JPS62156250A - High strength and high toughness maraging steel and its production - Google Patents
High strength and high toughness maraging steel and its productionInfo
- Publication number
- JPS62156250A JPS62156250A JP29500085A JP29500085A JPS62156250A JP S62156250 A JPS62156250 A JP S62156250A JP 29500085 A JP29500085 A JP 29500085A JP 29500085 A JP29500085 A JP 29500085A JP S62156250 A JPS62156250 A JP S62156250A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- toughness
- amount
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、250 kgf 7112以上の引張強さ
を示すとともに優れた靱性をも兼備したマルエージ鋼、
並びにその製造方法に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a marage steel that exhibits a tensile strength of 250 kgf 7112 or more and also has excellent toughness.
and its manufacturing method.
ロケットのモーターケース、各種の工具(例えばMの熱
間押出用ダイス)、各種のバネ或いは電力蓄積用フライ
ホイール等の超高速回転体には、通常、可能な限シ高い
強度が要求されるが、金属材料では一般に強度の上昇と
ともに靱性が低下する傾向にあることから、上記要求を
十分に満たすものは極めて少ないと言うのが現状である
。Ultra-high-speed rotating bodies such as rocket motor cases, various tools (e.g. M hot extrusion dies), various springs, and power storage flywheels usually require the highest possible strength. In metal materials, there is generally a tendency for toughness to decrease as strength increases, so at present there are very few materials that fully satisfy the above requirements.
〈従来技術並びにその問題点〉
現在、上記用途に供される数少ない金属材料の1つとし
て“マルエージ鋼”を挙げることができるが、それは引
張強さ200 kgf/m2以上の超高張力鋼の中で最
も優れた靱性を示すからである。<Prior art and its problems> Currently, "marage steel" can be cited as one of the few metal materials used for the above-mentioned purposes, and it is one of the ultra-high tensile steels with a tensile strength of 200 kgf/m2 or more. This is because it shows the most excellent toughness.
ところで、上述のような用途に供される材料の靱性は引
張試験片に切欠を付けた“切欠付引張試験片”の強度で
評価されており、マルエージング鋼では、例えば応力集
中系数3.5の試験片を用いると、強度が240 kg
f /1tat2のものまでは“切欠付引張試験片の強
度(N、 T、 S、 )″が“平滑の引張試験片によ
る強度(T、S、)”を上回るので、この程度の強度レ
ベルのものまでは靱性材料として実用に供されている。By the way, the toughness of materials used for the above-mentioned purposes is evaluated by the strength of a "notched tensile test piece", which is a tensile test piece with a notch. The strength is 240 kg when using a test piece of
Up to f / 1 tat2, the "strength of the notched tensile test piece (N, T, S, )" exceeds the "strength of the smooth tensile test piece (T, S, )", so this level of strength is It has been put to practical use as a tough material.
ところが、引張強さが250 kgf/B2 を越える
と“切欠強度比(N、 T、 S、/ T、 S、 )
”は1.0未満となシ、靱性が不十分となって末だ靱
性材料として実用化されるには至っていない。However, when the tensile strength exceeds 250 kgf/B2, the “notch strength ratio (N, T, S, / T, S, )
If " is less than 1.0, the toughness is insufficient and it has not yet been put to practical use as a tough material.
即ち、従来、引張強さ: 250 kgf /rtan
2以上のマルエージ鋼として”13%Ni−15%Co
−10%Mo系”と’18%Ni−15%Co −6
,5チMo −1,1%Ti系”のものが知られていた
が(以下、成分割合を表わすチは重量%とする)、その
靱性は200〜220 kgf 7mm2級のマルエー
ジ鋼よシも劣る値しか示さなかったのである。That is, conventionally, tensile strength: 250 kgf/rtan
13%Ni-15%Co as a maraging steel of 2 or more
-10%Mo system” and '18%Ni-15%Co-6
, 5 Ti Mo - 1,1% Ti system (hereinafter, the component ratio is expressed as weight %), but its toughness is 200 to 220 kgf. It showed only an inferior value.
もつとも、上記′″ 13%Ni −15%Co −1
0%Mo系”のマルエージ鋼には固溶化処理温度まで急
速に加熱して靱性を向上する方法が知られてはいるが、
この方法では固溶化温度を1000℃以上とする必要が
あるので厚肉部材では十分な加熱速度を得られないと言
う問題があり、一方、″18%Ni−15%Co −6
,51Mo −1,1%Ti系”のマルエージ鋼には急
速加熱による効果は明確に認められなかった。However, the above ''' 13%Ni -15%Co -1
Although it is known that there is a method for rapidly heating 0% Mo-based maraging steel to the solution treatment temperature to improve its toughness,
This method requires a solid solution temperature of 1000°C or higher, so there is a problem that a sufficient heating rate cannot be obtained for thick-walled members.
, 51Mo-1,1%Ti" marage steel, no effect of rapid heating was clearly observed.
く問題点を解決するための手段〉
本発明者等は、上述のような観点から、引張強さが25
0 kgf/1tai2以上であって、しかも”切欠強
度比(N、 T、 S、/ T、 S、 )”が1.0
以上の、靱性材料として十分実用に耐えるマルエージ鋼
を提供すべく研究を行った結果、
(a) マルエージ鋼中の強化元素であるMO及びT
iの含有量を特定の値に調整するとともに、鋼中不純物
であるN量を特にo、oolss(x 5ppm)にま
で低減すると、十分な強度を保持したままで靱性が大幅
に向上したマルエージ鋼が得られること、(b) ま
た、特にMOを主体としてマルエージ鋼の成分割合を特
定のものに調整すると、性能劣化を来たすことなくその
固溶化処理温度を従来の”13チNi−15チCo−1
0%MO系”よシも大幅に低くすることができ、これに
よシ、通常の固溶化処理と時効処理を施すことでは得ら
れないほどの顕著な強度上昇を達成することが可能とな
るほか、靱性も向上させ得ること、
(C) このようなマルエージ鋼の固溶化処理の前に
冷間加工を施すと、固溶化後の結晶粒が著しく微細化し
て靱性がよシ向上する上、冷間加工と固溶化処理との組
合せによる結晶粒微細化処理を2回にわたって施した場
合には、靱性向上効果が更に顕著なものとなること、
なる知見が得られたのである。Means for Solving the Problems〉 From the above-mentioned viewpoint, the present inventors have determined that the tensile strength is 25.
