JPS62176941A - Optical fiber - Google Patents
Optical fiberInfo
- Publication number
- JPS62176941A JPS62176941A JP61014866A JP1486686A JPS62176941A JP S62176941 A JPS62176941 A JP S62176941A JP 61014866 A JP61014866 A JP 61014866A JP 1486686 A JP1486686 A JP 1486686A JP S62176941 A JPS62176941 A JP S62176941A
- Authority
- JP
- Japan
- Prior art keywords
- core
- optical fiber
- cladding
- fluorine
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 15
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 12
- 239000011737 fluorine Substances 0.000 claims abstract description 12
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 21
- 229910052801 chlorine Inorganic materials 0.000 claims description 21
- 239000000460 chlorine Substances 0.000 claims description 21
- 238000005253 cladding Methods 0.000 claims description 20
- 239000000835 fiber Substances 0.000 abstract description 15
- 230000007547 defect Effects 0.000 abstract description 14
- 239000011521 glass Substances 0.000 abstract description 9
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000002285 radioactive effect Effects 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 33
- 230000005855 radiation Effects 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/045—Silica-containing oxide glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/08—Doped silica-based glasses containing boron or halide
- C03C2201/11—Doped silica-based glasses containing boron or halide containing chlorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/08—Doped silica-based glasses containing boron or halide
- C03C2201/12—Doped silica-based glasses containing boron or halide containing fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光ファイバの構成に関し、詳しくは水酸基濃度
が低く、かつガラス中の欠陥の少ない信頼性の高い光フ
ァイバであって、特に放射線環境下で初期損失および伝
送損失増加の極めて小さい、マルチモード又はシングル
モード光ファイバの閉成に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the structure of an optical fiber, and more specifically to a highly reliable optical fiber with a low hydroxyl group concentration and few defects in the glass, particularly in a radiation environment. The present invention relates to the closing of multimode or single mode optical fibers with extremely small initial loss and transmission loss increase.
〔従来の技術]
放射線照射ちるいは水素雰囲気における光ファイバの損
失増の一因としてガラス中の欠陥の存在が考えられてい
る。このような損失増を少なくするために、欠陥の少な
い光ファイバの検討が進められており、現在、SiO□
をコアとする光ファイバが最も欠陥が少ないファイバと
して多用されている。また、従来このような5102コ
アとしては、塩素を含まず、水酸基を多量に含むものが
、欠陥が最も少なく、耐放射線特性に優れるとされてい
た。[Prior Art] The presence of defects in glass is considered to be one of the causes of increased loss in optical fibers exposed to radiation or in a hydrogen atmosphere. In order to reduce this increase in loss, optical fibers with fewer defects are being studied, and currently SiO□
Optical fibers with a core of Furthermore, conventionally, such 5102 cores that do not contain chlorine and contain a large amount of hydroxyl groups have been considered to have the fewest defects and excellent radiation resistance.
しかしながら、従来のsio□をコアとする耐放射線光
ファイバは、水酸基を多量に含有するため、伝送損失増
加量の小さい波長1.5μmにおいて、その初期の伝送
損失が10 dB/km以上と大きいため、実質的に使
えないという欠点があった。However, since the conventional radiation-resistant optical fiber with sio□ core contains a large amount of hydroxyl groups, its initial transmission loss is as large as 10 dB/km or more at the wavelength of 1.5 μm, where the increase in transmission loss is small. However, it had the disadvantage that it was practically unusable.
本発明はこの欠点を解消し、低水酸基濃度でガラス中の
欠陥が少なく、高信頼性で、放射線環境下でも初期損失
、伝送損失増加の甑めて少ない、新規な構成の光ファイ
バを目的とするものである。The purpose of the present invention is to eliminate this drawback, and to provide an optical fiber with a new configuration that has a low hydroxyl group concentration, few defects in the glass, is highly reliable, and has significantly less initial loss and increase in transmission loss even in a radiation environment. It is something to do.
