JPS62178743A - Control device for intake air quantity to engine - Google Patents
Control device for intake air quantity to engineInfo
- Publication number
- JPS62178743A JPS62178743A JP1898886A JP1898886A JPS62178743A JP S62178743 A JPS62178743 A JP S62178743A JP 1898886 A JP1898886 A JP 1898886A JP 1898886 A JP1898886 A JP 1898886A JP S62178743 A JPS62178743 A JP S62178743A
- Authority
- JP
- Japan
- Prior art keywords
- intake air
- bypass
- engine
- amount
- increase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007423 decrease Effects 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 description 16
- 230000007704 transition Effects 0.000 description 13
- 239000007789 gas Substances 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009191 jumping Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はエンジンの吸入空気量制御装置に関し、特に、
スロットル弁を迂回するバイパス吸気量を調整する機構
を備え、減速運転時には上記バイパス吸気を供給してダ
ッシュポット機能を付加するものの改良に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine intake air amount control device, and in particular,
The present invention relates to an improvement in a device that is equipped with a mechanism that adjusts the amount of bypass intake air that bypasses a throttle valve, and that supplies the above-mentioned bypass intake air during deceleration operation to add a dashpot function.
(従来の技術)
従来より、この種のエンジンの吸入空気量制御装置とし
て、例えば特開昭55−98629号公報に開示される
ように、エンジンの吸気通路のスロットル弁を迂回する
バイパス通路を設けるとともに、該バイパス通路の通路
面積を大小調整する開度可変の制御弁を設け、アイドル
運転時には、1−リ開弁の開度調整によりバイパス通路
のバイパス吸気量を制御して、アイドル回転数を目標値
に収巾させるとともに、減速運転時には、制御弁の開度
をエンジン回転数の低下に応じて減少制御してバーでパ
ス吸気ffkを漸次低減することにより、吸入空気量の
早急な減少を緩衝してダッシュポット機能を(=I加し
、エンストを有効に防止するとともに、アイドル回転数
の目標値への収束性の向上を図り、j、た減速運転時で
め有害ガスの生成を抑えてエミッション性の向上を図る
ようにしたものが知られている。(Prior Art) Conventionally, as an intake air amount control device for this type of engine, a bypass passage that bypasses a throttle valve in the intake passage of the engine is provided, for example, as disclosed in Japanese Patent Laid-Open No. 55-98629. At the same time, a control valve with a variable opening degree is provided to adjust the passage area of the bypass passage, and during idling operation, the amount of bypass intake air in the bypass passage is controlled by adjusting the opening degree of the 1-li valve, thereby controlling the idle rotation speed. In addition to converging to the target value, during deceleration operation, the opening degree of the control valve is controlled to decrease according to the decrease in engine speed, and the pass intake air ffk is gradually reduced with a bar, so that the intake air amount can be quickly reduced. Adds a buffer and dashpot function (=I) to effectively prevent engine stalling, improve convergence of idle speed to the target value, and suppress the generation of harmful gases during deceleration operation. There are known devices designed to improve emission performance.
(発明が解決しようとする問題点)
ところで、上記の如く減速運転時にダッシュボッ1へ(
幾重を付jJIする場合には、アイドル運転から非アイ
ドル運転への移行後にMi制御弁の開度を予め所定開偵
に拡大しておく必要があり、その後にアイドル運転)こ
移行した時には制御弁の開度を減少制御してバイパス吸
気量を漸次減少させることが行われる。(Problem to be solved by the invention) By the way, as mentioned above, when driving at deceleration, the
In the case of multiple JI, it is necessary to expand the opening degree of the Mi control valve to a predetermined opening after the transition from idling operation to non-idling operation, and then when the idling operation transitions, the control valve The bypass intake air amount is gradually reduced by controlling the opening degree of the bypass airflow to be reduced.
しかるに、その場合、制御弁の開度を所定開噴に拡大す
べく、例えばアイドル運転から非アイドル運転への移行
後に制御弁の開度を設定増加率で一率に拡大するときに
は、次の如き弊害が生じる。However, in that case, in order to increase the opening degree of the control valve to a predetermined injection opening, for example, when the opening degree of the control valve is increased at a set increase rate after the transition from idling operation to non-idling operation, the following method is used. Harmful effects will occur.
?lなわち、非アイドル運転への移行後は、スロットル
開鎖の増大に伴い吸入空気量が次第に増大する関係上、
非アイドル運転への移行後の相当時間経過時には、吸入
空気量が多くて、バイパス吸気量の増大が運転性にさほ
ど影響を与えず問題はないものの、非アイドル運転への
移行直後では吸入空気量の少ない状況であって、バイパ
ス吸気量の増大は人さく影響し、このためエンジン出力
が古文に増大しτ車両が運11八者の意志に対応せずに
飛び出す状況となり、運転性が低下する欠点が生じる。? In other words, after the transition to non-idling operation, the amount of intake air gradually increases as the throttle opening increases.
