[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62179894A - Fused flux for submerged arc welding - Google Patents

Fused flux for submerged arc welding

Info

Publication number
JPS62179894A
JPS62179894A JP1804186A JP1804186A JPS62179894A JP S62179894 A JPS62179894 A JP S62179894A JP 1804186 A JP1804186 A JP 1804186A JP 1804186 A JP1804186 A JP 1804186A JP S62179894 A JPS62179894 A JP S62179894A
Authority
JP
Japan
Prior art keywords
welding
flux
bead
less
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1804186A
Other languages
Japanese (ja)
Other versions
JPH0565276B2 (en
Inventor
Isao Sugioka
杉岡 勲
Osami Shimoyama
下山 修身
Masami Yamaguchi
山口 将美
Hajime Motosugi
本杉 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1804186A priority Critical patent/JPS62179894A/en
Publication of JPS62179894A publication Critical patent/JPS62179894A/en
Publication of JPH0565276B2 publication Critical patent/JPH0565276B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To use a fused flux for submerged arc welding for making a relatively thin steel sheet into a pipe by welding and to permit welding at the much higher speed by specifying the components of said flux. CONSTITUTION:The components of the flux are required to contain, by weight %, 15-30% SiO2, 15-30% Al2O3, 5-18% TiO2, 10-25% MnO, 6-30% BaO, and 7-15% CaF2. The other components required to be incorporated therein are <=8% CaO, <=3% MgO, <=4% iron oxide as FeO, and <=3% Na2O+K2O. Welding is thereby made possible at a high speed without generating welding defects and the productivity in making the relatively thin steel sheet into the pipe by welding is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、傾斜した溶接線を高速で溶接する、スパイラ
ル鋼管の造管溶接等に用いられるが、特に板厚が9〜1
4+n程度の比較的薄鋼板の造管溶接に用いて、一層の
高速溶接化が可能となる潜弧溶接用溶融型フラックスに
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is used for high-speed welding of inclined weld lines, welding of spiral steel pipes, etc.
The present invention relates to a melting type flux for submerged arc welding, which can be used for pipe making welding of relatively thin steel plates of approximately 4+n and enables even higher speed welding.

(従来の技術) スパイラル鋼管の造管溶接では、溶接速度の向上が、即
ち、生産性の向上となるため、従来がら溶接速度の向上
が計られているが、特に薄鋼板を用いる造管溶接では、
単位時間(月)あたりの造管It (ton)を比較す
ると、厚綱板の造管より一層の高速溶接化を計る必要が
ある。
(Conventional technology) In pipe manufacturing welding of spiral steel pipes, improvements in welding speed, in other words, improve productivity, so conventional efforts have been made to improve the welding speed, but especially in pipe manufacturing welding using thin steel plates. So,
Comparing the pipe making It (tons) per unit time (month), it is necessary to aim for even higher speed welding than pipe making of thick steel plates.

しかし、従来、この造管溶接用フラックスとして提案さ
れたものは、比較的厚板を対象としたものが多い。すな
わち、特開昭50−75143号公報には、溶接型フラ
ックス成分のTiO2をZrO,に置換して、スラグ粘
性を増すフラックスが提案され、さらに、特開昭55−
40029号公報には、成分、かさ密度を特定とし、ス
ラグ層厚を薄く、スラグ粘度を大きくすることによって
、湯流れを防止し、過大なコンケープ形状となるビード
を改善する溶融型フラックスが提案されているが、いず
れも、溶接速度は2.5m/min程度を対象としてい
る。さらに、現状の厚板の造管溶接では深い溶は込みを
要するため開先を要し、開先を満たす溶着金属量が必要
なため、溶接入熱が大きく、溶融金属が湯流れを起しゃ
すく、上述のフラソクスは効果が大きいものである。
However, most of the fluxes that have been proposed so far for pipe making and welding are intended for relatively thick plates. That is, JP-A-50-75143 proposes a flux that increases slag viscosity by replacing TiO2 in the welding flux component with ZrO, and JP-A-50-75143 proposes a flux that increases slag viscosity by replacing TiO2 in the welding flux component with ZrO.
Publication No. 40029 proposes a melt-type flux that prevents melt flow and improves bead formation with an excessive concave shape by specifying the components and bulk density, reducing the thickness of the slag layer, and increasing the slag viscosity. However, in both cases, the welding speed is approximately 2.5 m/min. Furthermore, current welding for thick plate pipes requires deep weld penetration, which requires a groove, and the amount of weld metal needed to fill the groove, resulting in a large welding heat input, which prevents the molten metal from flowing. The above-mentioned flaxox is highly effective.