本発明はコアおよびクラッドを有してなる光ファイバに
おいて、コアが水酸基を1 ppm以下(0を含む)、
塩素を50〜500 ppmを含有する石英ガラスから
なり、クラッドがフッ素を含有する石英ガラスからなる
ことを特徴とする光ファイバであり、これにより上記の
目的を達成する。The present invention provides an optical fiber having a core and a cladding, wherein the core contains hydroxyl groups at 1 ppm or less (including 0),
The optical fiber is made of quartz glass containing 50 to 500 ppm of chlorine, and the cladding is made of quartz glass containing fluorine, thereby achieving the above object.
光ファイバの耐放射線特性はガラス内の欠陥の少ないも
のが慶れていることは、よく知られており、最もガラス
内の欠陥濃度が少ないのは石英ガラスであるが、この石
英ガラスに不純物が含まれると欠陥濃度が増加し、特に
塩素はその欠陥量を著しく増大させるが、水酸基は欠陥
量を低減すると従来考えられていたことは、すでに前項
にて説明した。そこで、コアの石英ガラスに100 p
pm以上の水酸基を添加した光ファイバがミ耐放射線フ
ァイバとして使われていたのである。It is well known that the radiation-resistant properties of optical fibers are better when the glass has fewer defects, and silica glass has the lowest concentration of defects within the glass, but impurities may be present in this quartz glass. It was already explained in the previous section that chlorine, in particular, was thought to significantly increase the amount of defects, while hydroxyl groups were thought to reduce the amount of defects. Therefore, 100p was applied to the quartz glass core.
Optical fibers doped with hydroxyl groups of pm or higher were used as radiation-resistant fibers.
しかしながら、本発明者らの研究の結果によれば、90
チ以上のパワーがコアを伝搬するマルチモードファイバ
においてさえも、クラッドのガラスの材質が放射線の影
響を強く受けることが明らかになった。この事実は、コ
アガラスの内部のみならず、コアークラッド界面の欠陥
濃度が、コアークラッドガラスの組合せによって変化す
ることを示している。本発明者らはさらに詳細な実験を
行った結果、コアに全く塩素を含まないファイバの場合
よりも、塩素を含むファイバの方が、放射線による伝送
損失が小さいという驚くべき知見を得て、本発明に到達
したのである。However, according to the results of our research, 90
It has become clear that even in multimode fibers in which more than 100% power propagates through the core, the glass material of the cladding is strongly affected by radiation. This fact indicates that the defect concentration not only inside the core glass but also at the core-clad interface changes depending on the combination of core-clad glasses. As a result of more detailed experiments, the inventors obtained the surprising finding that transmission loss due to radiation is lower in fibers containing chlorine than in fibers with no chlorine in the core. The invention was achieved.
従来の検討はそのほとんどが、クラッドはプラスチック
のものについてであり、フッ素添加石英クラッドでの塩
素の効果については行われていなかった。メカニズムは
不明であるが、コア/クラッド界面では、クラッドはネ
ットワークの端にフッ素が結合して安定しているのに対
し、コアにこのようなネットワークの端に結合して安定
させる原子(これをネットワークターミネータという、
例えば水素、ハロゲン等)が存在しない場合には欠陥濃
度が高くなシ、耐放射線特性が悪くなる。これに対し、
コアにも塩素などのネットワークターミネータ−が添加
されていれば、コアのネットワーク端にも塩素が結合し
て安定化し、界面の欠陥濃度は低く、耐放射線特性も改
善されると考えられる。Most of the previous studies have focused on plastic cladding, and the effects of chlorine on fluorine-doped quartz cladding have not been investigated. Although the mechanism is unknown, at the core/cladding interface, the cladding is stabilized by fluorine bonded to the edges of the network, whereas the core has atoms (which stabilize it) bonded to the edges of such a network. called a network terminator,
For example, if hydrogen, halogen, etc. are not present, the defect concentration will be high and the radiation resistance will be poor. In contrast,
If a network terminator such as chlorine is also added to the core, chlorine will bond to the network ends of the core and stabilize it, reducing the defect concentration at the interface and improving radiation resistance.
本発明の光ファイバのコアは、金属酸化物としては実質
的に8i02 のみを含むもので、含有する水酸基はl
ppm以下であり、その塩素濃度が好ましくは50〜5
00 ppm、特に好ましくは50〜40 u ppm
である。また本発明の光ファイバのクラッドは、弗素を
添加した5in2で、弗素添加によりコアよりも低屈折
率のものが好ましい。The core of the optical fiber of the present invention contains substantially only 8i02 as a metal oxide, and the hydroxyl group contained is l.
ppm or less, and the chlorine concentration is preferably 50 to 5.