When a considerable amount of time has passed after transitioning to non-idling operation, the amount of intake air is large and the increase in bypass intake air amount does not have much of an effect on drivability and is not a problem, but immediately after transitioning to non-idling operation, the amount of intake air is large. In situations where there is little air flow, an increase in the amount of bypass intake air has a negative effect on the engine, and as a result, the engine output increases dramatically, resulting in a situation where the vehicle jumps out without responding to the will of the driver, and drivability decreases. A drawback arises.
また、設定増加率を小さくすると、減速運転までの11
11間が)、0い場合には初期バイパス吸気量が少量に
なってしまう。Also, if the set increase rate is made smaller, 11
11) or 0, the initial bypass intake air amount will be small.
本ツで明は所かる点に鑑みてなされたものであり、その
[]的は、減速運転時にダッシュボッ1〜機能を付IJ
11する場合、制御弁の初期開度、つまり初期バイパス
吸気量への増大制御時には、バイパス吸気量の増電率を
変化させ、非アイドル運転への移行0後では小さな増量
*でもってバイパス吸気量を徐々に増大させることによ
り、エンジン出力の増大をスムーズに行わせて、非アイ
ドル運転移行直後での車両の飛び出しを有効に防止し、
よって運転性の向上を図ることにある。Honestly, this was done in consideration of certain points, and the purpose is to install the dash board 1 to IJ with functions when driving at deceleration.
11, when increasing the initial opening of the control valve, that is, the initial bypass intake amount, the increase rate of the bypass intake amount is changed, and after the transition to non-idling operation 0, the bypass intake amount is increased by a small increase*. By gradually increasing the engine output, the engine output is increased smoothly, effectively preventing the vehicle from jumping out immediately after transitioning to non-idling operation,
Therefore, the objective is to improve drivability.
(問題点をy決するIζめの手段)
上記の目的を達成するため、本発明の解決手段は、吸気
通路に設けられたスロットル弁をバーイパスし、該スロ
ットル弁下流に吸気を供給するバイパス通路と、該バイ
パス通路より上記スロットル弁下流に供給されるバイパ
ス吸気mを制御する制御弁とを備えることを前提とし、
これに対し、減速運転時にバイパス吸気量を所定の値か
ら徐々に減じるよう上記制御弁を制御するとともに、非
アイドル運転時にバイパス吸気量を一ヒ記所定の1直に
するように吸入空気量に応じてL2制開弁を吸入空気量
が多いほどバイパス吸気mの増m率が大となるよう制御
する制御手段を1紬える構成としたちのである。(Means for resolving the problem) In order to achieve the above object, the solution of the present invention provides a bypass passage that bypasses the throttle valve provided in the intake passage and supplies intake air downstream of the throttle valve. , and a control valve that controls bypass intake air m supplied downstream of the throttle valve from the bypass passage,
In response to this, the control valve is controlled so that the bypass intake air amount is gradually reduced from a predetermined value during deceleration operation, and the intake air amount is adjusted so that the bypass intake air amount becomes a predetermined 1st shift during non-idling operation. Accordingly, one control means is provided for controlling the L2 control valve so that the larger the amount of intake air, the greater the rate of increase in bypass intake air m.
(作用)
上記の構成により、本発明では、減速運転に先立ち、予
め運転状態がアイドル運転から非アイドル運転に移行し
た時には、制御手段により制御弁が作動制御されて、バ
イパス通路を流通するバイパス吸気量の増大率が吸入空
気R1の増大に応じて順次増大するので、吸入空気量の
少ない非アイドル運転域への移行直後では、バイパス吸
気mは極めて少量になって、その吸入空気量に対する割
合(寄与団)が小さくなる。その結果、この非アイドル
運転域への移行直後でもエンジン出力はスムーズに増大
して、重両は古文に飛出すことなくスムーズに加速する
ことになる。(Function) With the above configuration, in the present invention, when the operating state shifts from idling to non-idling operation prior to deceleration operation, the control valve is actuated by the control means, and the bypass intake air flowing through the bypass passage is controlled. The rate of increase in the amount increases sequentially in accordance with the increase in the intake air R1, so immediately after transition to the non-idling operating range where the amount of intake air is small, the amount of bypass intake air m becomes extremely small, and its ratio to the amount of intake air ( Contributing group) becomes smaller. As a result, the engine output increases smoothly even immediately after the transition to this non-idling operating range, and the heavy vehicle accelerates smoothly without jumping out of the way.
