JPS62176981A - Boron nitride-coated crucible - Google Patents
Boron nitride-coated crucibleInfo
- Publication number
- JPS62176981A JPS62176981A JP1874986A JP1874986A JPS62176981A JP S62176981 A JPS62176981 A JP S62176981A JP 1874986 A JP1874986 A JP 1874986A JP 1874986 A JP1874986 A JP 1874986A JP S62176981 A JPS62176981 A JP S62176981A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- layer
- pbn
- intermediate layer
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 45
- 229910052582 BN Inorganic materials 0.000 title claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 18
- 239000010439 graphite Substances 0.000 claims abstract description 18
- 229910052796 boron Inorganic materials 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 3
- 238000005979 thermal decomposition reaction Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 18
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 239000012535 impurity Substances 0.000 abstract description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 abstract description 4
- 238000007789 sealing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 abstract 9
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000009751 slip forming Methods 0.000 abstract 1
- 239000002344 surface layer Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 16
- 239000013078 crystal Substances 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 10
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 238000001947 vapour-phase growth Methods 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は窒化ホウ素で被覆されたルツボに関し特に高純
度半導体単結晶または蒸着用などに用いるルツボの改良
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crucible coated with boron nitride, and particularly to improvements in crucibles used for high-purity semiconductor single crystals or vapor deposition.
近年、半導体業界においては、良品質の半導体製品を製
造するに当たり、半導体材料である珪素、ゲルマニウム
、ヒ化ガリウム(GaAs)等の単結晶に対し、不純物
等の混入しない高純度のものが開発されつつある。In recent years, in the semiconductor industry, in order to manufacture high-quality semiconductor products, high-purity single crystal semiconductor materials such as silicon, germanium, and gallium arsenide (GaAs) have been developed that do not contain impurities. It's coming.
通常、単結晶の製造は引き上げ法によって行われるが、
その時半導体素材を溶融状態となすため、各種セラミッ
ク、貴金属材料等からなるルツボが用いられている。Usually, single crystals are produced by the pulling method,
In order to bring the semiconductor material into a molten state at this time, crucibles made of various ceramics, noble metal materials, etc. are used.
このようなルツボは、それ自体種々の焼結剤が配合され
ており、しかも若干の反応があることから、高純度半導
体単結晶の製造に際し、ルツボ材料が不純物として単結
晶に混入する等の問題が生じている。また、昨今の大型
半導体ウェハー製造工業においては、大容量のルツボを
要するため、ルツボ材料使用量は増大し、また、大容量
の内容物を安全に収容するためにはルツボ材料の強度も
高めなければならない。These crucibles themselves contain various sintering agents, and they also have some reactions, so when producing high-purity semiconductor single crystals, there are problems such as the crucible material getting mixed into the single crystal as impurities. is occurring. In addition, in the recent large semiconductor wafer manufacturing industry, large-capacity crucibles are required, so the amount of crucible material used has increased, and the strength of the crucible material must also be increased in order to safely accommodate large-capacity contents. Must be.
また、蒸着用ルツボあるいはボートにおいてもルツボか
らの不純物の混入は避けられないものであった。Further, contamination of impurities from the crucible into the vapor deposition crucible or boat was unavoidable.
そこで、従来から使用されている石英製、黒鉛製、炭化
珪素製、貴金属製ルツボに変わり最近に至っては窒化ホ
ウ素(BN)特に、熱分解窒化ホウ素(PBN)を気相
反応によって、黒鉛等の基体上に被覆したもの、あるい
はルツボ全体を窒化ホウ素質焼結体から構成したものが
、提案されている。この熱分解窒化ホウ素は、電気絶縁
性、熱伝導性、耐熱衝撃性に優れ、さらに高温下での化
学的安定性、耐酸化性、潤滑性にも優れており、しかも
高純度であることがらルツボに対し最適なものである。Therefore, instead of the conventionally used crucibles made of quartz, graphite, silicon carbide, and precious metals, recently crucibles such as boron nitride (BN), especially pyrolytic boron nitride (PBN), have been used to make graphite, A crucible coated on a substrate or a crucible constructed entirely of a boron nitride sintered body have been proposed. This pyrolytic boron nitride has excellent electrical insulation, thermal conductivity, and thermal shock resistance, as well as excellent chemical stability, oxidation resistance, and lubricity at high temperatures, and is also highly pure. It is optimal for crucibles.
しかしながら、上記のルツボを単結晶製造あるいは蒸着
用として使用しようとすると、PIIN膜へ不純物とし
て不可避的に浸出する幾分かのカーボンが問題となるこ
とと、また黒鉛とPBN膜の間にはほとんど接着性がな
く、そしてPBN膜は膜層に平行の方向の熱膨張係数が
2 X 10−’/ ’Cと負の膨張であることから
黒鉛基体とPBN膜とは熱膨張率が大きく異なるため加
熱−冷却サイクルを受けると、たちまち剥離が生じると
いった問題が生じている。However, when trying to use the above crucible for single crystal production or vapor deposition, there is a problem that some carbon inevitably leaches into the PIIN film as an impurity, and that there is almost no carbon between the graphite and PBN films. There is no adhesive property, and the coefficient of thermal expansion of the PBN film in the direction parallel to the film layer is a negative expansion of 2 x 10-'/'C, so the coefficient of thermal expansion is significantly different between the graphite substrate and the PBN film. A problem has arisen in that peeling occurs quickly when subjected to heating-cooling cycles.
一方ルツボ全体を窒化ホウ素質焼結体で構成する場合、
構造物として一定以上の厚みを必要とし、気相成長等の
手段によって製造する場合、長時間を要し、コストも高
くなるといった問題があった。On the other hand, when the entire crucible is made of boron nitride sintered body,
The structure requires a certain thickness or more, and when manufactured by means such as vapor phase growth, it takes a long time and costs are high.
従って本発明は畝上の問題を解決すべく完成されたもの
であって、その目的は不純物の混入を防止しつつ基体と
窒化ホウ素膜との密着性を向上させることによって、ル
ツボとしての強度を向上させて、加えて低コストの窒化
ホウ素被覆ルツボを提供することにある。Therefore, the present invention was completed in order to solve the problem of ridges, and its purpose is to improve the strength of the crucible by improving the adhesion between the substrate and the boron nitride film while preventing the contamination of impurities. An object of the present invention is to provide a boron nitride coated crucible which is improved and also has a lower cost.
本発明によれば、黒鉛から成るルツボ状成形体基体の表
面にカーボン成分を密閉するためのSi、Bもしくはこ
れらの炭化物から成る第1層と、熱膨張差を緩和させる
ためのランダム配向した窒化ホウ素から成る第2層を介
してPBN層を設けることにより上記目的が達成される
。According to the present invention, a first layer made of Si, B, or a carbide thereof for sealing a carbon component on the surface of a crucible-shaped molded body made of graphite, and a randomly oriented nitrided layer for alleviating the difference in thermal expansion. The above object is achieved by providing a PBN layer via a second layer of boron.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明によれば、ルツボの母材として、低コストで加工
性にすぐれる黒鉛を選択し、最外層としてPBN膜を設
けるに際し第1の中間層としてSi、Bもしくはこれら
の炭化物の少なくとも1種から成る層を設ける。この層
は、公知の気相成長法により形成される。部ち、Stも
しくはBの生成に当たり、気相成長法によれば、Stも
しくはBが活性状態にあり基体成分であるカーボンと反
応を起こし、これらの炭化物であるSiCもしくはB、
Cが生成される。この反応が起こることによって、基体
成分は第1層によって密閉された状態となるため、基体
成分の系外への浸出を防止することができる。According to the present invention, graphite, which is low cost and has excellent workability, is selected as the base material of the crucible, and when providing the PBN film as the outermost layer, Si, B, or at least one of these carbides is used as the first intermediate layer. A layer consisting of This layer is formed by a known vapor phase growth method. In the production of St or B, according to the vapor phase growth method, St or B is in an active state and reacts with carbon, which is a base component, to form SiC or B, which is a carbide of these.
