[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62156172A - Underwater antifouling coating agent - Google Patents

Underwater antifouling coating agent

Info

Publication number
JPS62156172A
JPS62156172A JP29891885A JP29891885A JPS62156172A JP S62156172 A JPS62156172 A JP S62156172A JP 29891885 A JP29891885 A JP 29891885A JP 29891885 A JP29891885 A JP 29891885A JP S62156172 A JPS62156172 A JP S62156172A
Authority
JP
Japan
Prior art keywords
parts
coating
monomer
copolymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29891885A
Other languages
Japanese (ja)
Other versions
JPH0560503B2 (en
Inventor
Shigeru Masuoka
舛岡 茂
Hiroshi Doi
浩 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP29891885A priority Critical patent/JPS62156172A/en
Priority to NO865269A priority patent/NO177464C/en
Priority to CA000526215A priority patent/CA1274649A/en
Priority to GB8630822A priority patent/GB2188938B/en
Publication of JPS62156172A publication Critical patent/JPS62156172A/en
Priority to US07/209,813 priority patent/US4883852A/en
Publication of JPH0560503B2 publication Critical patent/JPH0560503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE:The titled coating agent suitable for ships, fishing nets, etc., having small sliding angle on the surface of film of coating and improved antifouling properties, comprising a polymer containing a polydimethylsiloxane group, etc., at the side chain and a copolymer of a vinyl polymerizable monomer. CONSTITUTION:The aimed coating agent comprising (A) one or more polymers of a monomer [e.g., trimethylsiloxanethyl (meth)acrylate, etc.,] shown by formula (X is H or methyl group; n is 2-4; m is average polymerization degree and 0-70) and/or (B) a copolymer having <=70wt% (based on total amount of the components A and B) of one or more vinyl polymerizable monomer (e.g., methyl methacrylate, etc.,) copolymerizable with the component A as essential compo nent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は側鎖にポリジメチルシロキサン基および/また
はトリメチルシリコン基を有する重合体を含む水中防汚
被覆剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an underwater antifouling coating containing a polymer having a polydimethylsiloxane group and/or a trimethylsilicon group in its side chain.

[従来の技術〕 海水に浸漬されている船底、ブイ、漁網、冷却のための
各種吸排水管などの海中物体の表面には、フジッボ、セ
ルプラ、イガイ、藻類などの付着によって種々の支障が
起こる。それらの生物による汚損を防止するために、海
水浸漬物の表面には水中防汚被覆剤が塗布されることは
よく知られている。
[Prior Art] Various problems occur on the surfaces of underwater objects immersed in seawater, such as ship bottoms, buoys, fishing nets, and various intake and drainage pipes for cooling, due to the adhesion of Fujibo, Serpura, mussels, algae, and the like. It is well known that an underwater antifouling coating agent is applied to the surface of objects immersed in seawater in order to prevent staining by these organisms.

水中防汚被覆剤としては、生物に対して防汚効果を持ち
、かつ海水中で微溶解性のある有機錫共重合体、亜酸化
銅などの防汚剤を用いたものが多く使用されている。し
かしながら、それらの場合には、海水中に有害物質が溶
出し、海水の汚染の一因となり、魚貝類への影響も無視
し得ないものとなる場合がある。
Many underwater antifouling coatings use antifouling agents such as organic tin copolymers and cuprous oxide, which have an antifouling effect on living things and are slightly soluble in seawater. There is. However, in these cases, harmful substances may be eluted into the seawater, contributing to seawater pollution, and the effects on fish and shellfish may not be negligible.

そこで、このような防汚剤を用いず、かつ海水へ溶解し
ない水中防汚被覆剤が要望されるようになった。このよ
うな無毒型の水中防汚被覆剤としては、触媒または水分
の作用で加硫し、あるいは触媒と水分の両方の作用で加
硫して三次元架橋し、膜形成するシリコーンゴムを使っ
たものがあげられる。
Therefore, there has been a demand for an underwater antifouling coating that does not use such an antifouling agent and does not dissolve in seawater. Such non-toxic underwater antifouling coatings use silicone rubber that is vulcanized by the action of a catalyst or moisture, or vulcanized by the action of both a catalyst and moisture to three-dimensionally crosslink and form a film. Things can be given.

例えば特公昭53−35974号公報には加硫シリコー
ンゴムを被覆剤として用いているものが開示されており
、また特開昭51−96830号公報にはヒドロキシル
末端基を有するオリゴマーtl’lJコーンゴムとシリ
コーン油との混合物を使ったものが示されている。さら
に、特開昭53−79980号公報には加硫シリコーン
ゴムと金属を含まずかつシリコンを含まない流動性の有
機化合物との混合物が示されている。さらにまた、特公
昭60−3433号公報にはオリゴマー状常温硬化形シ
リコーンゴム(例えば信越化学工業株式会社の商品名K
E45TS、KE44RTVなと)と、流動パラフィン
またはペトロラタムとを混合した海洋生物付着防止用塗
料が示されている。
For example, Japanese Patent Publication No. 53-35974 discloses a coating using vulcanized silicone rubber, and Japanese Patent Application Publication No. 51-96830 discloses an oligomer tl'lJ corn rubber having a hydroxyl terminal group. A mixture with silicone oil is shown. Further, JP-A-53-79980 discloses a mixture of vulcanized silicone rubber and a fluid organic compound that does not contain metal or silicone. Furthermore, Japanese Patent Publication No. 60-3433 discloses oligomeric room-temperature curing silicone rubber (for example, Shin-Etsu Chemical Co., Ltd.'s product name K).
E45TS, KE44RTV, etc.) and liquid paraffin or petrolatum are mixed to prevent marine biofouling.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