(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
第1図において、1はエンジン、2は該エンジン1のシ
リンダ3に嵌挿されたピストン4により容積可変に形成
される燃焼室、5は一端がエアクリーナ6を介して大気
に連通し、他端が燃焼室2に間口して吸気をエンジン1
に供給するための吸気通路、7は一端が燃焼室2に開口
し、他端が大気に解放されて排気を排出するための排気
通路であって、上記吸気通路5の途中には、吸入空気量
を制御するスロットル弁8と、該スロットル弁8下流の
燃焼室2近傍に燃料を噴口・j供給する燃料噴射弁9と
が配設されているとともに、吸気通路5の燃焼室2への
開口部には吸気弁10が配設されている。また上記燃料
噴射弁9は燃料ポンプ11を介設した燃料供給通路12
を介して燃料を貯溜する燃料タンク13に連通接続され
ているっ一方、排気通路7の燃焼室2への開口部には排
気弁15が配設されているとともに、該排気通!f17
の途中には、IJI’気ガスを浄化する触a!装置16
と、その下流で排気音を低減するサイレンサー17とが
介設されている。In FIG. 1, 1 is an engine, 2 is a combustion chamber whose volume is variable by a piston 4 fitted into a cylinder 3 of the engine 1, 5 has one end communicating with the atmosphere via an air cleaner 6, and the other end. opens into combustion chamber 2 and directs intake air to engine 1
7 is an exhaust passage whose one end opens into the combustion chamber 2 and whose other end is open to the atmosphere to discharge exhaust gas. A throttle valve 8 for controlling the amount of fuel, and a fuel injection valve 9 for supplying fuel to the combustion chamber 2 downstream of the throttle valve 8 are arranged. An intake valve 10 is disposed in the section. Further, the fuel injection valve 9 has a fuel supply passage 12 with a fuel pump 11 interposed therebetween.
The exhaust passage 7 is connected to a fuel tank 13 that stores fuel through the combustion chamber 2, and an exhaust valve 15 is disposed at the opening of the exhaust passage 7 to the combustion chamber 2. f17
On the way, there is a touch a to purify the IJI' gas! device 16
A silencer 17 is provided downstream of the silencer 17 to reduce exhaust noise.
まl;、上記燃焼室2の頂部には、燃焼室2内の混合気
に点火する点火プラグ20が配設されていて、該点火プ
ラグ20には、該点火プラグ20に高電圧を配電し且つ
クランク角センサとして機能する配電器21が電気的に
接続されているとともに、該配電器21には、上記点火
プラグ20の点火時期を進角、遅角調整する点火時期制
御装置22と、高電圧を発生するイグニッションコイル
23とが各々接続されている。A spark plug 20 for igniting the air-fuel mixture in the combustion chamber 2 is disposed at the top of the combustion chamber 2, and a high voltage is distributed to the spark plug 20. A power distribution device 21 functioning as a crank angle sensor is electrically connected to the power distribution device 21, and an ignition timing control device 22 that advances or retards the ignition timing of the spark plug 20; Each is connected to an ignition coil 23 that generates voltage.
さらに、エンジン1のアイドル回転数を設定値に調整保
持すへく、上記吸気通路5には、スロットル弁8および
その下流に位置するサージタンク25をバイパスするバ
イパス通路26が接続され、該バイパス通路26の途中
には、その通路面積を可変調整する制御弁27か配設さ
れていて、該制Hif 27によるバイパス通路26の
通路面f?jの大小調整により、該バイパス通路26を
経てスロットルti8下流に供給されるバイパス吸気量
を増減調整するように構成されている。Further, in order to adjust and maintain the idle speed of the engine 1 at a set value, a bypass passage 26 is connected to the intake passage 5, which bypasses the throttle valve 8 and a surge tank 25 located downstream thereof. A control valve 27 for variably adjusting the passage area is disposed in the middle of the bypass passage 26, and the passage surface f? By adjusting the magnitude of j, the amount of bypass intake air supplied downstream of the throttle ti8 via the bypass passage 26 is increased or decreased.
IIIえC1吸気通路5のサージタンク25には、エミ
ッション性能の向上を図るべく、排気ガスの一部を吸気
系に)■流する排気ガス;!流通路30が連通接続され
、該排気ガス還体通路30の途中には、排気ガス還流を
許容又は阻止づる排気ガス還流制御弁31が配設されて
いるとともに、排気通′t87の触媒装置16上流には
、排気ガス浄化性11ヒの向上を図るべく、排気通路7
内に二次空気を導入する二次空気導入装置32の二次空
気導入通路33が開口している。また、上記燃料タンク
13には、そのM元燃料を蓄えるキャニスタ34が連通
接続され、この蓄えられた蒸発燃料はパージバルブ35
を介設した蒸発燃料供給通路36を介して吸気通路5の
サージタンク25に供給される。In order to improve emission performance, part of the exhaust gas is allowed to flow into the surge tank 25 of the C1 intake passage 5 into the intake system. A flow path 30 is connected to the exhaust gas recirculation passage 30, and an exhaust gas recirculation control valve 31 for allowing or blocking exhaust gas recirculation is disposed in the middle of the exhaust gas recirculation passage 30. Upstream, an exhaust passage 7 is installed in order to improve exhaust gas purification performance.