0 kgf/1tai2 or more, and the "notch strength ratio (N, T, S, / T, S, )" is 1.0
As a result of the above-mentioned research to provide a marage steel that can be used as a tough material, we found that: (a) MO and T, which are strengthening elements in marage steel;
By adjusting the content of i to a specific value and reducing the amount of N, which is an impurity in the steel, to o, oolss (x 5 ppm), a maraging steel with significantly improved toughness while maintaining sufficient strength can be created. (b) Furthermore, if the composition ratio of the maraging steel is adjusted to a specific value, especially with MO as the main component, the solution treatment temperature can be lowered to the conventional "13"Ni-15"Co without deteriorating its performance. -1
The strength of the 0% MO system can be significantly lowered, and this makes it possible to achieve a remarkable increase in strength that cannot be obtained by ordinary solution treatment and aging treatment. In addition, toughness can also be improved; (C) If such marage steel is subjected to cold working before solution treatment, the grains after solution treatment become significantly finer, and toughness is further improved; It was found that when grain refinement treatment is performed twice by combining cold working and solution treatment, the effect of improving toughness becomes even more remarkable.
この発明は、上記知見に基づいてなされたものであシ、
マルエージ鋼を、
C:0.005%以下、
Si、Mn及びCr:合計で0.06%以下、Ni:1
6.5〜18.0%、
Co:12.0〜15.0%、
All : 0.03〜0.15%、
Mo:5.3〜6.0%、
Ti: 1.3 0〜1.5 0 %、N:0.0.
0015%以下、
Fe及び他の不可避的不純物:残り
から成るとともに、 Mo量とTi量とTi量とが、式
Mo(%)
を満足する如くに構成して、250 kgf /wx2
以上の引張強さと優れた靱性とを兼備せしめた点、に特
徴を有しており、更には、
上記の如き成分組成に構成された鋼に、800〜860
℃で30分〜3時間加熱保持する固溶化処理と、470
〜520℃での1〜10時間の時効処理とを施すか、又
は、前記固溶化処理の前に断面減少率:30チ以上の冷
間加工を加えてから同様の熱処理を施すか、或いは、前
記固溶化処理の前に断面減少率:30チ以上の冷間加工
と、830〜950℃の固溶化温度まで10分以内に昇
温させて1〜20分間保持した後空冷以上の冷却速度で
室温まで冷却する固溶化処理とを順次施し、次いで断面
減少率:30%以上の冷間加工を再度加えてから同様の
熱処理を施すかして、250kgf/11uIL2以上
の引張強さと優れた靱性とを兼備したマルエージ鋼を製
造する点、
をも特徴とするものである。This invention was made based on the above knowledge, and the following steps were taken to prepare marage steel: C: 0.005% or less, Si, Mn and Cr: 0.06% or less in total, Ni: 1
6.5-18.0%, Co: 12.0-15.0%, All: 0.03-0.15%, Mo: 5.3-6.0%, Ti: 1.3 0-1 .50%, N:0.0.
0.0015% or less, Fe and other unavoidable impurities: the remainder, and constituted so that the amount of Mo, the amount of Ti, and the amount of Ti satisfy the formula Mo (%), 250 kgf /wx2
It is characterized by having both the above tensile strength and excellent toughness.
Solid solution treatment by heating and holding at 470 °C for 30 minutes to 3 hours
Aging treatment at ~520°C for 1 to 10 hours, or cold working to a reduction in area of 30 inches or more before the solution treatment, and then subjecting it to a similar heat treatment, or Before the solid solution treatment, cold working with a cross-section reduction rate of 30 inches or more is performed, and the temperature is raised to a solid solution temperature of 830 to 950°C within 10 minutes, held for 1 to 20 minutes, and then cooled at a cooling rate higher than air cooling. A solution treatment of cooling to room temperature is sequentially applied, followed by cold working with an area reduction rate of 30% or more, followed by a similar heat treatment, resulting in a tensile strength of 250kgf/11uIL2 or more and excellent toughness. It is also characterized by the fact that it manufactures marage steel that has the following characteristics.
次いで、この発明においてマルエージ鋼の成分組成、或
いはその製造条件を前述の如くに数値限定した理由を説
明する。Next, the reason why the composition of the marage steel or its manufacturing conditions are numerically limited as described above in this invention will be explained.
A、鋼の成分組成
a) C
Cは、TiCとなって非金属介在物を増やすことによシ
鋼の靱性を低下させるほか、Tiを消費してTiによる
析出強化を妨害する元素であるので可能な限り低減する
ことが望ましいが、その含有量を0、0 O5%以下に
まで低減すれば靱性及び強度に対する悪影響を実用上許
容できる程度にまで抑制できる′ことから、C含有量は
0.OO5%以下と定めた。A. Composition of steel a) C C is an element that reduces the toughness of steel by becoming TiC and increasing nonmetallic inclusions, and also consumes Ti and interferes with precipitation strengthening by Ti. It is desirable to reduce the C content as much as possible, but if the C content is reduced to 0.0 O5% or less, the adverse effects on toughness and strength can be suppressed to a practically acceptable level. OO is set at 5% or less.
b) Si、Mn、及びcr
マルエージ鋼においては、これらの元素はいずれも酸化
物としての介在物を増加させる原因となるものであシ、
これらの合計含有量が0.06%を越えるとJISで規
定される6鋼の清浄度″が0.03%を越えることとな
って、特に引張強さが250 kgf/mm2以上の材
料では著しい靱性低下を招くことから、Si、Mn及び
Crの含有量は合計で0.06%以下と定めた。なお、
好ましくは、これら元素の合計含有量を0.03%以下
に抑えるのが良い。b) Si, Mn, and cr In maraging steel, all of these elements cause an increase in inclusions as oxides.