しかし、板厚が8〜14關の比較的薄鋼板を用いる造管
溶接では、生産性を向上させるため、3.5m/min
の溶接速度が要望されている。
However, in pipe making welding using relatively thin steel plates with a thickness of 8 to 14 mm, in order to improve productivity, the welding speed is 3.5 m/min.
A welding speed of

この薄板を用いる造管では、溶接速度の上昇に伴って、
電流を上げることは溶接時にアークが鋼板を突き抜け、
メタルが落下する、溶は落ちを起すことになるため、溶
接入熱(電流×電圧×60÷溶接速度)を小さくせざる
を得ない。その結果、上述のスラグ粘性を増したフラッ
クスや、スラグ層厚を薄くしたフラックスでは、ポック
マークやアンダカットが発生し、3.5m/minの溶
接速度では使用できず、新たな成分のフラックスを開発
する必要があった。
In pipe manufacturing using this thin plate, as the welding speed increases,
Increasing the current means that the arc penetrates the steel plate during welding,
Since the metal will fall and the melt will drop, the welding heat input (current x voltage x 60 ÷ welding speed) must be reduced. As a result, the above-mentioned fluxes with increased slag viscosity and fluxes with reduced slag layer thickness caused pock marks and undercuts, and could not be used at a welding speed of 3.5 m/min. It needed to be developed.

(発明が解決しようとする問題点) 本発明は、先に述べた如く、従来のフラックスを用いて
は、ポックマーク、アンダカット等、溶接欠陥の発生に
よって使用できなかった板厚8〜14龍、溶接速度3.
5 m/minスパイラル造管溶接を可能とし、さらに
、スラグ剥離性能、ビード外観が良好な、潜弧溶接用溶
融型フラックスを提供しようとするものである。
(Problems to be Solved by the Invention) As mentioned above, the present invention solves the problem of using conventional flux for plate thicknesses of 8 to 14 mm, which could not be used due to the occurrence of welding defects such as pock marks and undercuts. , welding speed 3.
The object of the present invention is to provide a melt-type flux for submerged arc welding that enables spiral pipe welding at a speed of 5 m/min and also has good slag removal performance and bead appearance.

(問題点を解決するための手段) 本発明者らは、従来から有る溶融型フラックスで、現状
では傾斜溶接に用いられていないが、平面上を高速溶接
して、ビード外観、スラグ剥離性等の溶接作業性能が極
めて優れている溶融型フラックスが、スラグ粘性が低く
、アンダーカット、ポックマーク等の欠陥発生防止に効
果があると考えた。
(Means for Solving the Problems) The present inventors used a conventional molten flux, which is not currently used for inclined welding, to perform high-speed welding on a flat surface and improve bead appearance, slag removability, etc. We believe that molten flux, which has extremely excellent welding performance, has low slag viscosity and is effective in preventing defects such as undercuts and pock marks.

そこで従来、平面上の高速溶接用に用いられている、第
1表に示す主要成分系がSing −TiO2−A2□
03系フラックスと5402− MnO系フラックスを
用い、スパイラル鋼管の造管溶接への適用溶接試験を行
なった。
Therefore, the main component system shown in Table 1 that has been conventionally used for high-speed welding on flat surfaces is Sing -TiO2-A2□
A welding test was conducted using 03 series flux and 5402-MnO series flux for welding spiral steel pipes.

この試験方法は、第2図(a)に示すように、板厚12
龍、内径1m、長さ1.5mの第2表に示す成分の鋼管
1内面に、第2表に示すワイヤを用い、先行電極2 (
DC,RP、  1100A、’ 27■)と後行型i
3 (AC,700A、31V)でタンデム潜弧溶接ビ
ードを、パイプの長手方向に対し45°の角度でスパイ
ラル状に置く方法で行った。
This test method is as shown in Figure 2(a), with a plate thickness of 12 mm.
A leading electrode 2 (
DC, RP, 1100A, '27 ■) and trailing type i
3 (AC, 700A, 31V) by placing tandem submerged arc welding beads in a spiral shape at an angle of 45° to the longitudinal direction of the pipe.