A secondary air introduction passage 33 of a secondary air introduction device 32 that introduces secondary air into the interior is open. Further, a canister 34 for storing the M source fuel is connected to the fuel tank 13, and the stored evaporative fuel is transferred to the purge valve 35.
The evaporated fuel is supplied to the surge tank 25 of the intake passage 5 via the evaporated fuel supply passage 36 with the evaporated fuel interposed therebetween.
尚、図中、37は吸気通路5のスロットル弁8下流に大
気を導入する大気導入弁、38はAルタネータ、3つは
車載バッテリである。In the figure, numeral 37 is an air introduction valve that introduces the air into the intake passage 5 downstream of the throttle valve 8, numeral 38 is an A alternator, and numeral 3 is an on-vehicle battery.
また、吸気通路5内には、上流から順に、吸気温度を検
出する吸気温度センサ40と、バイパス通路26の接続
部上流側で吸入空気量を検出するエア70−メータ41
と、スロットル開成を検出するスロットル開度センサ4
2とが配設されているとともに、排気通路7内には触l
!!it装置16−L流側で排気ガス中の酸素+9i1
麿により空燃比を検出する空燃比センサ43が配設さ
れ、またエンジン1にはエンジン冷却水温を検出する水
温センサ44が取付けられていて、該各センサ40〜4
4および上記配電器21の出力信号は、上記バイパス吸
気洛制卯用の制御弁27をfltlJ御するコントロー
ラ45に入力されている。Further, in the intake passage 5, in order from upstream, there is an intake air temperature sensor 40 that detects the intake air temperature, and an air meter 41 that detects the intake air amount on the upstream side of the connection part of the bypass passage 26.
and a throttle opening sensor 4 that detects throttle opening.
2 is arranged, and there is no contact in the exhaust passage 7.
! ! Oxygen in the exhaust gas +9i1 on the IT device 16-L flow side
An air-fuel ratio sensor 43 for detecting the air-fuel ratio is installed in the engine 1, and a water temperature sensor 44 for detecting the engine cooling water temperature is attached to the engine 1.
4 and the output signal of the power distributor 21 are input to a controller 45 that controls the bypass intake lock control valve 27.
上記コントローラ45の内部には、第2図に示ずように
、上記配電器21およびエアフローメーク41の各出力
信号を受け、エンジン回転数と吸入空気量とに応じて減
速運転時当初のバイパス通路26の初期バイパス吸気量
Qpを演暮する初期バイパス吸気邑演稈回路50と、該
初期バイパス吸気ffi演算回路50の初期バイパス吸
気Fa Q pから逐次減量補正室(減量率) Qo
@滅葬して減速運転中のバイパス吸気m Q Mを演咋
するバイパス吸気量@算回路51と、該バイパス吸気喰
演惇回路51のバイパス吸気mQMを目標11αとして
バイパス通路26の実際のバイパス吸気量を減量すべく
制御弁27を駆動制御する駆動回路52とが備えられて
いるとともに、スロットル間度ヒンサ42からのスロッ
トル開度信号に基づいてエンジン運転状態が非アイドル
運転域にあることを検出する非アイドル運転域検出回路
53と、該非アイドル運転域検出回路53により非アイ
ドル運転域への移行が検出された後にバイパス吸気量の
増量率(増徴補正量)Q+をエアフローメータ41の吸
入空気量信号に応じて鋒出し、該増量率Q+を上記駆動
回路52に出力J″る増量率算出回路54とが(lil
iλられている。As shown in FIG. 2, inside the controller 45, a bypass passage is provided which receives each output signal from the power distributor 21 and the air flow make 41, and which is set to a bypass path at the time of deceleration operation according to the engine speed and intake air amount. The initial bypass intake area calculation circuit 50 calculates the initial bypass intake air amount Qp of 26, and the initial bypass intake air Fa Q p of the initial bypass intake ffi calculation circuit 50 is sequentially converted into a reduction correction chamber (reduction rate) Qo.
Bypass intake air amount calculation circuit 51 that calculates the bypass intake air mQM during deceleration operation, and the actual bypass of the bypass passage 26 with the bypass intake air mQM of the bypass intake calculation circuit 51 as the target 11α. A drive circuit 52 is provided to drive and control the control valve 27 to reduce the amount of intake air, and also detects that the engine operating state is in a non-idling operating range based on the throttle opening signal from the throttle angle hinger 42. The non-idle operating range detection circuit 53 detects, and after the non-idling operating range detection circuit 53 detects the transition to the non-idling operating range, the bypass intake air amount increase rate (additional correction amount) Q+ is detected by the intake air flow meter 41. An increase rate calculation circuit 54 operates according to the air amount signal and outputs the increase rate Q+ to the drive circuit 52.
iλ has been applied.
