US5397649A (en) Intermediate coating layer for high temperature rubbing seals for rotary regenerators
EP0244458B1 (en) High volume fraction refractory oxide, thermal shock resistant coatings
JP3522590B2 (en) High hardness carbide cermet thermal spray coating member and method of manufacturing the same
JPH0261051A (en) Method for coating surface of material and thermal spraying material used in the same method
Milan Shahana et al. High-temperature oxidation and hot corrosion of thermal spray coatings
JPH05263212A (en) Heat-resistant coating
JPS6028903B2 (en) Surface treatment method for metal materials
Gedwill et al. A new diffusion-inhibited oxidation-resistant coating for superalloys
JP2604423B2 (en) Super heat resistant inclined coating forming method
JPS62149886A (en) Manufacture of surface coated steel pipe having superior corrosion resistance