また、溶接速度(S)の設定は、パイプの回転速度(r
)と移動速度(V)を第2図(b)に示す関係に従い同
調させて変更することによって、行なった。さらに、先
行電極2の位置は、パイプ内面の板底線より、下り坂傾
斜方向に20m移動した場所とした。(以下、オフセン
ター:下り坂20龍、又はOC:下り坂2oと言う。)
この溶接試験では、溶接速度3.5m/minで行なっ
た結果は、第1表の最右欄のビード断面形状に示す通り
であり、いずれも、3.5 m /minで用いること
は不可能であった。しかし、Sing −Ti(h−A
 l 203系従来フラツクスでは溶接速度を2.5m
/minとするか、あるいは、オフセンター:下り坂1
20mとした場合、第3図(a)のような、著しい扁平
ビードのコンケープ形状となり、オーバーラツプが発生
した。そこで、溶接速度、オフセンターを種々に変更し
て、溶接試験を行った結果、溶接速度3.0 m/mi
n 、 QC:下り坂70mmで形状が最良と考えられ
る溶接条件が得られたが、そのビード断面形状は第3図
(c)に示す如く、コンケープ形状で、オーバーラツプ
とアンダーカットが同時に発生する非常に不安定な形状
で、溶接条件のわずかな変動によって形状が大きく変化
し、実際の造管に用いることが不可能であった。
In addition, the welding speed (S) is set at the rotational speed of the pipe (r
) and the moving speed (V) were changed in synchronization according to the relationship shown in FIG. 2(b). Further, the position of the preceding electrode 2 was moved 20 m in the downhill direction from the bottom line of the inner surface of the pipe. (Hereinafter referred to as off center: downhill 20 dragon, or OC: downhill 2o.)
In this welding test, the results were performed at a welding speed of 3.5 m/min, as shown in the bead cross-sectional shape in the rightmost column of Table 1, and it is impossible to use at a welding speed of 3.5 m/min. Met. However, Sing-Ti(h-A
l For 203 series conventional flux, the welding speed is 2.5 m.
/min or off center: downhill 1
When the length was 20 m, the concave shape of the bead was extremely flat as shown in FIG. 3(a), and overlap occurred. Therefore, as a result of welding tests with various welding speeds and off-center changes, the welding speed was 3.0 m/mi.
n, QC: Welding conditions considered to have the best shape were obtained with a downhill slope of 70 mm, but the cross-sectional shape of the bead was a concave shape, as shown in Figure 3 (c), and an extremely difficult condition in which overlap and undercut occurred at the same time. It had an unstable shape, and the shape changed significantly with slight changes in welding conditions, making it impossible to use it for actual pipe manufacturing.

しかし、第4図に示すビード立上り角度α、β、あるい
は、ビード外−観面の平滑性等は非常に良好であった。
However, the bead rising angles α and β shown in FIG. 4 and the smoothness of the bead external surface were very good.

又、第1表に示す5i02− MnO系フランクスでは
、同様に試験条件を変えて実験を行った結果、溶接速度
を40m/minとするが、あるいは、OC:上り坂、
30mmでは、第3図(c)のようなビードとなるが、
良好な条件範囲では同様に狭く、実際の造管に用いるこ
とは不適当と考えられ、さらに、ビード立上り角度は、
比較的大で、ビード外観面はやや劣った。
In addition, with the 5i02-MnO-based flanks shown in Table 1, as a result of conducting experiments with similarly different test conditions, the welding speed was set to 40 m/min, or OC: uphill,
At 30mm, the bead will be as shown in Figure 3(c),
In a good condition range, it is similarly narrow and is considered inappropriate for use in actual pipe manufacturing, and furthermore, the bead rise angle is
It was relatively large and the bead appearance was somewhat inferior.

これらの実験結果から本発明者らは、溶接速度の変化に
よって、溶接入熱量が変化し、さらに、スラグ粘性は、
スラグ温度の変化によって変わるものであること、また
、そもそも、フラックスの溶融温度が異なる場合、14
00℃以上の一定温度で測定したスラグ粘性は、溶接入
熱量が低い場合、大きな意味を持たず、軟化温度、溶融
温度とその温度差が昇温時間を一定にした場合、ビード
形成に最も影響を与えると考えた。そこで、従来のフラ
ックスについて、軟化溶融温度を測定した。
Based on these experimental results, the inventors found that the amount of welding heat input changes as the welding speed changes, and that the slag viscosity changes as follows:
It should be noted that it changes depending on the change in slag temperature, and that if the melting temperature of the flux differs in the first place, 14
The slag viscosity measured at a constant temperature of 00℃ or higher does not have much meaning when the welding heat input is low, and the softening temperature, melting temperature, and the temperature difference have the greatest influence on bead formation when the heating time is constant. I thought it would give. Therefore, the softening and melting temperatures of conventional fluxes were measured.

この方法は、第1図(b)に示す如く、フラックス試料
を常温で縦断面を正方形とし、炉内で昇温し、上角部が
丸く溶融し始めた温度を軟化温度とし、試料高さが常温
時の172になった時の温度を溶融温度とするものであ
る。
In this method, as shown in Figure 1(b), a flux sample is made into a square longitudinal section at room temperature, heated in a furnace, the temperature at which the upper corner begins to melt roundly is taken as the softening temperature, and the sample height is The melting temperature is defined as the temperature when the temperature reaches 172 at room temperature.

この測定を行なった結果、第1図(a)に示すように、
従来の5in2−TiO□−A J 、O,系フラック
スは、軟化温度が1330℃で溶融温度が1350℃で
あり、従来の5iOz  MnO系フランクスの113
0℃。
As a result of this measurement, as shown in Figure 1(a),
The conventional 5in2-TiO□-A J,O,-based flux has a softening temperature of 1330°C and a melting temperature of 1350°C, which is 113% higher than that of the conventional 5iOz MnO-based flux.
0℃.

1180℃に比べ高温であり、しかも、急激に粘性が低
下する傾向を示した。
The temperature was higher than 1180°C, and the viscosity tended to decrease rapidly.