次に、上記コントローラ45の作動を第3図のフローチ
t・−トに基づいて説明するに、スタートして、先ずス
テップ$1で配電器21からのエンジン回転数18号、
■アフローメータ41からの吸入空気FfA Q A信
号およびスロットル開度センサ42h目らのスロットル
開度信号を各々読込んだのら、ステップS2でスロット
ル開度によりエンジン運転状態を判別し、スロットル開
度が仝閉でないNOの非アイドル運転域にある場合には
、ステップS3以陪で予め減速運転に備えてバイパス通
路2.6のバイパス吸気IQMを初期バイパス吸気IQ
Pに初期設定Jる。Next, the operation of the controller 45 will be explained based on the flowchart of FIG.
■After reading the intake air FfA Q A signal from the aflow meter 41 and the throttle opening signal from the throttle opening sensor 42h, the engine operating state is determined based on the throttle opening in step S2, and the throttle opening is determined. If the engine speed is in the non-idle operating range of NO that is not closed, the bypass intake IQM of the bypass passage 2.6 is adjusted to the initial bypass intake IQ in advance in preparation for deceleration operation from step S3 onwards.
Initialize to P.
すなわち、ステップS3で吸入空気mQ八とエンジン回
転数とに基づき初期バイパス吸気(5)Qpを締出した
のち、ステップ$4で吸入空気m Q Aに任意の定数
K(ただしO<K<1)を乗i(QへXK)してバイパ
ス吸気ffk Q Mの増1h串QIを算出する。しか
る後、ステップS5でバイパス吸気P Q Mに増量率
Q+を加障して、ステップS6ぐこの暫定バイパス吸気
1ft Q Mを初期バイパス吸気Fn Q pと大小
比較し、QM<QPのYESの場合には、ステップS7
でこの初期バイパス吸気量Qp未満のバイパス吸気FP
iQ Mを目標値としてバイパス通″t826の実際の
バイパス吸気量を増量制御し℃ステップS1に戻り、再
びステップS4゜S5で現在の吸入空気量QAに応じた
増吊璋+Q+をバイパス吸気1トに加障するのを操返す
。そして、上記ステップS6でバイパス吸気[トが初期
バイパス吸気M Q p以上(Q間≧Qp)のNOにな
ると、ステップ$8でバイパス吸気m Q Mを初期バ
イパス吸気量Qpに規111II (QM =Qp )
したのら、ステップSアで実際のバイパス吸気11をこ
の初期バイパス吸気量Qpに制御して、ステップS1に
戻るのを繰返す。That is, in step S3, the initial bypass intake air (5) Qp is shut out based on the intake air mQ8 and the engine speed, and then in step S4, the intake air mQA is set to an arbitrary constant K (however, O<K<1 ) is multiplied by i (XK to Q) to calculate the increase in the bypass intake air ffk Q M by 1 h. After that, in step S5, increase rate Q+ is applied to the bypass intake PQM, and in step S6, this provisional bypass intake 1ft QM is compared in magnitude with the initial bypass intake FnQp, and if YES, QM<QP. In step S7
Bypass intake FP less than this initial bypass intake air amount Qp
The actual bypass intake air amount of the bypass flow t826 is controlled to increase with iQ M as the target value, and the process returns to step S1, and again in steps S4 and S5, the increase +Q+ corresponding to the current intake air amount QA is increased by one bypass intake air amount. Then, in step S6 above, when the bypass intake [g] becomes NO, which is equal to or greater than the initial bypass intake M 111II based on the intake air amount Qp (QM = Qp)
Then, in step SA, the actual bypass intake air 11 is controlled to this initial bypass intake air amount Qp, and the process of returning to step S1 is repeated.