If the total content exceeds 0.06%, the JIS-specified 6 steel cleanliness exceeds 0.03%, which is particularly noticeable for materials with a tensile strength of 250 kgf/mm2 or higher. The total content of Si, Mn, and Cr was determined to be 0.06% or less since it would cause a decrease in toughness.
Preferably, the total content of these elements is suppressed to 0.03% or less.
c) Ni
N1成分はマルエージ鋼の靱性を積極的に向上させる作
用を有しており、時効処理の後に基地中のNl量が10
%以下になると鋼の靱性は著しく低下してしまう。c) Ni The N1 component has the effect of actively improving the toughness of marage steel, and after aging treatment, the amount of N1 in the matrix decreases to 10
% or less, the toughness of the steel will drop significantly.
ところで、この発明のマルエージ鋼の構成成分であるT
iは、その全てが金属間化合物N i3T:Lとなって
析出強化に寄与するとともにNiを消費するものであり
、またMOも一部がNi 5MOを形成してNiを消費
する析出強化寄与元素であるので、Ni含有量が16.
5’%を下回ると時効処理後の基地中にN1景10チを
確保できなくなってしまう。By the way, T, which is a constituent component of the maraging steel of this invention,
All of i becomes an intermetallic compound N i3T:L, which contributes to precipitation strengthening and consumes Ni, and MO is also an element contributing to precipitation strengthening, which partially forms Ni 5MO and consumes Ni. Therefore, the Ni content is 16.
If it is less than 5'%, it will not be possible to secure 10 N1 views in the base after the aging process.
一方、Ni含有量が18.0%を越えると、固溶化処理
後に室温まで冷却してもマルテンサイト変態が十分に完
了しなくなってオーステナイトが残ってしまい、十分な
強度を確保できなくなる。なぜなら、オーステナイトは
時効強化能を有しないからである。On the other hand, if the Ni content exceeds 18.0%, martensitic transformation will not be completed sufficiently even if the steel is cooled to room temperature after the solution treatment, and austenite will remain, making it impossible to ensure sufficient strength. This is because austenite does not have aging strengthening ability.
このようなことから、Ni含有量は16.5〜18.0
チと定めた。For this reason, the Ni content is 16.5 to 18.0.
It was decided that
d) C。d) C.
CO酸成分は、固溶強化作用、MOを含む金属間化合物
の析出促進作用、並びに時効中に析出するオーステナイ
トの抑制作用があり、高価な元素であることから可能な
限りその含有量を抑えたいものではあるが、析出強化に
寄与するMOとTiの含有量を特定値以上に増やせない
事情もあって、引張強さ250 k17f /ML2を
確保するにはどうしても12,0チ以上含有させる必要
がある。一方、その含有量が15.0%を越えるとかえ
って靱性低下を招く上、′不経済でもあることから、C
o含有量は12.0〜15.0%と定めた。The CO acid component has a solid solution strengthening effect, an effect of promoting the precipitation of intermetallic compounds including MO, and an effect of suppressing austenite that precipitates during aging.Since it is an expensive element, it is desirable to suppress its content as much as possible. However, it is not possible to increase the content of MO and Ti, which contribute to precipitation strengthening, beyond a certain value, so in order to secure a tensile strength of 250 k17f / ML2, it is necessary to contain more than 12.0 Ti. be. On the other hand, if its content exceeds 15.0%, it will not only cause a decrease in toughness but also be uneconomical.
The o content was determined to be 12.0 to 15.0%.
e) M。e) M.
Mo成分は、FeMo及びNi5Moの2種類の析出物
を生成させて、靱性を損うことなく強化に寄与するもの
であるが、その含有量が5.3%未満では所望の強度を
確保することができず、一方、6.096を越えて含有
させると固溶化処理の加熱途中でMOの金属間化合物が
多量に析出することとなって、これが固溶化温度で固溶
せずに靱性を大幅に低下させてしまうので、MO含含有
上5.3〜6.0%と定めた。The Mo component produces two types of precipitates, FeMo and Ni5Mo, and contributes to strengthening without impairing toughness, but if the content is less than 5.3%, the desired strength cannot be secured. On the other hand, if the content exceeds 6.096, a large amount of intermetallic compound of MO will precipitate during heating during solution treatment, and this will not dissolve at the solution temperature and will significantly increase the toughness. Therefore, the MO content was set at 5.3 to 6.0%.
なお、上記未固溶の析出物には、Si%Mn、Cr。Note that the undissolved precipitates include Si%Mn and Cr.