C is generated. When this reaction occurs, the base component is sealed by the first layer, so that the base component can be prevented from leaching out of the system.
次に、上述の第1の中間層の上にランダム配向した窒化
ホウ素から成る第2の中間層を設ける。A second intermediate layer of randomly oriented boron nitride is then provided on the first intermediate layer.
本発明のルツボの最外層であるPBN膜はそれ自体でa
軸方向で約2 Xl0−6/ ”C1C軸方向で約30
XIO−6/ ”Cの熱膨張係数を有するが通常気相成
長法によってPBNを生成させると、およそC軸配向に
ある。従って、黒鉛とPBN膜の膜面に対し平行な方向
への熱膨張係数ではおよそ2倍以上の差が生じている。The PBN film, which is the outermost layer of the crucible of the present invention, has a
Approximately 2 Xl0-6/” C1C approximately 30 in the axial direction
XIO-6/ has a thermal expansion coefficient of C, but when PBN is normally produced by vapor phase growth, it is approximately aligned along the C axis. Therefore, the thermal expansion in the direction parallel to the film plane of graphite and PBN films. There is a difference of more than twice in the coefficients.
本発明において前述の第1Nの形成により、若干この差
は緩和できるが、膜の密着性の点からは不十分である。In the present invention, this difference can be alleviated to some extent by forming the first N, but this is insufficient from the viewpoint of film adhesion.
本発明者等の研究によれば、特にPBNのような異方性
を有する場合、膜自体の熱膨張係数を決定する要因に膜
の配向のランダム性が挙げられることがわかった。According to the research conducted by the present inventors, it has been found that the randomness of the orientation of the film is a factor that determines the coefficient of thermal expansion of the film itself, especially when the film has anisotropy such as PBN.
即ち、PBN膜自体は多結晶により構成されているもの
の各結晶の配向性が不統一である場合、C軸配向、C軸
配向の割合によって熱膨張係数が決定されるものである
。言い換えればそのランダム性を制御することによって
BN膜の熱膨張係数をおよそ2〜30xlO−6/”c
の範囲で制御可能であることをつきとめた。That is, although the PBN film itself is composed of polycrystals, if the orientation of each crystal is inconsistent, the coefficient of thermal expansion is determined by the C-axis orientation and the ratio of the C-axis orientation. In other words, by controlling the randomness, the thermal expansion coefficient of the BN film can be adjusted to approximately 2 to 30xlO-6/"c.
It was found that it is possible to control within the range of .
よって本発明では、第1中間層が形成された黒鉛基体と
PBN膜との間にランダム配向によってそれらの熱膨張
係数の中間的値を示すように制御された窒化ホウ素から
成る第2中間層を設けることが重要である。この第2中
間層の形成することによって、基体からPBN膜までの
熱膨張差が緩和されるために各層間の密着性が向上する
とともにルツボ自体の強度も向上する。Therefore, in the present invention, a second intermediate layer made of boron nitride, which is controlled to exhibit an intermediate value of thermal expansion coefficient by random orientation, is provided between the graphite substrate on which the first intermediate layer is formed and the PBN film. It is important to provide By forming this second intermediate layer, the difference in thermal expansion from the base to the PBN film is alleviated, so that the adhesion between each layer is improved and the strength of the crucible itself is also improved.
本発明におけるルツボの各層の厚みは第1中間層が0.
1乃至20μm、第2中間層が1乃至100μmとし、
PBN膜が10乃至1000μmの範囲で設けるのが膜
強度及びコストの点で望ましい。In the present invention, the thickness of each layer of the crucible is 0.05 mm for the first intermediate layer.