そこで、フラックスの溶融温度は1180℃を越え、1
350℃未満のフラックスであれば、先に述べたパイプ
内面での実験結果から良好なビードが得られると考え、
種々の成分を変えたフラックスを試作し、フラックス溶
融温度の測定と溶融試験を行なった。その結果、溶接速
度3.5m/minでパイプ内面の溶接を行なって、溶
接欠陥が発生せず、スラグ剥離性、ビード外観が良好な
フラックスが得られた。
Therefore, the melting temperature of the flux exceeds 1180°C, and 1
We believe that if the flux is below 350°C, a good bead can be obtained based on the experimental results on the inner surface of the pipe mentioned above.
We made trial fluxes with various components, measured the flux melting temperature, and conducted melting tests. As a result, the inner surface of the pipe was welded at a welding speed of 3.5 m/min, and a flux with good slag removability and bead appearance without any welding defects was obtained.

本発明は以上の知見によってなされたものでああり、そ
の要旨とするところは、成分が重量%でSiO□:15
〜30%、AAz03 : 15〜30%、Ti(h 
: 5〜18%、MnO: 10〜25%、BaO:6
〜30%、CaF2 : 7〜15%で゛あることを必
須とし、その他の成分として、CaOが8%以下、Mg
Oが3%以下、酸化鉄がFeOとして4%以下、Na2
O+ K2Oが3%以下であることを特徴とする潜弧溶
接用溶融型フラックスにある。
The present invention has been made based on the above findings, and its gist is that the components are SiO□: 15% by weight.
~30%, AAz03: 15~30%, Ti(h
: 5-18%, MnO: 10-25%, BaO: 6
~30%, CaF2: 7~15%, other components include CaO: 8% or less, Mg
O is 3% or less, iron oxide is 4% or less as FeO, Na2
A melt-type flux for submerged arc welding characterized by containing O+K2O of 3% or less.

以下に本発明フラックスの成分限定の理由を作用と共に
述べる。
The reasons for limiting the components of the flux of the present invention will be described below, along with their effects.

(作 用) SiO2を15〜30%とすること: SiO□成分は、スラグ生成剤であって、15%に満た
ない場合、スラグ層が薄くなり、アンダカット、ポック
マークなどの溶接欠陥が発生する。また、30%を越え
た場合、スラグ層が厚くなり過ぎる結果、湯流れを起し
、オーバーラツプが発生する。
(Function) SiO2 should be 15 to 30%: The SiO□ component is a slag forming agent, and if it is less than 15%, the slag layer becomes thin and welding defects such as undercuts and pock marks occur. do. Moreover, if it exceeds 30%, the slag layer becomes too thick, causing melt flow and overlapping.

Al2O2を15〜30%とすること:Al!toz成
分は、フラックス溶融温度を調整する成分であって、1
5%に満たない場合、フラックス溶融温度が低くなり過
ぎる結果、高速溶接では湯流れを起し、ビード断面形状
がコンケープとなり、30%を越えた場合、フラックス
溶融温度が高くなり過ぎる結果、ビード断面形状が凸形
となり、アンダーカットが発生する。
Setting Al2O2 to 15-30%: Al! The toz component is a component that adjusts the flux melting temperature, and has a content of 1
If it is less than 5%, the flux melting temperature will be too low, resulting in melt flow during high-speed welding, and the bead cross-sectional shape will become concave. If it exceeds 30%, the flux melting temperature will be too high, resulting in a bead cross-sectional shape. The shape becomes convex and an undercut occurs.

Ti(hを5〜18%とすること: TiO□成分は、アーク強さを調整する成分であって、
5%に満たない場合、アーク強さが弱く、長くなり過ぎ
る結果、フラックス溶融量が増加し、スラグ量が増加す
る結果、湯流れを起し、18%を越えた場合、アーク強
さが強くなり過ぎる結果、溶は込み深さが増し、溶は込
みを埋めきれずに、アンダーカットが発生する。
Ti (h should be 5 to 18%: TiO□ component is a component that adjusts arc strength,
If it is less than 5%, the arc strength will be weak, and as a result of being too long, the amount of flux melting will increase, and the amount of slag will increase, resulting in melt flow, and if it exceeds 18%, the arc strength will be strong. As a result, the depth of the weld penetration increases and the weld penetration cannot be filled completely, resulting in an undercut.

MnOを10〜25%とすること: MnOは、Singと共にスラグ生成剤であり、さらに
アーク安定剤であって、25%を越えた場合、高速溶接
では、と−ドが蛇行し、10%に満たない量では、その
効果が不足して、アーク不安定となる。
Setting MnO to 10 to 25%: MnO is a slag forming agent along with Sing, and is also an arc stabilizer. If the amount is less than this, the effect will be insufficient and the arc will become unstable.