N1等によって形成される非金属介在物と同じような靱
性劣化作用があり、このため、通常の加熱速度(例えば
固溶化温度まで30分〜2時間)による固溶化処理にお
いては860℃を越える保持温度が必要である。ところ
が、860℃を越えると、マルエージ鋼は冷却後の転位
密度が減少し、時効後の強度が低くなってMoによる強
化能は大きく低下する。従って、この点からも、MOO
有量は6.0チ以下に抑える必要がある。It has the same toughness deterioration effect as nonmetallic inclusions formed by N1, etc., and for this reason, in solution treatment at a normal heating rate (for example, 30 minutes to 2 hours to the solution temperature), it is difficult to maintain the temperature above 860℃. Temperature is required. However, when the temperature exceeds 860° C., the dislocation density of the marage steel after cooling decreases, the strength after aging decreases, and the strengthening ability by Mo significantly decreases. Therefore, from this point of view, MOO
The amount must be kept below 6.0 inches.
f)Ti
Ti成分には、Ni3Tiを形成して鋼の強度を向上さ
せる作用があるが、その含有量が1.5%を越えるか、
或いは(MO(96) /Ti (チ)〕の比が3.6
を下回ると、針状のNi 3 T iが結晶粒界へも析
出するようになって靱性が急激に低下してしまう。一方
、Ti含有量が1.3096未満では所望強度が得られ
ないばかりか、時効中に析出するオーステナイトの抑制
効果が小さくなって時効中の軟化(過時効)が促進する
。このようなことから、Ti含有量は1.30〜1.5
0%と定め、かつMOO有量とTi含有量が(MO(%
) / Ti (%)≧3.6〕なる式を満足するよう
に両成分を調整することと定めた。f) Ti The Ti component has the effect of forming Ni3Ti and improving the strength of steel, but if its content exceeds 1.5% or
Or the ratio of (MO(96)/Ti(chi)) is 3.6
If it is less than 100%, acicular Ni 3 Ti will also precipitate at grain boundaries, resulting in a sharp decrease in toughness. On the other hand, if the Ti content is less than 1.3096, not only the desired strength cannot be obtained, but also the effect of suppressing austenite precipitated during aging becomes small, and softening during aging (overaging) is promoted. For this reason, the Ti content is 1.30 to 1.5
0%, and the MOO content and Ti content are (MO(%)
) / Ti (%)≧3.6].
g) ht
Mは、溶鋼中の酸素を取シ除いてTiの酸化を防止しそ
の歩留シを向上させるため、溶製時にTiを添加する前
に加えられる脱酸剤であるが、その含有量が0.03チ
未満では鋼塊の酸素量が15 ppmを越えて酸化物系
の介在物を大きくシ、鋼の靱性低下を招き、一方、0.
15%を越えて含有させると靱性を著しく低下させるN
i、Alを析出するようになることから、AL含有量は
0.03〜0.15%と定めた。g) htM is a deoxidizing agent that is added before adding Ti during melting in order to remove oxygen from molten steel, prevent oxidation of Ti, and improve its yield. When the amount of oxygen is less than 0.03 ppm, the amount of oxygen in the steel ingot exceeds 15 ppm, resulting in large oxide inclusions and a decrease in the toughness of the steel.
If the N content exceeds 15%, the toughness will be significantly reduced.
i. Since Al comes to be precipitated, the AL content is determined to be 0.03 to 0.15%.
h) N
マルエージ鋼は通常真空溶解にて溶製されるためそのN
量は25〜35 ppm程度とかなシ低く、従ってこの
微量Nの作用については従来全く注目されていなかった
。ところが、本発明者等の研究によって、マルエージ鋼
においては極〈わずかな量のNによってもその靱性が大
きく左右され、超高張力鋼の靱性変動の有力な原因とな
るとの事実が判明した。h) N Marage steel is usually produced by vacuum melting, so its N
The amount is very low, about 25 to 35 ppm, and therefore the effect of this small amount of N has not received any attention in the past. However, research conducted by the present inventors has revealed that the toughness of marage steel is greatly affected by even a very small amount of N, and is a significant cause of variations in toughness of ultra-high tensile steel.
即ち、Nは鋼中においてその殆んど全てがTiNなる非
金属介在物となっており、これが清浄度を悪くする主因
であることは知られていたが、本発明者等の研究は、N
は単にTiNとなって靱性を劣化させているのではなく
、生成したTiNが点列状に配列されて、これがあたか
も鋼中の欠陥(割れ)と同様の役割を演じて靱性を劣化
させていることを明らかにしたのである。In other words, almost all N in steel is in the form of non-metallic inclusions of TiN, and it has been known that this is the main cause of poor cleanliness.
does not simply turn into TiN and deteriorate toughness, but the generated TiN is arranged in a dot array, which plays the same role as defects (cracks) in steel and deteriorates toughness. This made it clear.
しかも、N含有量:o、oo15%(15ppm)を境
にして、それよりもN含有量が多いと上記点列状介在物
が急増し、逆にN含有量が前記値以下であると点列状に
配列した介在物は殆んどなくなって分散状態となってし
まうことも確認された。Moreover, when the N content is higher than 15% (15 ppm) of N content: o, oo, the above-mentioned dot-like inclusions increase rapidly, and conversely, when the N content is below the above value, the dot-like inclusions increase rapidly. It was also confirmed that the inclusions arranged in rows almost disappeared and became dispersed.