00 ppm, particularly preferably 50-40 u ppm
It is. Further, the cladding of the optical fiber of the present invention is preferably 5 in 2 doped with fluorine, and has a lower refractive index than the core due to the fluorine doping.
本発明においては、クラッドのハロゲン元素の濃度と、
コアの塩素濃度はバランスしていることが好ましい。In the present invention, the concentration of the halogen element in the cladding,
It is preferable that the chlorine concentration in the core is balanced.
先に述べたメカニズムにおいて、界面でのネットワーク
ターミネータ−が存在しない、ネットワークの切れた部
分(ダングリングボンド)の濃度がコアとクラッドで等
しい(バランスしている)場合には、コアとクラッドの
ダングリングボンドが結合し、ネットワークを形成して
安定化するが、バランスしていない場合にはダングリン
グボンドがコア・クラッド界面に残留し、放射線特性が
劣化する。In the mechanism described above, if there is no network terminator at the interface and the concentrations of broken parts of the network (dangling bonds) are equal (balanced) in the core and cladding, dangling bonds between the core and cladding occur. Ring bonds combine to form a network and stabilize it, but if it is not balanced, dangling bonds remain at the core-clad interface, degrading radiation characteristics.
なお、本発明においては、水酸基濃度は波長1、39
μ?FL付近の吸収ピーク60 dB/kmの場合を1
ppmとし、また塩素濃度についてはEPMA(XM
A )により定祉した。In addition, in the present invention, the hydroxyl group concentration is at wavelengths of 1 and 39
μ? 1 for absorption peak near FL of 60 dB/km
ppm, and the chlorine concentration is EPMA (XM
A).
実施例1
クラッドがフッ素を0.9重承チ含有するシリカ(比屈
折率差−03%)であり、コアが純シリカであるシング
ルモードファイバで、コア径8μm1クヲツド径(外径
)125μmのものにおいて、コアの塩素含有量を10
〜1200ppmの範囲で変化させた。この塩素含有量
の調節は、VAD法によシスートを作製し、脱水工程に
おける塩素濃度を変えることにより行った。Example 1 A single mode fiber whose cladding is silica containing 0.9 times fluorine (relative refractive index difference -03%) and whose core is pure silica, with a core diameter of 8 μm and a quad diameter (outer diameter) of 125 μm. In products, the chlorine content of the core is reduced to 10
It was varied in the range of ~1200 ppm. The chlorine content was adjusted by preparing cysuto by the VAD method and changing the chlorine concentration in the dehydration step.
また該コアの水酸基含有量は10 ppb以下であった
。Further, the hydroxyl group content of the core was 10 ppb or less.
これ等のファイバを10’R/Hのγ線(線源二60C
o)環境下に1時間置き、その後波長1.3μmに分け
る伝送損失の増加量(dB/km )を測定したところ
、第1図に示すようなコア中塩素濃度(ppm )と損
失増加(dB/km )の関係が得られた。なお、初期
の伝送損失は、波長1.3μmにおいてQ、 55 d
B/kmと極めて低い値であった。These fibers are connected to 10'R/H gamma rays (ray source 2
o) After leaving it in the environment for 1 hour, we measured the increase in transmission loss (dB/km) divided into wavelengths of 1.3 μm, and found that the chlorine concentration in the core (ppm) and the increase in loss (dB/km) were as shown in Figure 1. /km) was obtained. Note that the initial transmission loss is Q, 55 d at a wavelength of 1.3 μm.
It was an extremely low value of B/km.
実施例2
クラッドがフッ素を3重量%含有するシリカ(比屈折率
差−1%)であり、コアかシリカであり、クラッド径8
0μm、コア径50μm1外[125μmのステップ型
マルチモードファイバを作製した。Example 2 The cladding is silica containing 3% by weight of fluorine (relative refractive index difference -1%), the core is silica, and the cladding diameter is 8
A stepped multimode fiber with a core diameter of 0 μm and a core diameter of 50 μm and 125 μm was fabricated.