BaOを6〜30%とすること: BaO成分は、スラグ粘性を調整し、スラグ剥離性の改
善に効果がある。しかし、6%に満たない場合、スラグ
剥離性の効果は不足で、30%を越えた場合、ビード表
面が醜くなる。
Setting BaO to 6 to 30%: The BaO component is effective in adjusting slag viscosity and improving slag removability. However, if it is less than 6%, the slag releasability effect is insufficient, and if it exceeds 30%, the bead surface becomes ugly.

CaFzを7〜15%とすること: Cab、成分はポックマーク発生を防止するガス発生成
分であって、7%に満たない場合、耐ポツクマーク性能
が不足し、15%を越えた場合、スラグがビード表面に
焼付き、ハクリ性が悪化する。
CaFz should be 7 to 15%: Cab is a gas-generating component that prevents pockmarks from occurring. If it is less than 7%, the anti-pockmark performance is insufficient, and if it exceeds 15%, slag Seizes on the bead surface and deteriorates peelability.

以上が必須の成分であって、その他の成分は、少ない方
が良いが原材料鉱石中に不純物として含まれており、過
剰に残渣としてフラックス中に含まれると、悪影響を与
えるものであって、上限を定めるものである。
The above are essential components, and the other components are contained as impurities in the raw material ore, although it is better to have less of them, and if they are excessively contained in the flux as a residue, they will have a negative effect, so there is an upper limit. This is to establish the following.

CaOが8%以下であること: CaO成分は、溶融型フラックスでは、溶融炉中でCa
Fzが分解してCaO成分として存在するものと、その
他の原材料鉱石中の不純物がフラックス中に存在するも
のの合計を言う場合もあるが、本発明ではフラックス中
のF成分を本来のCaF、成分として計算し、その他の
CaOを8%以下とするものであって、8%を越えた場
合、ポックマークやヘリンボーン等が発生するため、8
%以下とした。
CaO content must be 8% or less: In a melting type flux, the CaO component is
In some cases, it refers to the sum of the Fz that is decomposed and exists as a CaO component and the impurities in other raw material ores that are present in the flux, but in the present invention, the F component in the flux is the original CaF component. The other CaO content is calculated to be 8% or less, and if it exceeds 8%, pock marks and herringbones will occur, so
% or less.

MgOを3%以下とすること: MgO成分は、高温溶融、耐火性成分であって、フラッ
クス溶融温度を上昇させる成分である。そのため、3%
を越えた場合、ビード断面形状を凸形とし、アンダカソ
トが発生するため、3%以下とした。
MgO content should be 3% or less: The MgO component is a high-temperature melting, fire-resistant component, and is a component that increases the flux melting temperature. Therefore, 3%
If it exceeds 3%, the cross-sectional shape of the bead becomes convex and undercut occurs, so it was set to 3% or less.

酸化鉄がFeOとして4%以下であること:酸化鉄は、
原料鉱石中に不純物として含まれ、フラックス中でもF
ezO,FeO、Fe、O,、等の酸化鉄として含まれ
ている。従って、FeOに換算して4%以下なら特に問
題はないが、4%を越えて故意に添加した場合、ビード
立上り角度が大きくなり、かつコンケープ深さが深(な
ると共にビード中央にシワ状の収縮線が発生し、外観を
悪化するため、FeOとして4%以下とした。
Iron oxide is 4% or less as FeO: Iron oxide is
Contained as an impurity in raw ore, F is also present in flux
It is contained as iron oxides such as ezO, FeO, Fe, O, etc. Therefore, there is no particular problem if it is 4% or less in terms of FeO, but if it is intentionally added in excess of 4%, the bead rise angle becomes large and the concave depth becomes deep (as well as wrinkles in the center of the bead). Since shrinkage lines occur and the appearance deteriorates, the FeO content was set to 4% or less.

NazO+KzOが3%以下であること:Na zoや
に20成分はいずれも、スラグ粘性を極端に低下させ、
3%を越えて含まれると、湯温れを起こしビード断面形
状が扁平なコンケープ形状でオーバーラツプになるため
、NazO+ KZOで3%以下とした。
NazO + KzO must be 3% or less: All 20 components of Nazo resin extremely reduce slag viscosity,
If the content exceeds 3%, the water temperature will increase and the cross-sectional shape of the bead will become flat and overlap, so the content was set to 3% or less for NazO + KZO.