第1図は、C:0.003%以下、 Si+Mn+ C
r :0.03チ以下、P:0.003%以下、S:0
.003チ以下、 Ni: 17.0〜17.3%、C
o:14.0〜14.4%、Mo: 5.6〜5.7%
、Ti: 1.32〜1.35%、Al二0.06〜0
.08%、残部:Fe及び不純物から成る本発明鋼と、
C:0.006%、S i+ kJn −1−Cr:0
.05%、P:0.003%以下、S:0.003チ以
下、Ni: 18.0〜18.4%、Co:12,0〜
12.3 To%Mo: 4.2〜4.4%、’ri:
1.55〜1.60%、Al : 0.04〜0.0
6%、残部:Fe及び不純物から成る比較鋼について(
いずれも、840℃で1時間加熱保持する固溶化処理と
、500℃で4時間の時効処理を施したもの)、”鋼中
N量″と”切欠付引張強さ”及び’ TiN点列状介在
物の最大長さく列の最大長さで、ASTMの介在物測定
法におけるD法に準じて測定)″との関係を示したグラ
フであるが、この第1図からも、鋼中N量が0.001
5%以下(15ppm以下)、好ましくは0、0 OL
OS以下(10ppm以下)になると切欠付引張強さ
く靱性)が急激に改善される仁とがわかる。なお、この
場合の切欠付引張強さは、比較鋼が240〜246 k
gf/sm2程度であるのに対して、本発明鋼では26
5〜269 kgf /IIjE2の高い値で、しかも
靱性が低強度の比較鋼より高いことも確認できる。Figure 1 shows C: 0.003% or less, Si+Mn+C
r: 0.03cm or less, P: 0.003% or less, S: 0
.. 003 or less, Ni: 17.0-17.3%, C
o: 14.0-14.4%, Mo: 5.6-5.7%
, Ti: 1.32-1.35%, Al2 0.06-0
.. 08%, balance: steel of the present invention consisting of Fe and impurities;
C: 0.006%, Si+kJn-1-Cr: 0
.. 05%, P: 0.003% or less, S: 0.003% or less, Ni: 18.0-18.4%, Co: 12.0-
12.3 To%Mo: 4.2-4.4%,'ri:
1.55-1.60%, Al: 0.04-0.0
Regarding comparative steel consisting of 6%, balance: Fe and impurities (
Both were subjected to solid solution treatment at 840°C for 1 hour and aging treatment at 500°C for 4 hours), ``N content in steel'', ``tensile strength with notches'', and ``TiN dot arrangement''. This is a graph showing the relationship between the maximum length of inclusions and the maximum length of a row of inclusions (measured according to the D method in the ASTM inclusion measurement method). is 0.001
5% or less (15 ppm or less), preferably 0,0 OL
It can be seen that when the content is below the OS (10 ppm or below), the notched tensile strength and toughness are rapidly improved. In addition, the tensile strength with notches in this case is 240 to 246 k for the comparative steel.
gf/sm2, whereas in the steel of the present invention it is about 26 gf/sm2.
It can be confirmed that the steel has a high value of 5 to 269 kgf/IIjE2, and that the toughness is higher than that of the comparative steel with low strength.
以上のような理由から、N含有量は0.0015チ以下
と定めた。For the above reasons, the N content was determined to be 0.0015 inches or less.
なお、不純物としてのP及びSは、鋼の靱性劣化防止の
意味から各々の含有量を0.01%以下、好ましくは0
.OO5S以下に調整するのが良い。In addition, the content of P and S as impurities should be 0.01% or less, preferably 0.01%, to prevent deterioration of the toughness of the steel.
.. It is best to adjust it to OO5S or less.
B、製造条件
a)時効処理の前の固溶化処理条件
この固溶化処理では、処理温度が8oo℃未満であった
シその処理時間が30分未満であると、鋼の強度は高く
なるが未固溶のMoを含む金属間化合物が生成し靱性が
極めて低くなり、一方、固溶化処理温度が860℃を越
えると結晶粒粗大化による靱性低下を来たし、また3時
間を越える加熱保持では強度低下を招くようになる。従
って、時効処理の前の固溶化処理では、その保持温度を
800〜860℃と、そして保持時間を30分〜3時間
とそれぞれ定めた。なお、強度と靱性とが共に優れた値
を得る最適固溶化処理温度はMOにより変化し、5.3
%では800〜820℃、6チでは840〜860℃で
ある。B. Manufacturing conditions a) Solution treatment conditions before aging treatment In this solution treatment, the treatment temperature was less than 80°C, and if the treatment time was less than 30 minutes, the strength of the steel would increase, but the Intermetallic compounds containing solid solution Mo are formed, resulting in extremely low toughness.On the other hand, when the solution treatment temperature exceeds 860°C, toughness decreases due to coarsening of crystal grains, and when heated for more than 3 hours, strength decreases. began to invite Therefore, in the solution treatment before the aging treatment, the holding temperature was set at 800 to 860°C, and the holding time was set at 30 minutes to 3 hours. The optimum solution treatment temperature for obtaining excellent values for both strength and toughness varies depending on the MO, and is 5.3
% is 800-820°C, and 6-chi is 840-860°C.
b)時効処理条件
時効温度が470℃未満であったシ時効時間が1時間未
満であると、 MoとTiによる析出強化が十分でな(
,250kgf /mm2以上の引張強さを確保するこ
とができない。一方、時効温度が520℃を越えたり、
時効時間が10時間を越えると、鋼中にオーステナイト
が析出し過時効となってやはり所望強度を確保できなく
なる。このようなことから、時効処理温度は470〜5
20℃、時効処理時間は1〜10時間と定めた。b) Aging treatment conditions When the aging temperature was less than 470°C and the aging time was less than 1 hour, precipitation strengthening by Mo and Ti was insufficient (
, it is not possible to secure a tensile strength of 250 kgf/mm2 or more. On the other hand, if the aging temperature exceeds 520℃,
If the aging time exceeds 10 hours, austenite will precipitate in the steel resulting in over-aging, making it impossible to secure the desired strength. For this reason, the aging treatment temperature is 470~5
The aging treatment time was set at 20° C. for 1 to 10 hours.