その後、上記ステップS2でスロワ1〜ル弁開僚が全閉
状態になったYESの減速運転時には、ステップS9以
陪でバイパス吸気量を経時的に減少Ril制御し、アイ
ドル運転域に移行した段階でアイドル回転数の目標1直
に対する保持制御を行う。すなわら、ステップSつでバ
イパス吸気ffiQM′が零1直になったか否かを判別
し、QM≠OのN、Oの場合、つまり減速運転中はステ
ップS 10でバイパス吸気FFiQMから減量率Qo
を減りして、ステップS2で実際のバイパス吸気量をこ
のバイパス吸気m Q Mに減少制御して、ステップS
+に戻るのを繰返し、その侵、ステップSりでバイパス
吸気量Q−が零値になったQM=OのYESの場合には
、アイドル運転域に移行したと判断して、ステップS
uでアイドル回転数を目標1直に保持りべくバイパス通
路26のバイパス吸気量を:Jl整制御して、ステップ
S1に戻る。After that, during the deceleration operation when the throttle valves 1 to 1 are fully closed in step S2 (YES), the bypass intake air amount is controlled to decrease Ril over time in step S9 and thereafter, and the stage is shifted to the idle operation range. Control is performed to maintain the idle speed at the target 1st shift. That is, in step S, it is determined whether the bypass intake air ffiQM' has become zero or straight, and if QM≠O is N, O, that is, during deceleration operation, the reduction rate is determined from the bypass intake air FFiQM in step S10. Qo
In step S2, the actual bypass intake air amount is controlled to decrease to this bypass intake mQM, and in step S2
+ is repeated, and if the bypass intake air amount Q- becomes zero value at step S (YES in QM=O), it is determined that the operation has shifted to the idle operating range, and step S is performed.
At u, the bypass intake air amount of the bypass passage 26 is controlled by :Jl in order to maintain the idle speed at the target 1st shift, and the process returns to step S1.
よって、上記第3図の作動フローにおいて、ステップS
10.S7.Sl〜SLI、S2により、減速運転時に
バイパス吸気量を所定の値Qpから減H)率Qr)で徐
々に減じるよう制御片27をIJ制御ザるとともに、非
アイドル運転時にバイパス吸気はを−1:記所定のli
l’lQpにするよう吸入空気ffi Q Aに応じて
1lil+御弁27を、吸入空気量QAが多いほどバイ
パス吸気量QMの増ffi$Q +が大となるよう制御
するflill罪手段55を構成している。Therefore, in the operation flow shown in FIG. 3 above, step S
10. S7. Through S1 to SLI and S2, the control piece 27 is controlled by IJ so that the bypass intake air amount is gradually reduced from a predetermined value Qp at a reduction rate Qr) during deceleration operation, and the bypass intake air is -1 during non-idling operation. :Specified li
A fill control means 55 is configured to control the 1li+ control valve 27 according to the intake air ffiQA so that the intake air amount QM becomes l'lQp, and the increase ffi$Q+ of the bypass intake air amount QM becomes larger as the intake air amount QA increases. are doing.
したがって、上記実施例においては、減速運転時にダ・
ノシュボット)幾重を付加する場合、予めエンジン運転
状態がアイドル運転域から非アイドル運転域に移行した
直後から、バイパス通路26のバイパス吸気1トが初期
バイパス吸気ffkQpに向って増闇調整される。Therefore, in the above embodiment, the da
When adding several layers, the bypass intake air in the bypass passage 26 is darkened and adjusted to the initial bypass intake air ffkQp immediately after the engine operating state shifts from the idle operating range to the non-idle operating range.
その場合、第4図(イ)に示す如く、スロットル開成V
工+が全開から所定開度VTI−1oに拡開するのに伴
い、スロットル弁8を介する吸入空気量Qが同図(ロ)
に示す如く増大して上記所定スロットル開度Vv+oに
対応する所定吸気M Q +)に収束することから、上
記バイパス通路26を流通するバイパス吸気量の!1爵
率Q+は式 Q+=QAXKに塁づいて、全吸入空気f
jtQA (つまりスロットル弁8を介する吸入空気量
Qとバイパス通路2Gのバイパス吸気量QMとの合81
(直)の増大変化に応じて同図(ニ)に示す如く変化す
る。In that case, as shown in FIG. 4(a), the throttle opening V
As the engine + expands from fully open to the predetermined opening VTI-1o, the amount of intake air Q through the throttle valve 8 increases as shown in the figure (b).
The amount of bypass intake air flowing through the bypass passage 26 increases as shown in and converges to the predetermined intake air M Q +) corresponding to the predetermined throttle opening degree Vv+o. The first rate Q+ is based on the formula Q+=QAXK, and the total intake air f
jtQA (that is, the sum of the intake air amount Q via the throttle valve 8 and the bypass intake air amount QM in the bypass passage 2G) 81
(D) changes as shown in FIG.