これら従来公知の水中防汚被覆剤は、いずれもシリコー
ンゴム被覆表面の滑り性を利用して、上記表面への水中
生物の付着を防止するようにしたものであるが、上記被
膜を形成するためのシリコーンゴムは使用時に三次元架
橋して膜形成を行う点で以下の問題を有している。
All of these conventionally known underwater antifouling coatings utilize the slipperiness of the silicone rubber coated surface to prevent aquatic organisms from adhering to the surface. Silicone rubber has the following problem in that it undergoes three-dimensional crosslinking to form a film during use.

第一には、塗装後の硬化性があげられる。すなわち、大
気中の水分による架橋剤の加水分解、または温度の影響
を受は易い触媒が架橋剤へ作用することによって始まる
縮合反応によりシリコーンゴムの硬化が起こるため、大
気の湿度、温度により硬化速度ならびに硬化強度に違い
がでてきて、膜の均一性が得られにくくなる。例えば特
公昭60−3433号公報に示されている空気中の湿分
の作用で硬化し皮膜を形成するオリゴマー状常温硬化形
シリコーンゴムなどを用いた水中防汚被覆剤を被塗面に
塗布したとき、湿気を含む大気と接している被覆表面よ
り硬化が起こり、順次内部へ進行していくことになるか
ら、はじめに表面が硬化することによりその後の水分の
透過が押さえられ、内部の水分不足により深部の硬化が
起こりにくく、または架橋密度が低くなる結果、膜の均
一性を得ることが難しくなると考えられる。このことよ
り膜全体として被塗物からの剥離、ふくれなどの密着不
良が起こることになる。また、水分の内部への浸透が遅
いため硬化に要する時間も長くなる。
The first is curing properties after painting. In other words, curing of silicone rubber occurs through hydrolysis of the crosslinking agent due to atmospheric moisture, or through a condensation reaction initiated by the action of a temperature-sensitive catalyst on the crosslinking agent, so the curing rate varies depending on atmospheric humidity and temperature. In addition, differences in curing strength occur, making it difficult to obtain uniformity of the film. For example, as shown in Japanese Patent Publication No. 60-3433, an underwater antifouling coating agent using an oligomeric room-temperature curing silicone rubber that hardens under the action of moisture in the air to form a film is applied to the surface to be coated. At this time, hardening occurs from the surface of the coating that is in contact with the humid atmosphere and progresses to the inside.The hardening of the surface first prevents moisture from passing through, and the moisture inside is insufficient. It is thought that it becomes difficult to obtain uniformity of the film as a result of hardening in deep portions being difficult to occur or crosslinking density becoming low. This results in poor adhesion of the film as a whole, such as peeling from the coated object and blistering. Furthermore, since moisture penetrates into the interior slowly, the time required for curing becomes longer.

例えば高温、高湿な場所でこのような水中防汚被覆剤が
使用されたとき硬化は速いが、架橋剤の加水分解だけが
優先し、架橋密度があがらず、物性の低下をきたすこと
になる。また、乾燥地では大気中の水分が少ないため架
橋剤の加水分解が起こりにくく膜の硬化が非常に遅くな
る。そのため塗装済の物体を短時間には動かせないとい
った問題が起きる。それを防ぐために硬化促進剤として
錫化合物、白金などの触媒が用いられる場合があるが、
低湿地ではそれらの触媒作用が低下するため架橋剤によ
る縮合反応が起こりにくく膜の硬化が非常に遅くなる。
For example, when such an underwater antifouling coating is used in a high temperature and high humidity location, curing is fast, but only the hydrolysis of the crosslinking agent takes priority, and the crosslinking density does not increase, resulting in a decrease in physical properties. . Furthermore, in dry areas, since there is little moisture in the atmosphere, hydrolysis of the crosslinking agent is difficult to occur and the curing of the film is extremely slow. Therefore, a problem arises in that painted objects cannot be moved in a short period of time. In order to prevent this, catalysts such as tin compounds and platinum are sometimes used as curing accelerators.
In low-lying wetlands, their catalytic activity decreases, making it difficult for the condensation reaction by the crosslinking agent to occur, resulting in extremely slow curing of the film.