C)冷間加工時の断面減少率
固溶化処理前の冷間加工は固溶化後の鋼の結晶粒を著し
く微細にして靱性を改善するものであるが、冷間加工時
の断面減少率が30%未満では結晶粒の微細化が十分で
なく、冷間加工による効果は特に得られない。また1回
の冷間加工と固溶化処理の組合せによる結晶粒微細化処
理を2回組合せると更に効果的である。C) Area reduction rate during cold working Cold working before solution treatment significantly refines the grains of the steel after solution treatment and improves toughness, but the area reduction rate during cold working If it is less than 30%, grain refinement is not sufficient and no particular effect can be obtained by cold working. Furthermore, it is even more effective to combine two grain refinement treatments by combining one cold working and one solid solution treatment.
d)固溶化処理を2回行う場合の、第1回目の処理条件
2回の固溶化処理を行う場合、単純に冷間加工と800
〜86CICで0.5〜3時間の固溶化処理を繰返して
も良いが、第1回目の固溶化処理を急速加熱と短時間処
理とで行うと鋼の結晶粒は更に微細になシ強度及び靱性
が共に一層向上する。そして、この効果は、加熱時の昇
温に要する時間が10分を越えたり、均熱保持時間が2
0分を越えたり、或いは加熱温度が950℃を越えると
なくなってしまう(但し、靱性が低下することはなへ)
一方、均熱保持時間が1分未満であったシ、均熱温度が
830℃未満であったりすると、鋼の強度は高くなるが
靱性は著しく低下する。なお、固溶化処理後の冷却は、
空冷以上であれば強度・靱性を十分に確保することがで
きる。d) First treatment conditions when performing solution treatment twice When performing solution treatment twice, simply cold working and 800
You may repeat the solution treatment for 0.5 to 3 hours at ~86CIC, but if the first solution treatment is performed with rapid heating and short time treatment, the grains of the steel will become finer and the strength and strength will increase. Toughness is further improved. This effect may occur if the time required to raise the temperature during heating exceeds 10 minutes, or if the soaking time is 2.
It will disappear if the heating time exceeds 0 minutes or the heating temperature exceeds 950℃ (However, the toughness will not decrease)
On the other hand, if the soaking time is less than 1 minute or the soaking temperature is less than 830° C., the strength of the steel increases, but the toughness significantly decreases. In addition, cooling after solution treatment is
If it is air cooled or higher, sufficient strength and toughness can be ensured.
従って、固溶化処理を2回行う場合の第1回目の処理条
件を、830〜950℃の固溶化温度まで10分以内に
昇温させて1〜20分間保持した後空冷以上の冷却速度
で空温まで冷却することと定めた。Therefore, when performing solution treatment twice, the first treatment condition is to raise the temperature to a solution treatment temperature of 830 to 950°C within 10 minutes, hold it for 1 to 20 minutes, and then air cool at a cooling rate higher than that of air cooling. It was decided to cool it down to room temperature.
次に、この発明を実施例によシ、比較例と対比しながら
具体的に説明する。Next, the present invention will be specifically explained using examples and comparing with comparative examples.
〈実施例〉
まず、5ookyの真空溶解によって得られた鋼塊を電
極として消耗電極式高真空アーク再溶解することで第1
表に示されるA鋼を製造するとともに、これとは別に1
50kgの真空溶解にて第1表に示されるB −L鋼を
製造した。<Example> First, a steel ingot obtained by vacuum melting of 5ooky was used as an electrode for remelting with a consumable electrode type high vacuum arc.
In addition to manufacturing the A steel shown in the table, in addition to this, 1
B-L steel shown in Table 1 was manufactured by vacuum melting 50 kg.
各々の鋼塊は、次工程で必要な熱間圧延用素材を作成す
るのに必要な鍛造工程の間に1200〜1250℃の均
質化処理(鍛造前、鍛造中、鍛造後の保持時間の総計を
15〜30時間とする)を行い、 MoやTiに起因す
るミクロ偏析を完全になくした。Each steel ingot is homogenized at 1200-1250℃ during the forging process necessary to create the hot-rolling material required in the next process (total holding time before, during, and after forging). (for 15 to 30 hours) to completely eliminate microsegregation caused by Mo and Ti.
次いで、熱間圧延用素材を1200〜1250℃に加熱
後圧延を開始し、7〜loB厚の熱延鋼板を得た。Next, the hot rolling material was heated to 1200 to 1250°C and rolling was started to obtain a hot rolled steel plate having a thickness of 7 to loB.
続いて、外削を施した上記各熱延鋼板に第2表で示す如
き処理を行い、o、2〜2.5N厚の板製品を製造した
。Subsequently, each of the above-mentioned hot-rolled steel sheets subjected to external cutting was subjected to the treatments shown in Table 2 to produce plate products having a thickness of 0.2 to 2.5N.
これらの各製品について、その機械的性質並びにTiN
点列状介在物の最大長さを測定し、得られた結果を第2
表に併せて示した。For each of these products, its mechanical properties and TiN
Measure the maximum length of the dot-like inclusions and use the obtained results as a second
It is also shown in the table.
な訃、機械的性質は、1.0mmを越える製品について
は1.0 mxに減厚して測定し、また1、 Orat
未滴の製品の伸びについては4へ(但し、Aは断面積)
によりゲージ長さを調整して比較を行った。The thickness and mechanical properties of products exceeding 1.0 mm are measured by reducing the thickness to 1.0 mx.
For elongation of undropped product, go to 4 (however, A is the cross-sectional area)
Comparisons were made by adjusting the gauge length.
更に、引張試験片は平行部幅が5.OBで長さが20順
のものを、そして切欠付引張試験片は平行部幅が7uで
切欠底間が5R1の板状試験片(両端の切欠深さが1.
0 vanで、応力集中係数は3.5)を用いた。Furthermore, the tensile test piece has a parallel part width of 5. The tensile test piece with a notch is a plate-shaped test piece with a parallel part width of 7u and a distance between the notch bottoms of 5R1 (the notch depth at both ends is 1.5mm).
0 van and a stress concentration factor of 3.5).
そして、TiN点列状状介在物の最大長さは、ASTM
の介在物測定法におけるD法に準じて測定した。The maximum length of the TiN dot array-like inclusion is determined by ASTM
It was measured according to method D in the inclusion measurement method.
第2表に示される結果からも、本発明に係る鋼は引張強
さくT、S、) : 250 kgf/mm2以上を有
するとともに、該引張強さを上回るほどの良好な切欠引
張強さくN、T、S、)を示すことが明らかである。た
だ、本発明の条件を満足する成分組成の鋼であっても、
その製造条件が適当でないと十分な特性を得られないこ
とが比較例から確認できる。From the results shown in Table 2, the steel according to the present invention has a tensile strength T, S, ): 250 kgf/mm2 or more, and a good notch tensile strength N, which exceeds the tensile strength. T, S, ). However, even if the steel has a composition that satisfies the conditions of the present invention,
It can be confirmed from the comparative examples that sufficient characteristics cannot be obtained unless the manufacturing conditions are appropriate.
また、成分組成が本発明で規定する条件から外れた従来
鋼(特に、Mo、Ti及びNが上限値を越えているもの
)は、十分な靱性値を示さないことも明らかである。Furthermore, it is clear that conventional steels whose compositions do not meet the conditions specified in the present invention (particularly those in which Mo, Ti, and N exceed the upper limit values) do not exhibit sufficient toughness values.
第2図は、このようにして測定された本発明鋼と従来鋼
との特性を比較しグラフ化したものであるが、この第2
図からは本発明鋼の優れた性能が7−目瞭然である。Figure 2 is a graph comparing the properties of the steel of the present invention and the conventional steel measured in this way.
The excellent performance of the steel of the present invention is clearly apparent from the figure.
く総括的な効果〉
上述のように、この発明によれば、250 kgf/m
2以上の引張強さを示すにもかかわらず、非常に優れた
靱性をも兼備したマルエージ鋼が得られるなど、産業上
有用な効果がもたらされるのである。Overall effect> As mentioned above, according to the present invention, 250 kgf/m
This brings about industrially useful effects, such as the ability to obtain marage steel that exhibits a tensile strength of 2 or more and also has extremely excellent toughness.
第1図は、鋼中N量と切欠付引張強さ及びTiN点列状
介在物の最大長さとの関係を示すグラフ、第2図は、本
発明鋼と従来鋼との特性を比較したグラフである。
出願人 住友金属工業株式会社
代理人 富 1) 和 夫 ほか2名剖すθN+
(pr:)m)Figure 1 is a graph showing the relationship between the amount of N in steel, the tensile strength with notches, and the maximum length of TiN dot array inclusions, and Figure 2 is a graph comparing the properties of the steel of the present invention and conventional steel. It is. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and 2 others autopsy θN+
(pr:)m)
Claims (4)
6.5〜18.0%、 Co:12.0〜15.0%、 Al:0.03〜0.15%、 Mo:5.3〜6.0%、 Ti:1.30〜1.50%、 N:0.0015%以下、 Fe及び他の不可避的不純物:残り から成るとともに、Mo量とTi量とが、式Mo(%)
/Ti(%)≧3.6 を満足していることを特徴とする、引張強さが250k
gf/mm^2以上で靱性の良好なマルエージ鋼。(1) In terms of weight percentage, C: 0.005% or less, Si, Mn and Cr: 0.06% or less in total, Ni: 1
6.5-18.0%, Co: 12.0-15.0%, Al: 0.03-0.15%, Mo: 5.3-6.0%, Ti: 1.30-1. 50%, N: 0.0015% or less, Fe and other unavoidable impurities: the remainder, and the amount of Mo and the amount of Ti are expressed by the formula Mo (%)
/Ti (%)≧3.6, and has a tensile strength of 250k.
Marage steel with good toughness of gf/mm^2 or more.
6.5〜18.0%、 Co:12.0〜15.0%、 Al:0.03〜0.15%、 Mo:5.3〜6.0%、 Ti:1.30〜1.50%、 N:0.0015%以下、 Fe及び他の不可避的不純物:残り から成るとともにMo量とTi量とが、式 Mo(%)/Ti(%)≧3.6 を満足している鋼に、800〜860℃で30分〜3時
間加熱保持する固溶化処理と、470〜520℃での1
〜10時間の時効処理とを施すことを特徴とする、引張
強さが250kgf/mm^2以上で靱性の良好なマル
エージ鋼の製造方法。(2) In terms of weight percentage, C: 0.005% or less, Si, Mn and Cr: 0.06% or less in total, Ni: 1
6.5-18.0%, Co: 12.0-15.0%, Al: 0.03-0.15%, Mo: 5.3-6.0%, Ti: 1.30-1. 50%, N: 0.0015% or less, Fe and other unavoidable impurities: the remainder, and the amount of Mo and the amount of Ti satisfy the formula Mo (%) / Ti (%) ≧ 3.6 Steel is subjected to solution treatment by heating and holding at 800 to 860°C for 30 minutes to 3 hours, and by heating and holding at 470 to 520°C.
A method for producing marage steel having a tensile strength of 250 kgf/mm^2 or more and good toughness, which comprises subjecting it to aging treatment for ~10 hours.
6.5〜18.0%、 Co:12.0〜15.0%、 Al:0.03〜0.15%、 Mo:5.3〜6.0%、 Ti:1.30〜1.50%、 N:0.0015%以下、 Fe及び他の不可避的不純物:残り から成るとともにMo量とTi量とが、式 Mo(%)/Ti(%)≧3.6 を満足している鋼に、断面減少率:30%以上の冷間加
工を加え、その後、800〜860℃で30分〜3時間
加熱保持する固溶化処理と、470〜520℃での1〜
10時間の時効処理とを施すことを特徴とする、引張強
さが250kgf/mm^2以上で靱性の良好なマルエ
ージ鋼の製造方法。(3) In terms of weight percentage, C: 0.005% or less, Si, Mn and Cr: 0.06% or less in total, Ni: 1
6.5-18.0%, Co: 12.0-15.0%, Al: 0.03-0.15%, Mo: 5.3-6.0%, Ti: 1.30-1. 50%, N: 0.0015% or less, Fe and other unavoidable impurities: the remainder, and the amount of Mo and the amount of Ti satisfy the formula Mo (%) / Ti (%) ≧ 3.6 Steel is subjected to cold working with an area reduction rate of 30% or more, followed by solution treatment in which the steel is heated and held at 800 to 860°C for 30 minutes to 3 hours, and then heated at 470 to 520°C for 1 to 3 hours.