つまり、増量率Qrは非アイドル域への移行直後、つま
り吸気量の増大過渡時には零値から漸次増大し、その後
、吸気量が斎倉した以後はほぼ所定値Q+oになり、従
来の如(増m率Q+を常に所定fItlQ+aに保持す
る場合(同図(ハ)に一点鎖線で示す)に比べて、吸気
量の増大過渡時において小さい。このため、バイパス通
路26のバイパス吸気量は同図(ハ)に示す如く、吸気
mの増大過渡時には漸次増大するしのり、同図に一点鎖
線で示す増量率一定の場合に較べて少なくなって、全吸
入空気m Q Aは同図(ホ)に示す如くスムーズに増
大し、非アイドル運転域への移行直後でのバイパス吸気
ffl Q Mの全吸入空気量OAに対する影響、つま
り寄与度が小さくなる。その結果、エンジン出力は非ア
イドル域への移行直後でも古文に増大することなく、そ
の増大が徐々に且つスムーズに行われて、運転者の意志
に対応しない重両の飛び出しが有効に抑制され、よって
非アイドル運転域への移行直後での運転性が向上する。In other words, the increase rate Qr gradually increases from zero immediately after the transition to the non-idle region, that is, when the intake air amount is increasing transiently, and after that, after the intake air amount has reached its maximum level, it becomes approximately the predetermined value Q + o, and the increase rate Compared to the case where the m-rate Q+ is always maintained at a predetermined value fItlQ+a (shown by the dashed line in FIG. As shown in (c), during the transient increase in intake air m, the gradual increase is smaller than when the rate of increase is constant, as shown by the dashed line in the same figure, and the total intake air m Q A is as shown in (e) in the same figure. As shown, the influence of the bypass intake air ffl Q M on the total intake air amount OA immediately after the transition to the non-idling operating range, that is, the contribution, becomes small.As a result, the engine output changes to the non-idling operating range. Even immediately after the transition to the non-idling operating range, the increase is gradual and smooth without increasing dramatically, effectively suppressing the jump of the heavy vehicle that does not correspond to the driver's will, and therefore the operation immediately after the transition to the non-idling operating range. Improves sex.
また、非アイドル運転域への移行時、スロットル開喰が
大きく拡開したときには、吸入空気ΦQの顕著な増大に
伴い増量率Q+が短時間で大きくなることから、初期バ
イパス吸気HA Q pへの増量補正が短時間で終了し
て、次の減速運転に対する準備が早期に完了するので、
次の減速運転が早期に到来した場合にも、これに良好に
対応してダッシュポット機能を確実に付与することがで
きる。In addition, when the throttle opening widens greatly during the transition to the non-idling operating range, the increase rate Q+ increases in a short period of time due to a significant increase in intake air ΦQ. Since the increase correction is completed in a short time and preparations for the next deceleration operation are completed quickly,
Even when the next deceleration operation arrives early, the dashpot function can be reliably provided in response to this.
尚、上記実施例では、バイパス吸気!lの増M =rQ
!を仝吸入空気量〇Aの増大に応じて逐次増大設定した
が、その他、スロットル弁8をfrする吸入空気量に応
じて、又は全吸入空気量QAの変化率等に応じて増大設
定してもよく、要は吸入空気量が多いほどバイパス吸気
量の増量率Q1を大きくすればよい。In addition, in the above embodiment, bypass intake! Increase in l = rQ
! is set to increase sequentially according to the increase in the intake air amount 〇A, but it can also be set to increase according to the intake air amount that turns the throttle valve 8 fr, or according to the rate of change in the total intake air amount QA, etc. In other words, the larger the amount of intake air, the larger the increase rate Q1 of the bypass intake air amount.
また、上記実施例では、アイドル調整を行うものに対し
て適用したが、本発明はアイドル、、IIJuの要、不
要とは無関係であり、要は減速運転時にダッシュポット
機能を付加するものであれば適用できるのは勿論のこと
、燃料噴射式エンジンに限らず、気化器式エンジンに対
しても同様に適用できる。Further, in the above embodiment, the invention is applied to a device that performs idle adjustment, but the present invention has nothing to do with whether or not idle adjustment is necessary. Of course, the present invention is applicable not only to fuel injection type engines but also to carburetor type engines.
(発明の効果)
以上説明したように、本発明のエンジンの吸入空気量制
御装置によれば、減速運転時にダッシュポット機能を付
加する場合、予めバイパス通路のバイパス吸気量を初期
値にまで増量補正するときには、吸入空気量の少ない状
態時において、その増量率を小さく設定して、吸入空気
量に対するバイパス吸気量の寄与洩を小さく制限したの
で、この状態時でのエンジン出力の古文な増大を抑制し
て、車両の一時的な飛出しを有効に防止でき、運転性の
向−Fを図ることができる。(Effects of the Invention) As explained above, according to the engine intake air amount control device of the present invention, when adding the dashpot function during deceleration operation, the bypass intake air amount in the bypass passage is adjusted to increase in advance to the initial value. In this case, when the intake air amount is low, the increase rate is set small to limit the leakage contribution of the bypass intake air amount to the intake air amount, thereby suppressing the traditional increase in engine output in this condition. As a result, temporary jumping of the vehicle can be effectively prevented, and drivability can be improved.