第二に、上塗り性の問題がある。通常上塗りされる被覆
剤の溶媒が下塗り塗面を若干浸して界面で相部じること
により層間密着性が良くなるが、シリコーンゴムへの上
塗り性は下地のシリコーンゴムが三次元架橋して硬化す
るため、再塗装された上塗りの被覆剤がシリコーンゴム
表面を浸すことがなく、そのため密着性が劣る。
Second, there is the problem of overcoatability. Normally, the solvent of the overcoat coating material slightly soaks the undercoat surface and forms a layer at the interface, which improves interlayer adhesion, but overcoatability on silicone rubber is affected by three-dimensional crosslinking of the base silicone rubber, which hardens. Therefore, the reapplied top coat does not soak the silicone rubber surface, resulting in poor adhesion.

第三に、可使時間の問題があげられる。実際の塗装作業
は、被塗物の大きさや構造の複雑さによって作業時間が
予定より長くなったり、時には塗装開始後に雨が降って
被塗面が濡れたり、大気が高湿度になって塗装が中断さ
れ、既に開缶されて撹拌された塗料を予定より長時間置
かなければならないような状況になってくる場合がある
。このような場合に可使時間のある被覆剤は塗装作業上
はなはだ不便である。
Thirdly, there is the issue of pot life. Actual painting work can take longer than planned due to the size and complexity of the object to be painted, and sometimes it rains after painting has begun and the surface to be painted gets wet, or the atmosphere becomes too humid and the painting process is delayed. This may lead to a situation where the paint, which has already been opened and stirred, has to sit for a longer time than planned. In such cases, coating materials with a pot life are extremely inconvenient in painting operations.

第四に、貯蔵安定性の問題があげられる。水中防汚被覆
剤は製造されてから使用されるまで長期保存されること
があるが、湿気などで硬化するものは製造時に乾燥窒素
ガスを封入しなければ貯蔵安定性が短いものとなる。ま
た、−開缶の蓋を開けると大気中の湿気が入って被覆剤
表面の硬化や増粘を起こし再使用することが難しくなる
というような問題があった。
Fourth, there is the issue of storage stability. Underwater antifouling coatings may be stored for a long period of time from the time they are manufactured until they are used, but those that harden due to moisture have short storage stability unless dry nitrogen gas is sealed during manufacture. Another problem is that when the lid of an open can is opened, moisture from the atmosphere enters, causing the surface of the coating to harden and thicken, making it difficult to reuse.

〔問題点を解決するための手段] 本発明者らは、以上の点につき鋭意研究した結果、シリ
コーンゴム単独もしくはシリコーンゴムとシリコーンオ
イルやパラフィンなどとを併用した前記従来公知の水中
防汚被覆剤の持っている皿々の問題点がな(、さらにこ
れらよりは膜表面の滑り角が小さく、良好な防汚性が期
待できる溶剤揮発形の重合体を用いた水中防汚被覆剤を
得ることに成功した。
[Means for Solving the Problems] As a result of intensive research into the above points, the present inventors have developed the above-mentioned conventionally known underwater antifouling coating agent using silicone rubber alone or in combination with silicone oil, paraffin, etc. In addition, we have developed an underwater antifouling coating using a solvent-volatile polymer that has a smaller sliding angle on the film surface and can be expected to have better antifouling properties. Successful.

すなわち、本発明の水中防汚被覆剤は、つぎの一般式; %式% (ただし、式中、Xは水素原子またはメチル基、nは2
〜4の整数、mは平均重合度で0〜70を表わす) で示される単量体Aの一種または二種以上の重合体、お
よび/または上記単量体Aの一種または二種以上とこれ
らと共重合し得るビニル重合性単量 一体Bの一種また
は二種以上とからなる共重合体を必須成分として含有す
るものである。
That is, the underwater antifouling coating agent of the present invention has the following general formula;
an integer of ~4, m represents an average degree of polymerization of 0 to 70) and/or one or more of the above monomers A and these It contains as an essential component a copolymer consisting of one or more types of vinyl polymerizable monomer monomer B that can be copolymerized with monomer B.

〔発明の構成・作用〕[Structure and operation of the invention]

本発明の水中防汚被覆剤においては、その必須成分とし
て、上記の一般式(1)にて表わされる単量体Aの一種
または二種以上の重合体つまり単独重合体または共重合
体(以下、これらを重合体Aという)を用いるか、ある
いは上記単量体Aの一種または二種以上とこれらと共重
合可能なビニル重合性単量体Bの一種または二種以上と
の共重合体(以下、これらを共重合体ABという)を使
用する。また、上記の重合体Aと共重合体ABを必要に
応じて併用してもよい。
In the underwater antifouling coating of the present invention, as an essential component, one or more polymers of monomer A represented by the above general formula (1), that is, a homopolymer or a copolymer (hereinafter referred to as , these are referred to as polymer A), or a copolymer of one or more of the above monomers A and one or more vinyl polymerizable monomers B copolymerizable with these monomers ( Hereinafter, these will be referred to as copolymers AB). Moreover, the above-mentioned polymer A and copolymer AB may be used in combination as necessary.

このような重合体Aおよび共重合体ABは、いずれも側
鎖に単量体Aに由来するポリジメチルシロキサン基およ
び/またはトリメチルシリコン基を有するため、これよ
り形成される被膜に良好な滑り性を付与し、この被膜に
より海中物体表面への水中生物の付着を効果的に防止す
る。本発明者らは、このような付着防止効果が後述する
実施例にて示されるように前記従来の水中防汚被覆剤よ
りもより顕著に発現されるものであることを知った。
Both Polymer A and Copolymer AB have polydimethylsiloxane groups and/or trimethylsilicon groups derived from Monomer A in their side chains, so the coating formed from them has good slip properties. This coating effectively prevents aquatic organisms from adhering to the surface of underwater objects. The present inventors have found that such adhesion prevention effect is more pronounced than that of the conventional underwater antifouling coating agent, as shown in the examples described below.

また、上記の重合体Aおよび共重合体ABは、有機溶剤
に溶解性であるため、これの溶剤溶液を海水に浸漬され
るべき物体の表面に塗布し乾燥することによって容易に
均一に被膜化することができる。しかも、上記の重合体
Aおよび共重合体ABは、前記従来の如き反応硬化型の
ものとは異って本質的に非反応性のものであるため、上
記の被膜化が大気中の湿気や温度によって左右されるこ
とはなく、また溶液としての可使時間や貯蔵安定性にす
ぐれている。さらに、この被膜上に同種ないし他の塗膜
を上塗りする際には、上記被膜が上塗り塗料の溶剤によ
って浸されるため、上塗り塗膜との眉間密着性にすぐれ
たものとなる。すなわち、前記従来の水中防汚被覆剤の
欠点が上記重合体Aおよび/または共重合体ABを用い
ることによってことごとく解消されるのである。
In addition, since the above-mentioned polymer A and copolymer AB are soluble in organic solvents, they can be easily formed into a uniform film by applying a solution of the solvent to the surface of an object to be immersed in seawater and drying it. can do. Moreover, unlike the conventional reaction-curing type, the above-mentioned polymer A and copolymer AB are essentially non-reactive, so that the formation of the above-mentioned film is difficult due to moisture in the atmosphere. It is not affected by temperature and has excellent pot life and storage stability as a solution. Furthermore, when a similar or other coating is applied over this coating, the coating is immersed in the solvent of the topcoat, resulting in excellent glabellar adhesion with the topcoat. That is, all of the drawbacks of the conventional underwater antifouling coatings are eliminated by using the polymer A and/or copolymer AB.

このような効果を発揮する重合体Aおよび共重合体AB
を得るための単量体Aは、前記の式(1)にて表わされ
る分子内にポリジメチルシロキサン基(m;2以上)ま
たはトリメチルシリコン基(m=1)を有する不飽和醍
モノエステルである。式f1)中、m=o〜70として
いるのは、70より大きくなると、重合性ないし共重合
性が低下し、均一に被膜化しつる重合体Aまたは共重合
体ABを得にくくなるためである。また、式f1)中、
n = 2〜4としているのは、nが2未満となると単
量体Aのエステル形成部の結合性が弱くなり、重合段階
あるいは被覆剤としての使用時にエステル結合が解離し
て防汚性能およびその持続性が低下するためであり、ま
たnが4を超えると重合体が軟化するため、粘着感のな
い表面張力の小さい被膜を形成しにくくなるためである
Polymer A and copolymer AB exhibiting such effects
Monomer A for obtaining is an unsaturated monoester having a polydimethylsiloxane group (m; 2 or more) or a trimethylsilicon group (m = 1) in the molecule represented by the above formula (1). be. In formula f1), m = o to 70 because if it is larger than 70, the polymerizability or copolymerizability decreases, making it difficult to obtain a uniform film of Vine Polymer A or Copolymer AB. . Also, in formula f1),
The reason for setting n = 2 to 4 is that when n is less than 2, the bonding properties of the ester-forming part of monomer A become weaker, and the ester bonds dissociate during the polymerization stage or when used as a coating material, resulting in poor antifouling performance and This is because the durability of the polymer decreases, and when n exceeds 4, the polymer softens, making it difficult to form a film with a low surface tension and no sticky feeling.

上記の一般式+1)にて示される単量体Aの具体的化合
物塩を挙げれば、トリメチルシリコン基を有するものと
して(メタ)アクリル酸トリノチルシロキサンエチル、
(メタ)アクリル酸トリメチルシロキサンプロピル、(
メタ)アクリル酸トリメチルシロキサンブチルが、また
ポリジメチルシロキサン基を有するものとしてm=70
までの(メタ)アクリル酸ポリジメチルシロキサンエチ
ル、(メタ)アクリル酸ポリジメチルシロキサンプロピ
ル、(メタ)アクリル酸ポリジメチルシロキサンブチル
が、ある。なお、上記の(メタ)とはアクリル酸または
メタクリル酸のいずれであってもよいことを意味する。
Specific compound salts of monomer A represented by the above general formula +1) include trinotylsiloxaneethyl (meth)acrylate, which has a trimethylsilicon group;
Trimethylsiloxanepropyl (meth)acrylate, (
Assuming that trimethylsiloxane butyl meth)acrylate also has a polydimethylsiloxane group, m = 70
These include polydimethylsiloxane ethyl (meth)acrylate, polydimethylsiloxane propyl (meth)acrylate, and polydimethylsiloxane butyl (meth)acrylate. Note that the above (meth) means that it may be either acrylic acid or methacrylic acid.

このような単量体Aは市販品として容易に入手可能なも
のであるが、その合成例を挙げれば、(メタ)アクリル
酸とアルキレングリコールとのエステルを得、これにト
リメチルシリコン化合物ないしポリジメチルシロキサン
化合物を縮合反応させる方法、(メタ)アクリル酸とア
リルアルコールなどとのエステルを得、これにトリメチ
ルシリコン化合物ないしポリジメチルシロキサン化合物
を付加反応させる方法などがある。
Such monomer A is easily available as a commercial product, but to give an example of its synthesis, an ester of (meth)acrylic acid and alkylene glycol is obtained, and a trimethyl silicon compound or polydimethyl Examples include a method of subjecting a siloxane compound to a condensation reaction, and a method of obtaining an ester of (meth)acrylic acid and allyl alcohol, and subjecting it to an addition reaction with a trimethylsilicon compound or a polydimethylsiloxane compound.

また、共重合体ABを得るために上記の単量体Aととも
に用いられるビニル重合性単量体Bとしては、例えばメ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
ブチル、メタクリル酸2−エチルヘキシル、メタクリル
酸2−ヒドロキシエチルなどのメタクリル酸エステル類
、アクリル酸エチル、アクリル酸ブチル、アクリル酸2
−エチルヘキシル、アクリル酸2−ヒドロキシエチルな
どのアクリル酸エステル類、マレイン酸ジメチル、マレ
イン酸ジエチルなどのマレイン酸エステル類、フマール
酸ジメチル、フマール酸ジエチルなどのアマール酸エス
テル類、スチレン、ビニルトルエン、α−メチルスチレ
ン、塩化ビニル、酢酸ビニル、ブタジェン、アクリルア
ミド、アクリロニトリル、メタクリル酸、アクリル酸、
マレイン酸などがあげられる。
Examples of the vinyl polymerizable monomer B used together with the monomer A to obtain the copolymer AB include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylic acid. Methacrylic acid esters such as 2-hydroxyethyl, ethyl acrylate, butyl acrylate, acrylic acid 2
- Acrylic esters such as ethylhexyl and 2-hydroxyethyl acrylate, maleic esters such as dimethyl maleate and diethyl maleate, amaric esters such as dimethyl fumarate and diethyl fumarate, styrene, vinyltoluene, α -Methylstyrene, vinyl chloride, vinyl acetate, butadiene, acrylamide, acrylonitrile, methacrylic acid, acrylic acid,
Examples include maleic acid.

このようなビニル重合性単量体Bは、防汚被膜に用途目
的に応じた種々の性能を付与するための改質成分として
作用し、また単量体A単独に比しより高分子量の重合体
を得るのにも好都合な成分である。この単量体Bの使用
量は、上記性能と単量体Aに基づく防汚効果とを勘案し
て、適宜の範囲に設定される。一般的には、単量体Aと
の合計量中に占める単量体Bの割合が90重量%以下、
特に70重量%以下であるのがよい。すなわち、共重合
体ABを構成する単量体Aの割合が少なくとも10重量
%−1特に少なくとも30重量%であれば、この単量体
Aに基づく防汚効果を充分に発揮できるから、上記範囲
内で単量体Bの使用量を適宜設定すればよい。
Such vinyl polymerizable monomer B acts as a modifying component to impart various performances to the antifouling film depending on the purpose of use, and also has a higher molecular weight than monomer A alone. It is also a convenient component for obtaining coalescence. The amount of monomer B to be used is set within an appropriate range, taking into consideration the above-mentioned performance and the antifouling effect based on monomer A. Generally, the proportion of monomer B in the total amount of monomer A is 90% by weight or less,
In particular, it is preferably 70% by weight or less. That is, if the proportion of the monomer A constituting the copolymer AB is at least 10% by weight - 1, especially at least 30% by weight, the antifouling effect based on this monomer A can be sufficiently exhibited, and therefore the above range The amount of monomer B to be used may be appropriately set within the range.

重合体Aおよび共重合体ABは、上述の如き単量体Aま
たはこれと単量体Bとを、ビニル重合開始剤の存在下、
常法に準じて溶液重合、塊状重合、乳化重合、懸濁重合
などの各種方法で重合させることにより、得ることがで
きる。上記のビニル重合開始剤としては、アゾビスイソ
ブチロニトリル、トリフェニルメチルアゾベンゼンのよ
うなアゾ化合物、ベンゾイルパーオキサイド、ジter
t−ブチルパーオキサイドなどの過酸化物などがあげら
れる。
Polymer A and copolymer AB are produced by combining monomer A as described above or monomer B together with monomer A in the presence of a vinyl polymerization initiator.
It can be obtained by polymerization using various methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization according to conventional methods. Examples of the vinyl polymerization initiator include azo compounds such as azobisisobutyronitrile and triphenylmethylazobenzene, benzoyl peroxide, diter
Examples include peroxides such as t-butyl peroxide.

上記の方法にて得られる重合体Aおよび共重合体ABの
重量平均分子量は、一般に1,000〜150.000
の範囲にあるのが望ましい。分子量が低すぎては、使用
に耐える被膜の形成が難しく、またあまりに高くなりす
ぎると被覆剤用ワニスとしたとき粘度が高く、樹脂固型
分が低いため1回の塗装によって薄い被膜しか得られず
、−窓以上の乾燥被膜厚を得るには数回の塗装を要する
という不具合が出てくる。
The weight average molecular weight of polymer A and copolymer AB obtained by the above method is generally 1,000 to 150.000.
It is desirable that it be within the range of . If the molecular weight is too low, it will be difficult to form a film that can withstand use, and if the molecular weight is too high, the viscosity will be high when used as a coating varnish, and the resin solid content will be low, so only a thin film will be obtained with one application. First, there is the problem that several coats of paint are required to obtain a dry coating thickness greater than that of a window.

本発明の水中防汚被覆剤は、上述のとおり、通常重合体
Aおよび/または共重合体ABを有機溶剤に溶解させた
ワニスとして使用に供される。この点からいえば、前記
重合法として特に溶液重合法または塊状重合法を採用す
るのが望ましい。溶液重合法では重合後の反応溶液をそ
のままあるいは溶剤で希釈して使用に供すことができ、
また塊状重合法では重合後の反応物に溶剤を加えて使用
に供しうる。
As mentioned above, the underwater antifouling coating of the present invention is usually used as a varnish prepared by dissolving polymer A and/or copolymer AB in an organic solvent. From this point of view, it is particularly desirable to employ a solution polymerization method or a bulk polymerization method as the polymerization method. In the solution polymerization method, the reaction solution after polymerization can be used as it is or diluted with a solvent.
In addition, in the bulk polymerization method, a solvent can be added to the reaction product after polymerization for use.

使用する有機溶剤としては、キシレン、トルエンなどの
芳香族炭化水素系溶剤、ヘキサン、ヘプタンなどの脂肪
族炭化水素系溶剤、酢酸エチノペ酢酸ブチルなどのエス
テル系溶剤、イソプロビルアルコーノヘフチルアルコー
ルなどのアルコール系溶剤、ジオキサン、ジエチルエー
テルナトのエーテル系溶剤、メチルエチルケトン、メチ
ルイソブチルケトンなどのケトン系溶剤の単独もしくは
これらの混合溶剤があげられる。
The organic solvents to be used include aromatic hydrocarbon solvents such as xylene and toluene, aliphatic hydrocarbon solvents such as hexane and heptane, ester solvents such as butyl acetate, and isoprobylalconoheptyl alcohol. Examples include alcohol solvents, ether solvents such as dioxane and diethyl ether, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, alone or in combination.

有機溶剤の使用量は、ワニス中の重合体Aおよび/また
は共重合体ABの濃度が通常5〜80重量%、特に30
〜70重量%の範囲となるようにするのが望ましい。こ
のときのワニスの粘度は、被膜化が容易となる一般に1
〜10ポイズ/25°Cの範囲にあるのがよい。
The amount of organic solvent used is such that the concentration of polymer A and/or copolymer AB in the varnish is usually 5 to 80% by weight, particularly 30% by weight.
It is desirable that the content be in the range of 70% by weight. The viscosity of the varnish at this time is generally 1, which makes it easy to form a film.
It is preferably in the range of ~10 poise/25°C.

このように構成される本発明の水中防汚被覆剤には、必
要に応じて無毒性で海水に溶解しない弁柄、二酸化チタ
ンなどの顔料や染料などの着色剤を配合してもよい。ま
た、通常のタレ止め剤、色分れ防止剤、沈降防止剤、レ
ベリング剤、消泡剤などを加えても差し支えない。
The underwater antifouling coating of the present invention having such a structure may optionally contain a coloring agent such as a pigment such as Bengara, titanium dioxide, or a dye, which is non-toxic and does not dissolve in seawater. Further, ordinary anti-sagging agents, anti-color separation agents, anti-settling agents, leveling agents, anti-foaming agents, etc. may be added.

本発明の水中防汚被覆剤を用いて海水に浸漬されるべき
物体の表面に防汚被膜を形成するには、たとえばワニス
としての上記被覆剤を上記物体表面に適宜の手段で塗布
したのち、常温下ないし加熱下で乾燥して溶剤を揮散除
去するだけでよい。
In order to form an antifouling film on the surface of an object to be immersed in seawater using the underwater antifouling coating of the present invention, for example, after applying the coating as a varnish to the surface of the object by an appropriate means, Simply dry at room temperature or under heat to volatilize and remove the solvent.

これにより表面張力の小さい滑り性の良好な防汚被膜が
均一に形成される。
As a result, an antifouling film with low surface tension and good slip properties is uniformly formed.

以上のように、本発明の水中防汚被覆剤により、第一の
問題点である硬化性については、化学的な硬化反応を必
要とせず、溶剤揮発のみによって強靭な被膜が得られる
ことで解決され、第二の問題点である上塗り性も、本被
覆剤は溶剤揮発乾燥型であるために、被膜形成後上塗り
される被覆剤の溶剤により表面が再溶解されて層間密着
性が向上することで解決される。さらに第三の問題点で
ある可使時間、および第四の問題点である貯蔵安定性も
、本被覆剤が一液型非反応性のため、可使時間の制限を
受けず、安定性が良いものとして解決される。
As described above, the underwater antifouling coating of the present invention solves the first problem of curability by providing a strong coating only by solvent volatilization without requiring a chemical curing reaction. As for the second problem, overcoatability, since this coating is a solvent evaporation drying type, the surface is redissolved by the solvent of the coating that is applied after the film is formed, improving interlayer adhesion. is resolved. Furthermore, the third problem, pot life, and the fourth problem, storage stability, are not limited by the pot life and are stable because this coating is one-component and non-reactive. resolved as a good thing.

さらに驚くべきことに、本発明の水中防汚被覆剤の乾燥
被膜の表面張力を、後述する第1図囚。
More surprisingly, the surface tension of the dry film of the underwater antifouling coating of the present invention is shown in Figure 1, which will be described later.

CB)に示す装置を用いて海水滴下による滑り角を測定
する方法で調べたところ、シリコーンゴム単独ないしは
このゴムとシリコーンオイル、流動パラフィン、ペトロ
ラタムなどを併用した従来の水中防汚被覆剤の乾燥被膜
が平均12〜15度であるのに対して、本発明による水
中防汚被覆剤は平均8〜10度と、30%程度小さかっ
た。このことは、本発明の水中防汚被覆剤の乾燥被膜が
従来技術によるものより小さい表面張力を持ち、生物付
着に対してより優れた効力を期待できることを示してい
る。
An investigation using the device shown in CB) to measure the sliding angle by dripping seawater revealed that the dried film of a conventional underwater antifouling coating made of silicone rubber alone or in combination with silicone oil, liquid paraffin, petrolatum, etc. was 12 to 15 degrees on average, whereas the underwater antifouling coating according to the present invention had an average of 8 to 10 degrees, which was about 30% smaller. This indicates that the dry film of the underwater antifouling coating of the present invention has a lower surface tension than that of the prior art and can be expected to have better efficacy against biofouling.

[発明の効果] 本発明の水中防汚被覆剤は被膜形成時に架橋反応する型
ではないので、湿度、温度などによって硬化乾燥の影響
を受けにくい。したがって、被膜の硬化不良からくる剥
離、ふくれなどによる防汚性の低下が認められない。ま
た、塗布したとき溶剤の揮発のみで被塗面上で造膜する
ので乾燥が速く、重ね塗り時間の短縮が可能となり、被
塗物を短時間で使用することが望める。さらに塗装作業
が可使時間によって制約されないといった扱い易さがあ
り、また上塗り塗膜を設ける際の上塗り塗膜との層間密
着性の改善を図れる。
[Effects of the Invention] Since the underwater antifouling coating agent of the present invention is not of the type that undergoes a crosslinking reaction during film formation, it is not easily affected by curing and drying due to humidity, temperature, etc. Therefore, no deterioration in antifouling properties due to peeling, blistering, etc. due to insufficient curing of the coating is observed. Furthermore, since a film is formed on the surface to be coated by only the volatilization of the solvent when applied, drying is quick and the time required for recoating can be shortened, making it possible to use the coated object in a short period of time. Furthermore, it is easy to handle because the coating work is not restricted by pot life, and it is possible to improve the interlayer adhesion with the top coat when applying the top coat.

また、湿気、熱に対する貯蔵安定性が良いので、製造時
乾燥窒素ガスの充填という操作は必要でなく、原価の軽
減に役立つ。さらに、塗装時使い残しがでても栓をする
だけといった通常の方法で保存でき、再使用できる簡便
さがある。そのうえ、防汚性能も表面張力が小さいこと
により一層の向上が見られる。
In addition, since it has good storage stability against humidity and heat, it is not necessary to fill it with dry nitrogen gas during production, which helps reduce costs. Furthermore, even if there is leftover paint left over from painting, it can be stored in the usual way, such as simply plugging it, and it can be reused easily. Moreover, the antifouling performance is further improved due to the low surface tension.