A method for producing marage steel having a tensile strength of 250 kgf/mm^2 or more and good toughness, the method comprising subjecting it to an aging treatment for 10 hours.
6.5〜18.0%、 Co:12.0〜15.0%、 Al:0.03〜0.15%、 Mo:5.3〜6.0%、 Ti:1.30〜1.50%、 N:0.0015%以下、 Fe及び他の不可避的不純物:残り から成るとともにMo量とTi量とが、式 Mo(%)/Ti(%)≧3.6 を満足している鋼に、断面減少率:30%以上の冷間加
工と、830〜950℃の固溶化温度まで10分以内に
昇温させて1〜20分間保持した後空冷以上の冷却速度
で室温まで冷却する固溶化処理とを順次施し、次いで断
面減少率:30%以上の冷間加工と800〜860℃で
30分〜3時間加熱保持する固溶化処理とを再度施して
から、470〜520℃で1〜10時間時効処理するこ
とを特徴とする、引張強さが250kgf/mm^2以
上で靱性の良好なマルエージ鋼の製造方法。(4) In terms of weight percentage, C: 0.005% or less, Si, Mn and Cr: 0.06% or less in total, Ni: 1
6.5-18.0%, Co: 12.0-15.0%, Al: 0.03-0.15%, Mo: 5.3-6.0%, Ti: 1.30-1. 50%, N: 0.0015% or less, Fe and other unavoidable impurities: the remainder, and the amount of Mo and the amount of Ti satisfy the formula Mo (%) / Ti (%) ≧ 3.6 Steel is subjected to cold working with an area reduction rate of 30% or more, heated to a solution temperature of 830 to 950°C within 10 minutes, held for 1 to 20 minutes, and then cooled to room temperature at a cooling rate higher than air cooling. After applying solid solution treatment in sequence, cold working with an area reduction rate of 30% or more and solution treatment of heating and holding at 800 to 860°C for 30 minutes to 3 hours are performed again, and then 1 time at 470 to 520°C. A method for producing marage steel having a tensile strength of 250 kgf/mm^2 or more and good toughness, the method comprising aging treatment for ~10 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29500085A JPS62156250A (en) | 1985-12-27 | 1985-12-27 | High strength and high toughness maraging steel and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29500085A JPS62156250A (en) | 1985-12-27 | 1985-12-27 | High strength and high toughness maraging steel and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62156250A true JPS62156250A (en) | 1987-07-11 |
Family
ID=17815039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29500085A Pending JPS62156250A (en) | 1985-12-27 | 1985-12-27 | High strength and high toughness maraging steel and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62156250A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002083959A1 (en) * | 2001-04-06 | 2002-10-24 | Honda Giken Kogyo Kabushiki Kaisha | Steel material prodction method |
JP2006283085A (en) * | 2005-03-31 | 2006-10-19 | Hitachi Metals Ltd | Method for producing spring material |
-
1985
- 1985-12-27 JP JP29500085A patent/JPS62156250A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002083959A1 (en) * | 2001-04-06 | 2002-10-24 | Honda Giken Kogyo Kabushiki Kaisha | Steel material prodction method |
US6858099B2 (en) | 2001-04-06 | 2005-02-22 | Honda Giken Kogyo Kabushiki Kaisha | Steel material production method |
JP2006283085A (en) * | 2005-03-31 | 2006-10-19 | Hitachi Metals Ltd | Method for producing spring material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2536673B2 (en) | Heat treatment method for titanium alloy material for cold working | |
JPH08283915A (en) | Austenitic stainless steel excellent in workability | |
JP3422865B2 (en) | Method for producing high-strength martensitic stainless steel member | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
JPS62156250A (en) | High strength and high toughness maraging steel and its production | |
JPH06287635A (en) | Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding | |
JPS5911658B2 (en) | High efficiency welding low temperature steel | |
JP2001020035A (en) | Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production | |
JP3297010B2 (en) | Manufacturing method of nearβ type titanium alloy coil | |
JPH07216451A (en) | Production of stainless steel material having high welding softening resistance, high strength, and high ductility | |
JPS609830A (en) | Production of cold rolled steel plate having excellent deep drawability without aging | |
JP2743765B2 (en) | Cr-Mo steel plate for pressure vessel and method for producing the same | |
JPH05171285A (en) | Production of extremely soft steel sheet for vessel reduced in low anisotropy and having ageing resistance | |
EP4397781A1 (en) | Hot-rolled ferritic stainless steel sheet having excellent formability and method for manufacturing same | |
JPS62139823A (en) | Production of cold rolled steel sheet for deep drawing | |
JPH09310155A (en) | Austenitic stainless steel excellent in surface characteristic after working | |
JPS61246327A (en) | Manufacture of cold rolled steel sheet for extremely deep drawing | |
JP3297090B2 (en) | Processing method of high tensile strength steel with little increase in yield ratio | |
JP2920849B2 (en) | Manufacturing method for high strength structural steel sheet with excellent low temperature toughness and high Young's modulus | |
JPS59166650A (en) | Steel for cold rolled steel plate | |
KR20150074694A (en) | Ferritic stainless steel with excellent hot workability and method of manufacturing the same | |
JP3000860B2 (en) | Manufacturing method of austenitic stainless steel plate | |
JPH05195079A (en) | Production of cold rolled steel sheet combining superior deep drawability with resistance to secondary working brittleness | |
JPS6350424A (en) | Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability | |
JPH07138638A (en) | Production of high-strength hot rolled steel sheet having good workability and weldability |