該コアはVAD法により、8iC4のみを原料として5
本の同サイズのスートを作製し、次に電気炉中にて塩素
で脱水処理を施したが、このときの塩素量は500 c
c1分〜1t/分の範囲で変えた。次いで電気炉中にて
透明化し、5本のコア材を得た。The core is made by VAD method using only 8iC4 as raw material.
A soot of the same size as a book was prepared and then dehydrated with chlorine in an electric furnace, but the amount of chlorine at this time was 500 c.
c was varied in the range of 1 min to 1 t/min. Next, it was made transparent in an electric furnace to obtain five core materials.
5本のコア材の各々について、その外側にプラズマトー
チから吹き出させた5iCt4と02 およびCC2
,F、とを反応させ、フッ素を添加した5i02 を直
接ガラス化しながら堆積させて、比屈折率差−1チとし
たクラッドを形成しプリフォームとした。For each of the five core materials, 5iCt4, 02 and CC2 were blown out from a plasma torch on the outside.
, F, and fluorine-doped 5i02 was deposited while being directly vitrified to form a cladding with a relative refractive index difference of -1 inch, which was used as a preform.
該プリフォームを線引きして外径125μmのファイバ
とし、得られた5本のファイバについていずれも10’
R/H、Ii址率のγ線にて1時間照射したところ、
その波長1.3μmにおける伝送損失増加量は第2図に
示すとおりであった。The preform was drawn into fibers with an outer diameter of 125 μm, and each of the five fibers obtained was 10'
When irradiated with γ-rays of R/H and Ii yield for 1 hour,
The amount of increase in transmission loss at a wavelength of 1.3 μm was as shown in FIG.
なお初期の伝送損失は、いずれのファイバも波長1.3
μmにおいて1.5 dB/km以下と低い値であった
。また水酸基は、いずれのファイバも1、39 μm付
近のピークで6 dB/km以下であり、これは0.1
ppm以下に相当する。Note that the initial transmission loss for both fibers is at wavelength 1.3.
It was a low value of 1.5 dB/km or less in μm. In addition, the hydroxyl group in all fibers has a peak of 6 dB/km or less around 1.39 μm, which is 0.1
This corresponds to less than ppm.
本発明はコアのOHが1 ppm以下、塩素が50 p
pmから500 ppmまでの石英ガラスから成シ、ク
ラッドがフッ素を添加した石英ガラスから成るファイバ
であって、そのコア、クラッド、および界面の欠陥濃度
が低いため、放射線による損失増が極めて小さく、OH
濃度が低いため1.3μmにおける初期損失も1 dB
/kmと低く、放射線環境下で使用可能なファイバが得
られる。The present invention has a core containing OH of 1 ppm or less and chlorine of 50 ppm.
The fiber is made of silica glass with a fluorine content from pm to 500 ppm, and the cladding is made of silica glass doped with fluorine.Because the defect concentration in the core, cladding, and interface is low, the increase in loss due to radiation is extremely small, and the OH
Due to the low concentration, the initial loss at 1.3 μm is also 1 dB.
/km, making it possible to obtain a fiber that can be used in a radiation environment.
第1図は、コアの水酸基t 10 ppb以下、クラッ
ドの比屈折率差−[lL3チであるシングルモードファ
イバの、コア中の塩素濃度(ppm )と、γ線105
R照射後の伝送損失増加の関係を示すグラフである。
第2図は、コアの水酸基量0. j ppm以下、クラ
ッドの比屈折率差−1チのステップ型マルチモードファ
イバの、コア中の塩素濃度(1)pm )と、γ線10
5R照射後の伝送損失増加の関係を示すグラフである。Figure 1 shows the chlorine concentration (ppm) in the core and the γ-ray 105
It is a graph showing the relationship of increase in transmission loss after R irradiation. Figure 2 shows the amount of hydroxyl groups in the core is 0. The chlorine concentration (1) pm in the core of a stepped multimode fiber with a relative refractive index difference of the cladding of less than j ppm (1) pm) and the γ-ray 10
It is a graph showing the relationship of increase in transmission loss after 5R irradiation.