1 to 20 μm, the second intermediate layer is 1 to 100 μm,
From the viewpoint of film strength and cost, it is desirable to provide the PBN film with a thickness in the range of 10 to 1000 μm.
本発明におけるルツボの製造に当たっては前述した通り
、気相成長法を用いる。As mentioned above, the vapor phase growth method is used to manufacture the crucible in the present invention.
最初、第1の中間層の形成に際しては、黒鉛から成るル
ツボ状成形体を反応槽内に配置して800乃至2000
℃の温度に加熱する。そして、該反応槽内にまずS I
II a + S iCl 4 +等のSi含有ガス
もしくはBCI:11BtH6等のB含有ガスと水素か
ら成る混合ガスを導入する。この時、黒鉛基体表面では
、例えばB、 C1:1を導入すると下記式(1)
%式%(1)
の反応が進行し、ホウ素が生成される。さらにこれが基
体成分であるカーボンと、下記式(2)%式%(2)
の反応が進行し、基体の界面には炭化ホウ素(134c
)膜が形成され、さらに時間が経過すると反応(1)に
よるホウ素が過剰となり、ホウ素1りが連続層として形
成される。Initially, when forming the first intermediate layer, a crucible-shaped molded body made of graphite was placed in a reaction tank, and
Heat to a temperature of °C. Then, in the reaction tank, S I
A mixed gas consisting of a Si-containing gas such as II a + SiCl 4 + or a B-containing gas such as BCI:11BtH6 and hydrogen is introduced. At this time, when, for example, B and C are introduced in a 1:1 ratio on the graphite substrate surface, the reaction of the following formula (1) % formula % (1) proceeds, and boron is produced. Furthermore, the reaction of the following formula (2)% formula (2) with carbon, which is a base component, proceeds, and boron carbide (134c) is formed at the interface of the base body.
) A film is formed, and as time passes, boron becomes excessive due to reaction (1), and a continuous layer of boron is formed.
また、第1中間層はSi含有ガスとB含有ガスを同時に
導入すればSi、 Bまたはこれらの炭化物から成る混
合層となる。Further, if a Si-containing gas and a B-containing gas are introduced simultaneously, the first intermediate layer becomes a mixed layer consisting of Si, B, or a carbide thereof.
次に第2の中間層としてランダム配向したBN膜を設け
るがこのランダム配向は主として膜形成の際の反応ガス
、即ちBCh、IhH,等のホウ素含有ガスとNlh等
の窒素含有ガスおよび水素ガスの混合比および基体温度
によって決定される。本発明では、この中間層の熱膨張
係数を上下2層の中間的値、具体的には、3乃至8×1
0−#′/℃に設定する必要性から、反応ガスの混合比
Nlh/BC1+を1乃至50、基体温度を800乃至
1200℃の範囲で制御すれば良い。Next, a randomly oriented BN film is provided as the second intermediate layer, but this random orientation is mainly due to the reaction gases used during film formation, namely boron-containing gases such as BCh, IhH, etc., nitrogen-containing gases such as Nlh, and hydrogen gas. Determined by mixing ratio and substrate temperature. In the present invention, the thermal expansion coefficient of this intermediate layer is set to an intermediate value between the upper and lower layers, specifically, 3 to 8×1.
Since it is necessary to set the reaction gas to 0-#'/°C, the reaction gas mixture ratio Nlh/BC1+ may be controlled within the range of 1 to 50, and the substrate temperature may be controlled within the range of 800 to 1200°C.
よって、第1中間層の形成にSi含有ガスを用いた場合
、ガスを切換えるとともに窒素含有ガスも同時に導入す
るが、B含有ガスを用いた場合、窒素含有ガスの導入の
みで済むことから経済的であるとともに、第1から第2
の中間層への形成を連続的に行うことができるために層
間の密着性がより向上する。Therefore, when a Si-containing gas is used to form the first intermediate layer, a nitrogen-containing gas is introduced at the same time as the gas is switched, but when a B-containing gas is used, only the nitrogen-containing gas needs to be introduced, which is economical. and from the first to the second
Since the formation of the intermediate layer can be performed continuously, the adhesion between the layers is further improved.