図面は本発明の*線側を示し、第1図は全体概略構成図
、第2図はコントローラの内部構成を示1ブロック図、
第3図はコントローラの作動を示すフローヂャート図、
第4図(イ)〜(ホ)は年初説明図である。
1・・・エンジン、5・・・吸気通路、8・・・スロッ
トル弁、26・・・バイパス通路、27−・・制御弁、
41・・・エアフローメータ、42・・・スロットル開
度センナ、45・・・コントローラ、50・・・初期バ
イパス吸気量演弁回路、51・・・バイパス吸気量演算
回路、53・・・非アイドル運転域検出回路、54・・
・増量率算°出回路、55・・・制御手段。The drawings show the * line side of the present invention, Fig. 1 is an overall schematic configuration diagram, Fig. 2 is a block diagram showing the internal configuration of the controller,
Figure 3 is a flowchart showing the operation of the controller;
Figures 4 (a) to (e) are explanatory diagrams for the beginning of the year. DESCRIPTION OF SYMBOLS 1... Engine, 5... Intake passage, 8... Throttle valve, 26... Bypass passage, 27-... Control valve,
41...Air flow meter, 42...Throttle opening degree sensor, 45...Controller, 50...Initial bypass intake air amount calculation circuit, 51...Bypass intake air amount calculation circuit, 53...Non-idle Operating range detection circuit, 54...
- Increase rate calculation circuit, 55...control means.
Claims (1)
、該スロットル弁下流に吸気を供給するバイパス通路と
、該バイパス通路より上記スロットル弁下流に供給され
るバイパス吸気量を制御する制御弁と、減速運転時にバ
イパス吸気量を所定の値から徐々に減じるよう上記制御
弁を制御するとともに、非アイドル運転時にバイパス吸
気量を上記所定の値にするように吸入空気量に応じて上
記制御弁を吸入空気量が多いほどバイパス吸気量の増量
率が大となるよう制御する制御手段とを備えたことを特
徴とするエンジンの吸入空気量制御装置。(1) a bypass passage that bypasses a throttle valve provided in the intake passage and supplies intake air downstream of the throttle valve; and a control valve that controls the amount of bypass intake air supplied downstream of the throttle valve from the bypass passage; The control valve is controlled to gradually reduce the bypass intake air amount from a predetermined value during deceleration operation, and the control valve is controlled according to the intake air amount so that the bypass intake air amount is set to the predetermined value during non-idling operation. An intake air amount control device for an engine, comprising: control means for controlling the increasing rate of bypass intake air amount to increase as the amount of air increases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1898886A JPS62178743A (en) | 1986-01-30 | 1986-01-30 | Control device for intake air quantity to engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1898886A JPS62178743A (en) | 1986-01-30 | 1986-01-30 | Control device for intake air quantity to engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62178743A true JPS62178743A (en) | 1987-08-05 |
JPH0262691B2 JPH0262691B2 (en) | 1990-12-26 |
Family
ID=11986961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1898886A Granted JPS62178743A (en) | 1986-01-30 | 1986-01-30 | Control device for intake air quantity to engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62178743A (en) |
-
1986
- 1986-01-30 JP JP1898886A patent/JPS62178743A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0262691B2 (en) | 1990-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4089601B2 (en) | Fuel injection control device for internal combustion engine | |
JPH11210509A (en) | Valve opening/closing characteristic controller for internal combustion engine | |
US6257209B1 (en) | Evaporative fuel processing apparatus for lean-burn internal combustion engine | |
WO2020045486A1 (en) | Vaporized fuel processing device | |
JP6156485B2 (en) | Control device for internal combustion engine | |
WO2019058705A1 (en) | Engine system | |
JP6005543B2 (en) | Control device for supercharged engine | |
JPS62178743A (en) | Control device for intake air quantity to engine | |
JP2004100532A (en) | Purge flow rate control device of internal combustion engine | |
JP2010265751A (en) | Engine air fuel ratio control device | |
JPH06167236A (en) | Trouble detecting device for pressure sensor | |
JP2015169164A (en) | Control device of internal combustion engine | |
JP4160745B2 (en) | Control method for internal combustion engine | |
JPH11182395A (en) | Ignition timing controller of internal combustion engine | |
JP3909621B2 (en) | Engine speed control device | |
JP7580889B2 (en) | Control device for internal combustion engine | |
JP2019173578A (en) | Engine control device | |
JP3937702B2 (en) | Evaporative purge control device for internal combustion engine | |
JP2757199B2 (en) | Knock control device for internal combustion engine | |
JP2023064234A (en) | Control device for internal combustion engine | |
JP2021102952A (en) | Control device of internal combustion engine | |
JP7023129B2 (en) | Internal combustion engine control device | |
JPH11343900A (en) | At start control device | |
JP3269414B2 (en) | Intake air amount control device for internal combustion engine | |
WO2021095250A1 (en) | Method for estimating actual egr rate in egr system, and egr system |