Claims (1)
コアが水酸基を1ppm以下(0を含む)、塩素を50
〜500ppmを含有する石英ガラスからなり、クラッ
ドがフッ素を含有する石英ガラスからなることを特徴と
する光ファイバ。In an optical fiber having a core and a cladding,
The core contains 1 ppm or less of hydroxyl groups (including 0) and 50% of chlorine.
An optical fiber characterized in that it is made of quartz glass containing up to 500 ppm of fluorine, and its cladding is made of quartz glass that contains fluorine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61014866A JPS62176941A (en) | 1986-01-28 | 1986-01-28 | Optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61014866A JPS62176941A (en) | 1986-01-28 | 1986-01-28 | Optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62176941A true JPS62176941A (en) | 1987-08-03 |
JPH0416427B2 JPH0416427B2 (en) | 1992-03-24 |
Family
ID=11872943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61014866A Granted JPS62176941A (en) | 1986-01-28 | 1986-01-28 | Optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62176941A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02724A (en) * | 1987-12-31 | 1990-01-05 | Tropix Inc | Synthesis of 1,2-dioxycetanes and its derivative, and method for emitting light by using 1,2-dioxycetane |
JPH0214850A (en) * | 1988-06-29 | 1990-01-18 | Mitsubishi Cable Ind Ltd | Radiation-resistant multiple fiber |
WO2000042458A1 (en) * | 1999-01-18 | 2000-07-20 | Sumitomo Electric Industries, Ltd. | Optical fiber and method of manufacture thereof |
WO2001092173A1 (en) * | 2000-05-31 | 2001-12-06 | Schneider Laser Technologies Ag | Sio2-based fibre optical waveguide for transmitting a high light power density and corresponding production method |
WO2005012965A1 (en) * | 2003-08-04 | 2005-02-10 | Sumitomo Electric Industries, Ltd. | Optical transmission line constituting method, optical transmission line, and optical fiber |
US7382956B2 (en) | 2003-08-04 | 2008-06-03 | Sumitomo Electric Industries, Ltd. | Optical fibers |
JP2011022205A (en) * | 2009-07-13 | 2011-02-03 | Fujikura Ltd | Optical fiber and sensor for oil well |
US8565566B2 (en) | 2011-10-05 | 2013-10-22 | Sumitomo Electric Industries, Ltd. | Multi-mode optical fiber |
US8565567B2 (en) | 2011-11-23 | 2013-10-22 | Sumitomo Electric Industries, Ltd. | Multi-mode optical fiber |
JP2013238676A (en) * | 2012-05-11 | 2013-11-28 | Fujikura Ltd | Low-loss optical fiber over wide wavelength range and method of manufacturing the same |
WO2016007806A1 (en) * | 2014-07-10 | 2016-01-14 | Corning Incorporated | High chlorine content low attenuation optical fiber |
US9851499B2 (en) | 2015-06-30 | 2017-12-26 | Corning Incorporated | Optical fiber with large effective area and low bending loss |
-
1986
- 1986-01-28 JP JP61014866A patent/JPS62176941A/en active Granted
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02724A (en) * | 1987-12-31 | 1990-01-05 | Tropix Inc | Synthesis of 1,2-dioxycetanes and its derivative, and method for emitting light by using 1,2-dioxycetane |
JPH0214850A (en) * | 1988-06-29 | 1990-01-18 | Mitsubishi Cable Ind Ltd | Radiation-resistant multiple fiber |
WO2000042458A1 (en) * | 1999-01-18 | 2000-07-20 | Sumitomo Electric Industries, Ltd. | Optical fiber and method of manufacture thereof |
EP1154294A1 (en) * | 1999-01-18 | 2001-11-14 | Sumitomo Electric Industries, Ltd. | Optical fiber and method of manufacture thereof |
US6343175B1 (en) | 1999-01-18 | 2002-01-29 | Sumitomo Electric Industries, Ltd. | Optical fiber with core containing chlorine and cladding containing fluorine and a method of manufacturing the same |
US6449415B1 (en) | 1999-01-18 | 2002-09-10 | Sumitomo Electric Industries, Ltd. | Optical fiber and method of manufacturing the same |