そして、これら中間層を介して最終的に形成されるPB
N膜は同一反応槽内で基体温度を1000乃至2000
℃に上げるとともにNHi/BCh比を0.5乃至10
とすることによって生成される。Then, the PB that is finally formed through these intermediate layers
The N film has a substrate temperature of 1000 to 2000 in the same reaction tank.
℃ and NHi/BCh ratio from 0.5 to 10.
It is generated by
このように本発明のルツボは製造時、各層の形成を同一
反応槽内で連続的に行うことができ、各膜間の密着性が
改善され、ルツボの機械的強度も向上する。本発明を次
の例で説明する。As described above, during manufacturing of the crucible of the present invention, each layer can be formed continuously in the same reaction tank, and the adhesion between each layer is improved, and the mechanical strength of the crucible is also improved. The invention is illustrated by the following example.
実施例1
黒鉛から成るルツボ状成形体を配置して、1500°C
に加熱し圧力5Torr及びBClz、10cc/mi
n 、1Iz150cc/minの流速で混合ガスを導
入して、1時間のホウ化反応を行いB、Cの3μmの中
間層を形成した後、基体を800℃に加熱し、Nl+3
、BCl3.11□をそれぞれ20cc/min、
10cc/m1n(Nllz/[1C1z=2) 15
0cc/minの圧力I Torrで2時間反応を行い
熱膨張係数4×10−’/ ’Cのランダム配向したB
N膜をLoIJm形成した。Example 1 A crucible-shaped molded body made of graphite was placed and heated to 1500°C.
Heated to a pressure of 5 Torr and BClz, 10 cc/mi
A mixed gas was introduced at a flow rate of 1Iz150cc/min to perform a boriding reaction for 1 hour to form a 3μm intermediate layer of B and C, and then the substrate was heated to 800°C and Nl+3
, BCl3.11□ at 20cc/min each,
10cc/m1n (Nllz/[1C1z=2) 15
The reaction was carried out for 2 hours at a pressure of 0 cc/min and a randomly oriented B with a thermal expansion coefficient of 4 x 10-'/'C.
A N film was formed by LoIJm.
その後、基体温度を1500℃に上げる他はまったく同
一条件で5時間反応を行い150μmのPBN膜を形成
した。Thereafter, a reaction was carried out for 5 hours under the same conditions except that the substrate temperature was raised to 1500° C. to form a PBN film of 150 μm.
得られたサンプルを引き上げ法による半導体GaAs単
結晶製造用ルツボとして使用した結果、10回の使用(
加熱−冷却サイクル付与1回)によっても、PBN I
llには剥離やクランクが生せず、しかもルツボから不
純物がGaAs溶融体へ混入することも全くなく、良品
の高純度半導体GaAs単結晶を製造することができた
。The obtained sample was used as a crucible for producing semiconductor GaAs single crystals by the pulling method, and as a result, it was used 10 times (
PBN I
No peeling or cranking occurred in 11, and no impurities were mixed into the GaAs melt from the crucible, making it possible to produce a high-purity semiconductor GaAs single crystal of good quality.
実施例2
黒鉛ルツボ状形成体を反応槽内に配置して1200℃に
加熱し、圧力3Torr 、、5iH43cc/min
、II280CC/minの流速で混合ガスを導入して
、1時間珪化反応を行い、SiCの1μmの第1中間層
を形成した。Example 2 A graphite crucible shaped body was placed in a reaction tank and heated to 1200°C, and the pressure was 3 Torr, 5iH43cc/min.
A mixed gas was introduced at a flow rate of 280 CC/min to carry out a silicification reaction for 1 hour to form a first intermediate layer of SiC with a thickness of 1 μm.
次いで、5illaガスの代わりにNtlslOOcc
/min、 BCl310cc/m1n(N)1:+/
BC1*=lO)の流速で基体温度1200℃、圧力3
Torrで反応を行い、第2の中間層として熱膨張係
数3.7 xlO−’/ ’cのランダム配向したBN
IIりを15μI形成した。Then NtlslOOcc instead of 5illa gas
/min, BCl310cc/m1n(N)1:+/
BC1*=lO) flow rate, substrate temperature 1200℃, pressure 3
The reaction was carried out at Torr, and randomly oriented BN with a thermal expansion coefficient of 3.7 xlO-'/'c was used as the second intermediate layer.
15 μl of II was formed.
その後、基体温度を1500℃に下げ、N113.BC
l3゜および112を20cc/min、 10cc/
minおよび200cc/min、圧力は3Torrで
5時間反応を行い、150 μmのPBN膜を形成した
。After that, the substrate temperature was lowered to 1500°C and N113. B.C.
l3゜ and 112 at 20cc/min, 10cc/
The reaction was carried out at 3 Torr and 200 cc/min for 5 hours to form a PBN film with a thickness of 150 μm.
得られた窒化ホウ素被覆ルツボを実施例1と同様にして
、GaAs単結晶製造用ルツボとして、10回の加熱−
冷却を繰り返したが、PBN膜の剥離、クランクもなく
、高純度のGaAs単結晶を得ることができた。The obtained boron nitride-coated crucible was heated 10 times as a crucible for producing GaAs single crystals in the same manner as in Example 1.
Although cooling was repeated, there was no peeling or cranking of the PBN film, and a high-purity GaAs single crystal could be obtained.
比較例
黒鉛のルツボ状成形体基体を1500℃に設定し、NI
I+10cc/lll1n 、、 BCl310cc/
m1n(Nll:+/BCI:+=1)、Hz150c
c/minの流速で反応ガスを導入し、圧力ITorr
の条件で5時間反応を行い115μ川のPBN膜を形成
した。Comparative Example A graphite crucible-shaped molded body was set at 1500°C, and the NI
I+10cc/lll1n,, BCl310cc/
m1n (Nll:+/BCI:+=1), Hz150c
The reaction gas was introduced at a flow rate of c/min, and the pressure was
The reaction was carried out for 5 hours under the following conditions to form a PBN film with a thickness of 115μ.
得られたサンプルの破断面を観察したところ、PBN膜
が基体から剥離している部分があり、密着性が悪いもの
であった。When the fractured surface of the obtained sample was observed, it was found that there were parts where the PBN film had peeled off from the base, and the adhesion was poor.
(発明の効果)
以上述べたように、本発明の窒化ホウ素被覆ルツボは、
黒鉛基体上に第1の中間層としてSi、Bもしくはこれ
らと基体成分であるカーボンとの反応槽を生成し、第2
の中間層として基体とPBN膜との熱膨張差を緩和させ
るためのランダム配向したBN膜を設けた上に熱分解窒
化ホウ素(PBN )膜を設けることによって基体成分
が第1中間層によって密封されるとともに密着性が良好
となり、且つ熱膨張差による剥離を防止することができ
る。しかも、第1、第2の中間層およびPBN膜はその
製造において連続層として形成されるため各層間での密
着性に優れることから、ルツボとして不純物の浸出が防
止され、加熱−冷却サイクルによって膜の剥離も解消で
きる。さらに本発明のルツボは高強度であるため、ルツ
ボの壁厚を薄くしても強度が充分で軽量、大型のものと
することができ且つ安価な黒鉛を使用するのに加えPI
lN層の厚みを大きくする必要もないため、製造コスト
を低減できるという優れた有利性がある。(Effects of the Invention) As described above, the boron nitride-coated crucible of the present invention has
A reaction tank is formed on the graphite substrate as a first intermediate layer between Si, B, or these and carbon as a substrate component, and a second intermediate layer is formed on the graphite substrate.
By providing a pyrolytic boron nitride (PBN) film on top of which a randomly oriented BN film is provided as an intermediate layer to alleviate the thermal expansion difference between the base and the PBN film, the base component is sealed by the first intermediate layer. At the same time, adhesion is improved, and peeling due to differences in thermal expansion can be prevented. Furthermore, since the first and second intermediate layers and the PBN film are formed as continuous layers during their manufacture, they have excellent adhesion between each layer, which prevents impurities from leaching out as a crucible, and allows the film to be formed by heating and cooling cycles. Peeling can also be eliminated. Furthermore, since the crucible of the present invention has high strength, even if the wall thickness of the crucible is thinned, it can be made lightweight and large.
Since there is no need to increase the thickness of the IN layer, there is an excellent advantage that manufacturing costs can be reduced.
なお、本発明のルツボは半導体単結晶製造用ルツボ、金
属蒸着用ルツボあるいはボートなどに応用できるもので
ある。The crucible of the present invention can be applied to a crucible for manufacturing a semiconductor single crystal, a crucible for metal deposition, a boat, etc.
Claims (2)
としてSi、Bもしくはこれらの炭化物から選ばれる少
なくとも1種から成る第1層、ランダム配向した窒化ホ
ウ素から成る第2層、および熱分解窒化ホウ素から成る
第3層を具備したことを特徴とする窒化ホウ素被覆ルツ
ボ。(1) A first layer made of at least one selected from Si, B, or carbides thereof as an intermediate layer on the surface of a crucible-shaped molded body made of graphite, a second layer made of randomly oriented boron nitride, and a thermal decomposition layer. A boron nitride-coated crucible comprising a third layer made of boron nitride.
範囲第1項記載の窒化ホウ素被覆ルツボ。(2) The boron nitride-coated crucible according to claim 1, wherein the first to third layers are continuous layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1874986A JPS62176981A (en) | 1986-01-29 | 1986-01-29 | Boron nitride-coated crucible |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1874986A JPS62176981A (en) | 1986-01-29 | 1986-01-29 | Boron nitride-coated crucible |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62176981A true JPS62176981A (en) | 1987-08-03 |
Family
ID=11980297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1874986A Pending JPS62176981A (en) | 1986-01-29 | 1986-01-29 | Boron nitride-coated crucible |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62176981A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0394488A1 (en) * | 1988-10-21 | 1990-10-31 | Kawasaki Steel Corporation | Composite boron nitride material and process for its production |
US5304417A (en) * | 1989-06-02 | 1994-04-19 | Air Products And Chemicals, Inc. | Graphite/carbon articles for elevated temperature service and method of manufacture |
JPH06135794A (en) * | 1992-10-28 | 1994-05-17 | Shin Etsu Chem Co Ltd | Drouble-layered ceramic crucible |
WO1996010100A1 (en) * | 1994-09-28 | 1996-04-04 | Advanced Ceramics Corporation | Evaporator having multiple coating |
US7635414B2 (en) * | 2003-11-03 | 2009-12-22 | Solaicx, Inc. | System for continuous growing of monocrystalline silicon |
US20170211182A1 (en) * | 2014-02-06 | 2017-07-27 | Kgt Graphit Technologie Gmbh | Protective layer for pecvd graphite boats |
US20170229195A1 (en) * | 2014-07-22 | 2017-08-10 | Kabushiki Kaisha Toshiba | Channel box |
CN112225570A (en) * | 2019-07-14 | 2021-01-15 | 江苏摩铸特种陶瓷有限公司 | Three-layer silicon carbide graphite crucible and preparation method thereof |
-
1986
- 1986-01-29 JP JP1874986A patent/JPS62176981A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0394488A1 (en) * | 1988-10-21 | 1990-10-31 | Kawasaki Steel Corporation | Composite boron nitride material and process for its production |
US5304417A (en) * | 1989-06-02 | 1994-04-19 | Air Products And Chemicals, Inc. | Graphite/carbon articles for elevated temperature service and method of manufacture |
JPH06135794A (en) * | 1992-10-28 | 1994-05-17 | Shin Etsu Chem Co Ltd | Drouble-layered ceramic crucible |
WO1996010100A1 (en) * | 1994-09-28 | 1996-04-04 | Advanced Ceramics Corporation | Evaporator having multiple coating |
GB2313845A (en) * | 1994-09-28 | 1997-12-10 | Advanced Ceramics Corp | Evaporator having multiple coating |
GB2313845B (en) * | 1994-09-28 | 1999-05-26 | Advanced Ceramics Corp | Evaporator having multiple coating |
US7635414B2 (en) * | 2003-11-03 | 2009-12-22 | Solaicx, Inc. | System for continuous growing of monocrystalline silicon |
US8317919B2 (en) | 2003-11-03 | 2012-11-27 | Solaicx, Inc. | System for continuous growing of monocrystalline silicon |
US20170211182A1 (en) * | 2014-02-06 | 2017-07-27 | Kgt Graphit Technologie Gmbh | Protective layer for pecvd graphite boats |
US10151030B2 (en) * | 2014-02-06 | 2018-12-11 | Kgt Graphit Technologie Gmbh | Protective layer for PECVD graphite boats |
US20170229195A1 (en) * | 2014-07-22 | 2017-08-10 | Kabushiki Kaisha Toshiba | Channel box |
US10878968B2 (en) * | 2014-07-22 | 2020-12-29 | Kabushiki Kaisha Toshiba | Channel box |
CN112225570A (en) * | 2019-07-14 | 2021-01-15 | 江苏摩铸特种陶瓷有限公司 | Three-layer silicon carbide graphite crucible and preparation method thereof |
CN112225570B (en) * | 2019-07-14 | 2023-02-17 | 江苏摩铸特种陶瓷有限公司 | Three-layer silicon carbide graphite crucible and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0149044B1 (en) | Boron nitride containing titanium nitride, method of producing the same and composite ceramics produced therefrom | |
UA81278C2 (en) | Vessel for holding a silicon and method for its making | |
JP3793157B2 (en) | MoSi2-Si3N4 composite coating layer and method for producing the same | |
JP2548949B2 (en) | Semiconductor manufacturing components | |
KR101593922B1 (en) | Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof | |
JPS62176981A (en) | Boron nitride-coated crucible | |
RU1782229C (en) | Method for making self-baring ceramic body | |
JP4070816B2 (en) | Thermochemical treatment of non-porous or porous materials containing carbon in halogenated atmospheres. | |
JPH0688866B2 (en) | Boron nitride coated crucible and method of manufacturing the same | |
JPS61236604A (en) | Synthesizing method for beta-si3n4 | |
JP3638345B2 (en) | Pyrolytic boron nitride container | |
US3734817A (en) | Treated quartz vessels for use in producing and further processing iii-v semiconductor bodies low in silicon | |
Leipold et al. | Materials of construction for silicon crystal growth | |
JPS61251593A (en) | Crucible for production of high-purity semiconductor single crystal | |
JPS62153190A (en) | Boron nitride coated crucible | |
JP2000073171A (en) | Production of chemical vapor deposition multilayer silicon carbide film | |
Hide et al. | Mould shaping silicon crystal growth with a mould coating material by the spinning method | |
JPS63274665A (en) | Polycrystalline ceramics having plastic deformability | |
US5023215A (en) | Cordierite-silicon nitride body | |
JPS61219787A (en) | Crucible for producing single crystal for high-purity semiconductor | |
JPH0645519B2 (en) | Method for growing p-type SiC single crystal | |
US3740261A (en) | Modified czochralski grown spinel substrate by solid state diffusion | |
JPH0456766B2 (en) | ||
JPH03146470A (en) | Silicon carbide-based material | |
JPS61236672A (en) | Pyrolytic boron nitride coated products and manufacture |