なお、フラックスの粒度構成やかさ密度等は、特に制限
するものではないが、粒度構成は従来、比較的粗粒を多
く含むフラックスが用いられており、本発明フラックス
においても、JIS、 Z 8801規格の網ふるいを
用い、呼び寸法2.80關を通過し、106μmを通過
しない粒子をフラックス全体の90重量%以上とするこ
とが望ましい。又、かさ密度は、平面上を1.5〜2.
5 m / min程度の溶接速度で溶接する場合は、
発泡粒を多く含む1、5 g/cm 3以下の軽質フラ
ックスが良いが、3.0m/min以上の高速溶接に用
いる場合、発泡粒中のガスが悪影響を及ぼすため、本発
明フラックスでは、JISK6721規格に準じて測定
し、発泡粒を含まず、1.6g/cm’以上のかさ密度
であることが望ましい。
Although the particle size structure and bulk density of the flux are not particularly limited, conventionally a flux containing a relatively large amount of coarse particles has been used, and the flux of the present invention also complies with the JIS, Z 8801 standard. Using a mesh sieve, it is desirable that particles passing through a nominal size of 2.80 mm and not passing through a diameter of 106 μm account for 90% by weight or more of the entire flux. In addition, the bulk density is 1.5 to 2.
When welding at a welding speed of about 5 m/min,
A light flux of 1.5 g/cm3 or less containing many foamed grains is good, but when used for high-speed welding of 3.0 m/min or more, the gas in the foamed grains has an adverse effect, so the flux of the present invention is JIS K6721. It is desirable that the bulk density is 1.6 g/cm' or more when measured according to the standard and does not contain foamed particles.

以下に本発明の実例を述べる。Examples of the present invention will be described below.

(実施例) 第2表に示す成分の鋼管、潜弧溶接用ワイヤを用いて、
第3表の溶接条件で、第2図に示す要領で、ビード置き
試験を行なった、試験に用いた試作フラックスは第4表
に示し、フラックスの試作は、原材料鉱石を目標成分に
なるように配合、混合し、溶融炉で溶融した後、鋼板上
あるいは、回転ドラムの間隙で冷却し、1000℃以下
の低温で水砕、乾燥、整粒して試作したものである。
(Example) Using steel pipes and submerged arc welding wires with the components shown in Table 2,
A bead placement test was conducted under the welding conditions shown in Table 3 and as shown in Figure 2. The prototype flux used in the test is shown in Table 4. After compounding, mixing, and melting in a melting furnace, it was cooled on a steel plate or in the gap of a rotating drum, and then pulverized, dried, and sized at a low temperature of 1000°C or less to produce a prototype.

この溶接試験の結果は、第5表に示す如く、本発明フラ
ックスでは、いずれも、ビード断面形状は良好で、スラ
グ剥離性も良好であり、溶接欠陥の発生もなかった。し
かし、比較フラックスHでは、その成分が本発明品に比
べ、Sing、 MnOが過少で、A l1203 、
 TiO□が過多なため、フラックス溶融温度は134
0℃と若干低下したが、ビード形状は凸形となり、アン
ダカソトが発生しスラグ剥離が悪かった。また、比較フ
ラックス■は、本発明品に比べ、その成分のsio、、
 MnOが過多で、A j! zos 、 TiQzが
過少なため、フラックス溶融温度が1190℃であった
が、ビード形状は偏平なコンケープ形状で、ビード両端
にオーバーラツプが発生し、スラグ剥離性能が悪かった
As shown in Table 5, the results of this welding test show that all fluxes of the present invention had good bead cross-sectional shapes, good slag removability, and no welding defects. However, in comparison flux H, its components were too small in Sing, MnO, and Al1203, compared to the product of the present invention.
Due to excessive TiO□, the flux melting temperature is 134
Although the temperature decreased slightly to 0°C, the bead shape became convex, undercasting occurred, and slag peeling was poor. In addition, compared to the product of the present invention, the comparative flux ■ has sio of its components,
With too much MnO, A j! Due to insufficient amounts of zos and TiQz, the flux melting temperature was 1190°C, but the bead shape was a flat concave shape, overlap occurred at both ends of the bead, and the slag removal performance was poor.

比較フラックスJはその成分のCaFz+ NazO+
 KZOが過多で、フラックス溶融温度が1130℃と
著しく低下したことによって、ビード形状は、さらに偏
平なコンケープ形状となり、オーバーラツプが大きくス
ラグがオーバーラツプ部にかみ込みを起し、剥離性が悪
かった。
Comparison flux J is its component CaFz+ NazO+
Due to the excessive amount of KZO, the flux melting temperature was significantly lowered to 1130° C., so the bead shape became a flattened concave shape, the overlap was large, the slag got caught in the overlap part, and the peelability was poor.

比較フラックスには、MnO成分が過多で、BaO成分
が過少なため、アークが不安定となり、ビードが蛇行し
、一部アンダカットの発生により、スラグ剥離性が悪か
った。
The comparison flux had too much MnO component and too little BaO component, so the arc became unstable, the bead meandered, and some undercuts occurred, resulting in poor slag releasability.

比較フラックスLは、BaO、CaO成分が過多なため
、ビード形状、スラグ剥離性は、はぼ良好であったが、
ビード外観が醜く、ポックマークが多発した。
Comparative flux L contained too many BaO and CaO components, so the bead shape and slag removability were quite good, but
The bead appearance was ugly and pockmarks occurred frequently.

比較フラックスMは、その成分のCaFzが過少で、M
nOが過多なたため、フラックス溶融温度が1370℃
と高過ぎる結果、ビード形状が凸形となり、ビード両端
の全線にアンダカットが発生し、スラグをかみ込む結果
、剥離性が悪かった。
Comparative flux M has too little CaFz as a component, and M
Due to excessive nO, the flux melting temperature was 1370℃
As a result of this being too high, the bead shape became convex, undercutting occurred on the entire line at both ends of the bead, and as a result, the slag was caught, resulting in poor peelability.

比較フラックスNは、FeO成分を添加して、過多とし
たフラックスで、その結果、ビード形状は、立上り角度
、コンケープ深さが大きく、スラグ剥離性が悪く、さら
にビード中央にシワ状の収縮線が発生して、外観が悪化
した。
Comparative flux N is a flux with an excessive amount of FeO added, and as a result, the bead shape has a large rising angle and concave depth, poor slag removability, and a wrinkle-like shrinkage line in the center of the bead. It occurred and the appearance deteriorated.

なお、ビード断面形状の判定は、第4図に示す如く、コ
ンケープ深さく/)は1m未満を良好とし、l mm以
上をコンケープ大とした。また、ビード立上り角度は、
ビード両端の立上り角度α、β、の平均角度とし、90
”未満を良好、90°以上を不良とした。
Regarding the judgment of the bead cross-sectional shape, as shown in FIG. 4, a concave depth of less than 1 m was considered good, and a concave depth of 1 mm or more was considered large. In addition, the bead rising angle is
The average angle of the rising angles α and β at both ends of the bead is 90
Less than 90° was considered good, and 90° or more was bad.

(発明の効果) 以上、詳細に説明したように□、本発明フラックスを用
いることによって、溶接欠陥を発生させることなく、溶
接速度を3.5 m/winの高速で溶接が可能となる
ことにより、板厚8〜14龍の比較的薄鋼板の造管溶接
の生産性の向上が計れ、その効果は非常に大きい。
(Effects of the invention) As explained in detail above, by using the flux of the present invention, welding can be performed at a high welding speed of 3.5 m/win without causing welding defects. , the productivity of pipe making and welding of relatively thin steel plates with a plate thickness of 8 to 14 mm can be improved, and the effect is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、フランクス軟化溶融温度測定結果を示
すグラフ、第1図(b)はフラックス試料の各温度での
形状変化を示す図、第2図(a)は、溶接試験方法を説
明するための電極とパイプの配置図、第2図(b)は溶
接速度設定の説明図、第3図はビード断面形状の概略説
明図、第4図面の簡単な説明図、第5図(a)(b)は
第1表の溶接結果の欄におけるビード断面形状を示す図
、第6図(a)、(h)〜(n)は第5表のビード断面
形状の欄の各ビード断面形状を示す図である。 1・・・鋼管、2・・・先行電極、3・・・後行電極、
0.0・・・オフセンター、r・・・鋼管の回転方向と
速度、■・・・鋼管の移動方向と速度、S・・・溶接線
方向と速度。 第1図 /100        /200        /
J00        /41K)温度(’c) (b) (偶9温)     (f大イヒ献)    (溶融対
h)()第2図 (a−)     (b) θ、で 第3図 第4図 m面の浄書(内容に変更なし〕 ((L>       (b)     (C)   
   <d)(e)          (f)   
     <gン          (−/b)手続
補正書(方式) %式% 1、事件の表示 昭和61年特許願第018041号 2、発明の名称 潜弧溶接用溶融型フラックス 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式会社 代表者 武  1)  豊 4、代理人〒100 5、補正命令の日付 昭和61年 3 月25日(発送
日)6、補正の対象 明細書の発明の詳細な説明の欄及び図面の簡単な説明の
欄1図面             、−(1)明細書
21頁第5表を別紙の通り補正する。 (2)同第22真下から4行[第6図(a)、(h)〜
(n)」を「第6図(a)〜(h)」に補正する。 (3)第6図を別紙の通り補正する。 手続補正書(自発)。 昭和61年4 月18日
Figure 1 (a) is a graph showing the measurement results of Franks softening and melting temperature, Figure 1 (b) is a graph showing the change in shape of the flux sample at each temperature, and Figure 2 (a) is a graph showing the welding test method. Figure 2 (b) is an explanatory diagram of the welding speed setting, Figure 3 is a schematic diagram of the bead cross-sectional shape, Figure 4 is a simple diagram of the arrangement of the pipe, Figure 5 ( a) (b) are diagrams showing the bead cross-sectional shapes in the welding results column of Table 1, and Figures 6 (a), (h) to (n) are each bead cross-section in the bead cross-sectional shape column of Table 5. It is a figure showing a shape. 1... Steel pipe, 2... Leading electrode, 3... Trailing electrode,
0.0...Off center, r...Rotating direction and speed of the steel pipe, ■...Moving direction and speed of the steel pipe, S...Welding line direction and speed. Figure 1 /100 /200 /
J00 /41K) Temperature ('c) (b) (Even 9 temperature) (F large change) (Melting vs. h) () Fig. 2 (a-) (b) θ, Fig. 3 Fig. 4 m Engraving of the surface (no change in content) ((L> (b) (C)
<d) (e) (f)
<gn (-/b) Procedural amendment (method) % formula % 1. Indication of the case 1985 Patent Application No. 018041 2. Name of the invention Melting type flux for submerged arc welding 3. Person making the amendment Case and Relationship Patent applicant 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 100-5 Date of amendment order March 25, 1988 Day 6 (shipping date): Detailed Description of the Invention column and Brief Description of Drawings column 1 of the specification to be amended - (1) Table 5 on page 21 of the specification is amended as shown in the attached sheet. (2) 4 lines from the bottom of No. 22 [Fig. 6 (a), (h) to
(n)” is corrected to “Fig. 6 (a) to (h)”. (3) Correct Figure 6 as shown in the attached sheet. Procedural amendment (voluntary). April 18, 1986

Claims (1)

【特許請求の範囲】[Claims]  成分が重量%で、SiO_2:15〜30%、Al_
2O_3:15〜30%、TiO_2:5〜18%、M
nO:10〜25%、BaO:6〜30%、CaF_2
:7〜15%であることを必須とし、その他の成分とし
て、CaOが8%以下、MgOが3%以下、酸化鉄がF
eOとして4%以下、Na_2O+K_2Oが3%以下
であることを特徴とする潜弧溶接用溶融型フラックス。
The components are weight%, SiO_2: 15-30%, Al_
2O_3: 15-30%, TiO_2: 5-18%, M
nO: 10-25%, BaO: 6-30%, CaF_2
: Must be 7 to 15%, and other components include CaO of 8% or less, MgO of 3% or less, and iron oxide of F.
A melting type flux for submerged arc welding, characterized in that eO is 4% or less and Na_2O+K_2O is 3% or less.
JP1804186A 1986-01-31 1986-01-31 Fused flux for submerged arc welding Granted JPS62179894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1804186A JPS62179894A (en) 1986-01-31 1986-01-31 Fused flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1804186A JPS62179894A (en) 1986-01-31 1986-01-31 Fused flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS62179894A true JPS62179894A (en) 1987-08-07
JPH0565276B2 JPH0565276B2 (en) 1993-09-17

Family

ID=11960595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1804186A Granted JPS62179894A (en) 1986-01-31 1986-01-31 Fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS62179894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812646A1 (en) * 1995-12-28 1997-12-17 Kawasaki Steel Corporation Method of manufacturing large diameter welded steel pipe having high strength and toughness
KR100355580B1 (en) * 2000-08-17 2002-10-12 고려용접봉 주식회사 Agglomerated flux for submerged arc welding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812646A1 (en) * 1995-12-28 1997-12-17 Kawasaki Steel Corporation Method of manufacturing large diameter welded steel pipe having high strength and toughness
EP0812646A4 (en) * 1995-12-28 2000-01-12 Kawasaki Steel Co Method of manufacturing large diameter welded steel pipe having high strength and toughness
KR100355580B1 (en) * 2000-08-17 2002-10-12 고려용접봉 주식회사 Agglomerated flux for submerged arc welding

Also Published As

Publication number Publication date
JPH0565276B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
JP5632343B2 (en) Electroslag overlay welding flux
US2544334A (en) Weld rod, flux, and method
JPH0130597B2 (en)
US4436562A (en) Basic bonded fluxes for submerged arc welding having an excellent removability of slag at a narrow groove
JPS62179894A (en) Fused flux for submerged arc welding
US3581039A (en) Method of one-side arc welding and backing material therefor
US4221611A (en) Non-fused flux composition for submerged-arc welding
KR100706026B1 (en) High speed submerged arc welding flux
JPH02258191A (en) Large heat input submerged-arc welding method of thick steel plate
JP3617597B2 (en) Bond flux for submerged arc welding
JP2907794B2 (en) Ceramic backing material for carbon dioxide arc welding
JPS5841694A (en) Calcined flux for submerged arc welding
JP6913463B2 (en) Backing flux
JPS61169194A (en) Fused flux for submerged arc welding
CN115890063B (en) Flux for submerged arc welding of P92 steel
JP3256113B2 (en) Backing material for automatic rail welding and its use
JPS62270297A (en) Fused flux for submerged arc welding
JPH0455790B2 (en)
JPS594238B2 (en) Backing material for single-sided welding
CN108145343B (en) Flux for submerged arc welding
JPH0327891A (en) Calcined flux for large heat input submerged arc welding
JPH08290271A (en) Method for one side submerged arc welding
JPS5910874B2 (en) Non-melting flux for submerged arc welding
JPS62259697A (en) Bonded flux for submerged arc welding
JPH04313492A (en) Low hydrogen type coated electrode