AU762729B2 (en) * | 1999-01-18 | 2003-07-03 | Sumitomo Electric Industries, Ltd. | Optical fiber and method of manufacture thereof |
EP1154294A4 (en) * | 1999-01-18 | 2011-04-13 | Sumitomo Electric Industries | Optical fiber and method of manufacture thereof |
WO2001092173A1 (en) * | 2000-05-31 | 2001-12-06 | Schneider Laser Technologies Ag | Sio2-based fibre optical waveguide for transmitting a high light power density and corresponding production method |
US7382956B2 (en) | 2003-08-04 | 2008-06-03 | Sumitomo Electric Industries, Ltd. | Optical fibers |
US7359602B2 (en) | 2003-08-04 | 2008-04-15 | Sumitomo Electric Industries, Ltd. | Optical transmission line constituting method, optical transmission line and optical fiber |
WO2005012965A1 (en) * | 2003-08-04 | 2005-02-10 | Sumitomo Electric Industries, Ltd. | Optical transmission line constituting method, optical transmission line, and optical fiber |
JP2011022205A (en) * | 2009-07-13 | 2011-02-03 | Fujikura Ltd | Optical fiber and sensor for oil well |
US8565566B2 (en) | 2011-10-05 | 2013-10-22 | Sumitomo Electric Industries, Ltd. | Multi-mode optical fiber |
US8565567B2 (en) | 2011-11-23 | 2013-10-22 | Sumitomo Electric Industries, Ltd. | Multi-mode optical fiber |
JP2013238676A (en) * | 2012-05-11 | 2013-11-28 | Fujikura Ltd | Low-loss optical fiber over wide wavelength range and method of manufacturing the same |
WO2016007806A1 (en) * | 2014-07-10 | 2016-01-14 | Corning Incorporated | High chlorine content low attenuation optical fiber |
US9618692B2 (en) | 2014-07-10 | 2017-04-11 | Corning Incorporated | High chlorine content low attenuation optical fiber |
CN107076921A (en) * | 2014-07-10 | 2017-08-18 | 康宁股份有限公司 | The low attenuation optical fiber of high chlorinity |
CN107076921B (en) * | 2014-07-10 | 2019-09-03 | 康宁股份有限公司 | The low attenuation optical fiber of high chlorinity |
US10429579B2 (en) | 2014-07-10 | 2019-10-01 | Corning Incorporated | High chlorine content low attenuation optical fiber |
US9851499B2 (en) | 2015-06-30 | 2017-12-26 | Corning Incorporated | Optical fiber with large effective area and low bending loss |
Also Published As
Publication number | Publication date |
---|---|
JPH0416427B2 (en) | 1992-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2634725B2 (en) | Device comprising silica-based optical fiber and method for producing silica-based optical fiber | |
Ainslie et al. | Interplay of design parameters and fabrication conditions on the performance of monomode fibers made by MCVD | |
JPS62176941A (en) | Optical fiber | |
JP5866461B2 (en) | Isotope modified optical fiber | |
JP2542356B2 (en) | Radiation resistant method for silica optical fiber glass | |
JPH11237514A (en) | Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform | |
EP0181595A2 (en) | Dielectric waveguide with chlorine dopant | |
JP3106564B2 (en) | Manufacturing method of optical fiber and silica-based optical fiber | |
JPS6280606A (en) | Single mode optical fiber | |
EP3901675A1 (en) | Optical fiber | |
US4345036A (en) | Optical glass fibres and method of forming such fibres | |
JPS6163543A (en) | Quartz-based optical fiber | |
JPH0425682Y2 (en) | ||
JP3315786B2 (en) | Optical amplifier type optical fiber | |
JPS61132531A (en) | Production of optical fiber | |
JPS61117128A (en) | Preparation of parent material for optical fiber | |
JPH02145448A (en) | Production of preform of optical fiber | |
JPS6313946B2 (en) | ||
JPH0416428B2 (en) | ||
JPH0345202Y2 (en) | ||
KR830001299B1 (en) | Optical fiber | |
JPH0362659B2 (en) | ||
JPS61251539A (en) | Optical fiber | |
JPS60153004A (en) | Single-mode optical fiber | |
JPH01242432A (en) | Production of base material for optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |