JPS62179115A - Filming device by sputtering process - Google Patents
Filming device by sputtering processInfo
- Publication number
- JPS62179115A JPS62179115A JP2080486A JP2080486A JPS62179115A JP S62179115 A JPS62179115 A JP S62179115A JP 2080486 A JP2080486 A JP 2080486A JP 2080486 A JP2080486 A JP 2080486A JP S62179115 A JPS62179115 A JP S62179115A
- Authority
- JP
- Japan
- Prior art keywords
- current
- targets
- electromagnet
- magnetron
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004544 sputter deposition Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 title abstract description 4
- 230000007246 mechanism Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 25
- 239000000203 mixture Substances 0.000 abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 abstract description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000010703 silicon Substances 0.000 abstract description 7
- 229910000676 Si alloy Inorganic materials 0.000 abstract description 2
- 239000013589 supplement Substances 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 11
- 239000010408 film Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はスパッタリング成膜装置に関し特に、材質の異
なる複数個のターゲットを順fスパッタすることにより
、形成される化合物薄膜および混合物薄膜の組成の精密
な制御と層構造薄膜の形成を可能とするマグネトロンス
パッタリング成膜装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sputtering film forming apparatus, and in particular, it is possible to precisely control the composition of compound thin films and mixture thin films formed by sequential f-sputtering of a plurality of targets of different materials. This invention relates to a magnetron sputtering film forming apparatus that enables control and formation of layered thin films.
従来の技術
スパッタリング技術は、低圧の雰囲気ガスにグロー放電
を起こさせ、雰囲気ガスをプラズマ化させ、陰極のタゲ
ット材料に衝突させ、ターゲット材料から堆積物原子・
イオンを飛散させ、陽極近傍の基板上に堆積させる成膜
技術である。Conventional technology Sputtering technology causes a glow discharge in a low-pressure atmospheric gas, turns the atmospheric gas into plasma, and collides with the target material of the cathode, removing deposit atoms and particles from the target material.
This is a film formation technology that scatters ions and deposits them on the substrate near the anode.
このグロー放電によって生じた雰囲気ガスのプラズマを
、ターゲットに接する空間内に、高密度に封じ込めるこ
とによって、高率で堆積原子・イオンを飛散させるマグ
ネトロン陰極、り技術が知られている。高密度の雰囲気
ガスのプラズマの封じ込みには、ターゲット材料の裏側
に永久磁石を配置し、直交する磁界のもとで、電子にサ
イクロイド運動を起こさせ、ターゲット表面でのプラズ
マ密度を上げたプレーナマグネトロン型のスパッタリン
グ成膜装置が開発されている。A magnetron cathode technique is known in which the atmospheric gas plasma generated by this glow discharge is confined at a high density in a space in contact with a target, thereby scattering deposited atoms and ions at a high rate. To confine high-density atmospheric gas plasma, a planar magnet is placed on the back side of the target material to cause electrons to move cycloidally under orthogonal magnetic fields, increasing the plasma density on the target surface. A magnetron type sputtering film forming apparatus has been developed.
第6図は、従来より、コ・スパッタリング(CO−sp
uttering )として知られている、異積複数材
料の化合物および混合物薄膜を堆積するスパッタリング
成膜装置の概略図である。ターゲット材料平板12&お
よび12bは、各々、スパッタリング原子・イオンを堆
積させる基板11と対向するように配置されている。Figure 6 shows the conventional method of co-sputtering (CO-sputtering).
1 is a schematic diagram of a sputtering deposition apparatus for depositing heterogeneous multi-material compound and mixture thin films known as uttering. The target material flat plates 12& and 12b are each arranged to face the substrate 11 on which sputtering atoms/ions are deposited.
ターゲット裏側には、永久磁石が内蔵され、直流電源1
4ia、14bとともに直交する電磁界を形成し、プラ
ズマを高密度に閉じ込める。ここでは、スパッタリング
陰極印加電圧を、直流電源142L、14bを変えるこ
とによって、複数個(この場合は、簡単のため2個とす
る)のターゲットからのスパッタリング粒子の基板上へ
の堆、債速度を可変させ、化合物薄膜および混合物薄膜
の組成を制御することを示している。A permanent magnet is built-in on the back side of the target, and a DC power supply 1 is installed.
Together with 4ia and 14b, an orthogonal electromagnetic field is formed to confine plasma at high density. Here, by changing the voltage applied to the sputtering cathode and the DC power supplies 142L and 14b, the speed at which sputtered particles are deposited onto the substrate from a plurality of targets (in this case, two targets are used for simplicity) is controlled. It is shown that the composition of the compound thin film and the mixture thin film can be varied and controlled.
以上は、コ・スパッタリングの基本概念を示すものであ
り、実際に必要な、真空ポンプ、パルプ基本を保持する
支持台、基板加熱ヒータ等については述べていない。The above describes the basic concept of co-sputtering, and does not describe the actually necessary vacuum pump, support stand for holding the pulp base, substrate heater, etc.
発明が解決しようとする問題点
しかし、近年の半導体装置技術では、組成制御の他に、
層構造、超格子構造の薄膜にも関心が持たれている。Problems to be Solved by the Invention However, in recent years, semiconductor device technology has
There is also interest in thin films with layered and superlattice structures.
現在、分子線ビームエピタキシー技術を用いた超格子構
造の研究が盛んであるが、スパッタリング技術を用いれ
ば、高温相の非熱平衡状態凍結、高融点金属材料、絶縁
材料の薄膜形成が広面積にわたシ可能となる。Currently, research on superlattice structures using molecular beam epitaxy technology is active, but sputtering technology can be used to freeze high-temperature phases into a non-thermal equilibrium state, and to form thin films of high-melting point metals and insulating materials over large areas. It becomes possible to
しかし、従来のスパッタリング技術を用いて、層構造薄
膜を形成する場合、(1)シャッターを用いる、(2)
ターゲットをターンテーブルの上に乗せ、ターゲットと
基板の位置を切り換える方法が、実行されているが、切
り換えに時間がかかる。例えば、シャッター6a又は6
bが、開き始めて完全に開くまでの間にも、シャッター
でおおわれていないターゲットの領域の面積からも、蒸
着速度が一定でない成膜が行われる。この様な場合、複
数個のターゲットからの同時スパッタによる合金薄膜の
組成制御、非常に薄い膜(数人〜数10人)の層構造を
形成することが困難である。ターゲット基板の位置を切
り換える場合も同様である。However, when forming a layered thin film using conventional sputtering technology, (1) using a shutter, (2)
A method has been implemented in which the target is placed on a turntable and the positions of the target and substrate are switched, but it takes time to switch. For example, shutter 6a or 6
From the time when the shutter b begins to open until it is completely opened, the deposition rate is not constant depending on the area of the target region that is not covered by the shutter. In such a case, it is difficult to control the composition of the alloy thin film by simultaneous sputtering from a plurality of targets and to form a layer structure of a very thin film (several to several dozen). The same applies when switching the position of the target substrate.
本発明は、かかる点に鑑みてなされたもので、電気的に
マグネトロン状態のオン・オフを制御し、層構造薄膜、
精密に組成制御された、化合物薄膜および混合物薄膜の
スパッタリングによる成膜装置を提供することを目的と
している。The present invention has been made in view of this point, and it electrically controls the on/off state of the magnetron, and
It is an object of the present invention to provide a film forming apparatus by sputtering of compound thin films and mixture thin films whose composition is precisely controlled.
問題点を解決するだめの手段
本発明は、マグネトロンターゲット裏面に配置された電
磁石に、デユーティ比、位相、周波数が、周期的に変化
する電流波形を与え、ターゲット上のマグネトロン放電
状態を順次オンオフさせながらスパッタリングする機構
を備えたものである。Means to Solve the Problem The present invention applies a current waveform whose duty ratio, phase, and frequency change periodically to an electromagnet placed on the back side of the magnetron target, and sequentially turns on and off the magnetron discharge state on the target. This device is equipped with a mechanism for sputtering.
作用
本発明は、このような構成で、電磁石の駆動電流波形を
コントロールすることで、層構造薄膜、化合物薄膜およ
び混合物薄膜を形成しているので、精密な制御が可能と
なる。Function The present invention forms a layered thin film, a compound thin film, and a mixture thin film by controlling the drive current waveform of the electromagnet with such a configuration, so that precise control is possible.
実施例
以下に、本発明の一実施例について図面とともに説明す
る。第1図に、本発明の一実施例におけるマグネトロン
多元スパッタリング成膜装置の概念図を示す。ターゲッ
トに接するマグネトロン陰極に内蔵される永久磁石の一
部または、全体を電磁石(31L 、 3b )で、置
き換え、個別の電磁石駆動用電源(6a、sb)と接続
されている。個別の電磁石駆動用電源(5a、5b)に
よって、周期的に変化する電流が印加されたときに、直
ちに、マグネトロン放電状態となるよう電流が印加され
ていないときは、永久磁石(at、3b)または、電磁
石にバイアス電流を流して磁界の補助を行う。EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 shows a conceptual diagram of a magnetron multi-source sputtering film forming apparatus according to an embodiment of the present invention. Part or all of the permanent magnet built into the magnetron cathode in contact with the target is replaced with an electromagnet (31L, 3b), which is connected to an individual electromagnet driving power source (6a, sb). When a periodically changing current is applied by the individual electromagnet drive power supplies (5a, 5b), the permanent magnet (at, 3b) immediately enters the magnetron discharge state when no current is applied. Alternatively, a bias current is passed through the electromagnet to supplement the magnetic field.
例えば、電源sa、5bから出力される電磁石駆動電流
波形全第2図(A) 、 CB)のような周期波形とす
れば、時間あたりの堆積量を変える結果、薄膜の精密な
組成制御が可能となる。この場合、ターゲラ)2&iア
ルミニウム、ターゲット2biシリコンとすれば、パル
ス幅乙の間は、アルミニウムとシリコンが同時に堆積さ
れ、パルス幅a=<変えることによって、任意の組成比
のアルミニウムーシリコン合金の形成が可能である。For example, if the waveforms of the electromagnet drive currents output from the power supplies sa and 5b are made into periodic waveforms as shown in Figure 2 (A) and CB), it is possible to precisely control the composition of the thin film by changing the amount of deposition per time. becomes. In this case, if the target is 2&i aluminum and the target is 2bi silicon, aluminum and silicon are deposited simultaneously during the pulse width (b), and by changing the pulse width (a), an aluminum-silicon alloy with an arbitrary composition ratio can be formed. is possible.
また、第3図に示すような、複数個のターゲットに、同
時にマグネ)oン放電状態とならないタイミングを持っ
た周期波形を印加すると、ターゲット2tL→2b→2
a→2b→2&とスパッタリングされるから層構造薄膜
の形成が可能となる。Furthermore, if a periodic waveform with a timing that prevents the magneto-on discharge state is applied to multiple targets at the same time as shown in Fig. 3, the targets 2tL→2b→2
Since sputtering is performed in the order of a→2b→2&, it is possible to form a layered thin film.
特に、数m秒間隔の周期波形を用いることによって単原
子層から成る超格子構造の薄膜全形成することができる
。この場合、ターゲット22Liアルミニウム、ターゲ
ット2bf、シリコンとするとアルミニウムとシリコン
の多層膜を形成できる。In particular, by using a periodic waveform with an interval of several milliseconds, it is possible to form an entire thin film having a superlattice structure consisting of a monoatomic layer. In this case, if the target 22Li is aluminum and the target 2bf is silicon, a multilayer film of aluminum and silicon can be formed.
第4図は、主成分組成において、添加物量のみ変える場
合であり、例えば、ターゲット2aiアルミニウム、タ
ーゲット2biシリコンとすることができる。FIG. 4 shows a case where only the amount of additives is changed in the main component composition, and for example, target 2ai aluminum and target 2bi silicon can be used.
第5図(A)、■)又は第5図(C)、Φ)は、組成が
なだらかに変化する二層のみの薄膜を形成する場合の駆
動電流波形である。この場合、ターゲット2aをモリブ
デン、ターゲラ)2biアルミニウムとすることができ
る。FIG. 5(A), ■) or FIG. 5(C), Φ) is a drive current waveform when forming a thin film with only two layers whose composition changes gradually. In this case, the target 2a can be made of molybdenum or 2bi aluminum.
発明の効果
以上のように、本発明は、従来の様にシャッター開閉等
のメカニカルな機構によって、多層膜、合金膜を形成す
るのと異なり、マグネトロン陰極に内蔵された電磁石の
駆動周期電流波形のデユーティ比9位相1周波数を変え
、ターゲット上のマグネトロン放電状態を電気的にオン
オフするので、放電を数マイクロ秒から数ミリ秒という
短時間のうちに切り換えることができるため、シャッタ
ー機構等で生じた不確定な膜形成速度が現れる期間も、
無視できる程に減少させられるので、精密な組成制御、
層構造の薄膜の形成に威力を発揮するものである。Effects of the Invention As described above, the present invention differs from the conventional method of forming multilayer films and alloy films by mechanical mechanisms such as opening and closing shutters. Since the duty ratio (9 phases, 1 frequency) is changed and the magnetron discharge state on the target is electrically turned on and off, the discharge can be switched in a short period of time from several microseconds to several milliseconds. The period during which an uncertain film formation rate appears,
Precise composition control, as the reduction is negligible.
It is effective in forming thin films with a layered structure.
第1図は本発明の一実施例におけるマグネトロン多元ス
パッタリング成膜装置の構成図、第2図は同装置で薄膜
の組成を変える場合の電磁石駆動電流波形を示す波形図
、第3図は同装置で層構造薄膜を形成する場合の電磁石
駆動電流波形を示す波形図、第4図は同装置で添加物の
み層状とする場合の電磁石駆動電流波形を示す波形図、
第5図1・・・・・・基板、2・・・・・・ターゲット
、3・・・・・・電磁石、4・・・・・・永久磁石、5
・・・・・・電源。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名/
−m−基板
?−−−グーゲット
3−一一電j浪石
第2図
電
伏
工
第 3 図
電
流
り
第4図
電
武
り
第 5 図
電
人Fig. 1 is a block diagram of a magnetron multi-dimensional sputtering film forming apparatus according to an embodiment of the present invention, Fig. 2 is a waveform diagram showing the electromagnet drive current waveform when changing the composition of a thin film using the same apparatus, and Fig. 3 is a waveform diagram of the same apparatus. FIG. 4 is a waveform diagram showing the electromagnet driving current waveform when forming a layered thin film with the same apparatus.
Fig. 5 1...Substrate, 2...Target, 3...Electromagnet, 4...Permanent magnet, 5
······power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person/
-m- board? ---Googet 3-11 Den J Namiishi 2nd diagram electrification equipment 3rd diagram 4th diagram 4th diagram 5th diagram denjin
Claims (3)
ネトロンを有し、陰極となる前記ターゲットと陽極間に
生ずる電界に直交する磁界を発生せしめるための電磁石
をターゲット裏面に内蔵し、前記電磁石に周期的に変化
する所定の駆動電流波形を印加することによって、マグ
ネトロン放電状態に必要な前記の直交する磁界を、異な
る複数個のターゲット上に独立に発生させるようにした
スパッタリング成膜装置。(1) It has a magnetron having at least two or more targets, and an electromagnet is built into the back surface of the target for generating a magnetic field orthogonal to the electric field generated between the target, which serves as a cathode, and an anode. A sputtering film forming apparatus that independently generates the orthogonal magnetic fields necessary for a magnetron discharge state on a plurality of different targets by applying a predetermined drive current waveform that changes.
トロン放電状態とならない所定の波形を持つ駆動電流波
形を与えることのできる特許請求の範囲第1項に記載の
スパッタリング成膜装置。(2) The sputtering film forming apparatus according to claim 1, which is capable of providing a drive current waveform having a predetermined waveform that prevents at least two targets from being in a magnetron discharge state at the same time.
発生機構のひとつは、電磁石を用い、電磁石の駆動電流
に、周期的に変化する所定の電流波形を用い、電磁石の
強さを周期的に変えることにより、マグネトロン放電状
態をオンオフすることのできる特許請求範囲第1項に記
載のスパッタリング成膜装置。(3) It has at least two magnetic poles, and one of the magnetic field generation mechanisms uses an electromagnet, and uses a predetermined current waveform that changes periodically for the drive current of the electromagnet, and periodically changes the strength of the electromagnet. The sputtering film forming apparatus according to claim 1, wherein the magnetron discharge state can be turned on and off by changing the state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2080486A JPS62179115A (en) | 1986-01-31 | 1986-01-31 | Filming device by sputtering process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2080486A JPS62179115A (en) | 1986-01-31 | 1986-01-31 | Filming device by sputtering process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62179115A true JPS62179115A (en) | 1987-08-06 |
Family
ID=12037229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2080486A Pending JPS62179115A (en) | 1986-01-31 | 1986-01-31 | Filming device by sputtering process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62179115A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63157867A (en) * | 1986-08-06 | 1988-06-30 | Ube Ind Ltd | Method and apparatus for magnetron sputtering with controlled plasma |
JPH01268869A (en) * | 1988-04-20 | 1989-10-26 | Fuji Photo Film Co Ltd | Sputtering device |
JPH01289140A (en) * | 1988-05-16 | 1989-11-21 | Nippon Telegr & Teleph Corp <Ntt> | Wiring layer and manufacture thereof and wiring layer forming device |
US5558751A (en) * | 1994-04-20 | 1996-09-24 | Leybold Aktiengesellschaft | Dual cathode sputter coating apparatus |
US6461484B2 (en) * | 2000-09-13 | 2002-10-08 | Anelva Corporation | Sputtering device |
US20210404053A1 (en) * | 2018-08-14 | 2021-12-30 | Viavi Solutions Inc. | Argon-helium based coating |
-
1986
- 1986-01-31 JP JP2080486A patent/JPS62179115A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63157867A (en) * | 1986-08-06 | 1988-06-30 | Ube Ind Ltd | Method and apparatus for magnetron sputtering with controlled plasma |
JPH01268869A (en) * | 1988-04-20 | 1989-10-26 | Fuji Photo Film Co Ltd | Sputtering device |
US4956070A (en) * | 1988-04-20 | 1990-09-11 | Fuji Photo Film Co., Ltd. | Sputtering apparatus |
JPH01289140A (en) * | 1988-05-16 | 1989-11-21 | Nippon Telegr & Teleph Corp <Ntt> | Wiring layer and manufacture thereof and wiring layer forming device |
US5558751A (en) * | 1994-04-20 | 1996-09-24 | Leybold Aktiengesellschaft | Dual cathode sputter coating apparatus |
US6461484B2 (en) * | 2000-09-13 | 2002-10-08 | Anelva Corporation | Sputtering device |
US20210404053A1 (en) * | 2018-08-14 | 2021-12-30 | Viavi Solutions Inc. | Argon-helium based coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4208970B2 (en) | Continuous deposition of insulating materials using multiple anodes with alternating positive and negative voltages | |
US4971674A (en) | Magnetron sputtering method and apparatus | |
US9771648B2 (en) | Method of ionized physical vapor deposition sputter coating high aspect-ratio structures | |
EP1690279B1 (en) | Plasma source with segmented magnetron cathode | |
US8262869B2 (en) | Work piece processing by pulsed electric discharges in solid-gas plasma | |
US6143140A (en) | Method and apparatus to improve the side wall and bottom coverage in IMP process by using magnetic field | |
US5616225A (en) | Use of multiple anodes in a magnetron for improving the uniformity of its plasma | |
US20050056535A1 (en) | Apparatus for low temperature semiconductor fabrication | |
CZ20001853A3 (en) | Apparatus for plasmatic processes | |
US4956070A (en) | Sputtering apparatus | |
Belkind et al. | Pulsed-DC reactive sputtering of dielectrics: pulsing parameter effects | |
JPS62179115A (en) | Filming device by sputtering process | |
KR100480357B1 (en) | Film deposition apparatus having dual magnetron sputtering system and ion beam source which are synchronized | |
US20050056534A1 (en) | Back-biased face target sputtering | |
JPH11158625A (en) | Magnetron sputtering film forming device | |
JPS63227779A (en) | Device for forming film by sputtering | |
JPS63140078A (en) | Film formation by sputtering | |
JPH02185967A (en) | Method and device for bias sputtering | |
JPH0617248A (en) | Sputtering device | |
JPS62207863A (en) | High-speed sputtering device | |
JPS63282262A (en) | Method for controlling sputtering device | |
Tereshin et al. | Thin films deposition with ECR planar plasma source | |
US20060231384A1 (en) | Back-biased face target sputtering | |
JPH05271924A (en) | Simultaneous formation of films by sputtering on plural substrates and device therefor and system for simultaneously forming films on plural substrates | |
JPH06330303A (en) | Device for forming thin film |