〔実施例〕〔Example〕

以下に、本発明の実施例を比較例と対比してより具体的
に説明する。なお、以下の実施例1〜10で使用した重
合体溶液(I)〜■並びに比較例1〜3で使用した重合
体溶液蝿)〜(X)は、下記の製造例1〜10により調
製したものである。各製造例中の部は重量部、粘度は2
5℃におけるガードナー粘度測定値、分子量はGPC法
による重量平均分子量を表わす。
Examples of the present invention will be described in more detail below in comparison with comparative examples. In addition, the polymer solutions (I) to (X) used in Examples 1 to 10 below and the polymer solutions (I) to (X) used in Comparative Examples 1 to 3 were prepared according to Production Examples 1 to 10 below. It is something. Parts in each production example are parts by weight, viscosity is 2
The Gardner viscosity measurement value and molecular weight at 5°C represent the weight average molecular weight determined by GPC method.

製造例1 撹拌機付きのフラスコに酢酸ブチル120部を仕込み、
100°Cに昇温し、撹拌しながらメタクリル酸メチル
120部、メタクリル酸ポリジメチルシロキサンプロピ
ルし単量体Aとして、一般式f+)中、Xがメチル基、
nが3、平均重合度mが10のもの]120部、アゾビ
スイソブチロニトリル1.2部の混合溶液を2時間で滴
下し、滴下終了後同温度で30分保持した。ついで、酢
酸ブチル切部、アゾビスイソブチロニトリル06部の混
合溶液を15分で滴下し、滴下終了後同温度で3時間撹
拌を継続して重合反応を完結させた。最後にトルエン8
0部を加えて冷却し、重合体溶液(I+を得た。
Production Example 1 120 parts of butyl acetate was placed in a flask equipped with a stirrer,
The temperature was raised to 100°C, and while stirring, 120 parts of methyl methacrylate and polydimethylsiloxanepropyl methacrylate were added as monomer A, in the general formula f+), where X is a methyl group,
A mixed solution of 120 parts of n=3 and average polymerization degree m of 10] and 1.2 parts of azobisisobutyronitrile was added dropwise over 2 hours, and after the addition was completed, the mixture was kept at the same temperature for 30 minutes. Then, a mixed solution of butyl acetate and 06 parts of azobisisobutyronitrile was added dropwise over 15 minutes, and after the addition was completed, stirring was continued at the same temperature for 3 hours to complete the polymerization reaction. Finally, toluene 8
0 parts was added and cooled to obtain a polymer solution (I+).

得られた重合体溶液(I)は透明で粘度がU11部合体
の分子量が89,000であった。
The obtained polymer solution (I) was transparent, had a viscosity, and had a molecular weight of 89,000 for the U11 portion.

製造例2 撹拌機付きのフラスコに酢酸ブチル180部を仕込み、
115°Cに昇温し、撹拌しながらメタクリル酸メチル
169.2部、アクリル酸エチル10.8部、メタクリ
ル酸ポリジメチルシロキサンプロピルし単量体Aとして
、一般式f+)中、Xがメチル基、nが3、平均重合度
mが3のもの]180部、アゾビスイソブチロニI−I
Jル3,6部の混合溶液を2時間で滴下した。滴下終了
30分後に酢酸ブチル60部、アゾビスイソブチロニト
リル1,8部の混合溶液を15分で滴下し、この滴下終
了後同温度で3時間撹拌を継続して重合反応を完結させ
た。
Production Example 2 180 parts of butyl acetate was placed in a flask equipped with a stirrer,
The temperature was raised to 115°C, and while stirring, 169.2 parts of methyl methacrylate, 10.8 parts of ethyl acrylate, and polydimethylsiloxane propyl methacrylate were added to form monomer A. In the general formula f+), X is a methyl group. , n is 3, average degree of polymerization m is 3] 180 parts, azobisisobutyroni I-I
A mixed solution of 3.6 parts of Jul was added dropwise over 2 hours. Thirty minutes after the dropwise addition was completed, a mixed solution of 60 parts of butyl acetate and 1.8 parts of azobisisobutyronitrile was added dropwise over 15 minutes, and after the completion of the dropwise addition, stirring was continued at the same temperature for 3 hours to complete the polymerization reaction. .

最後にキシレン120部を加えて冷却し、重合体溶液(
II)を得た。
Finally, 120 parts of xylene was added, cooled, and the polymer solution (
II) was obtained.

得られた重合体溶液(Illは透明で粘度がH11部合
体の分子量が54,000であった。
The obtained polymer solution (Ill) was transparent, had a viscosity, and had a molecular weight of 54,000 when combined with H11 parts.

製造例3 耐熱耐圧の容器中にメタクリル酸メチル45部、メタク
リル酸ポリジメチルシロキサンプロピル[単量体Aとし
て、一般式中、Xがメチル基、nが3、平均重合度mが
10のもの〕55部、アゾビスイソブチロニトリル5部
を仕込み、完全密封して振蕩しながら130°Cに昇温
し、同温度で2時間継続振蕩して重合反応を完結させて
塊状の固化物を得た。次いで、酢酸ブチル100部を加
え、130°Cに保ちながら3時間振蕩を続けて固化物
を溶解し、冷却したのち重合体溶液(師を得た。
Production Example 3 45 parts of methyl methacrylate and polydimethylsiloxanepropyl methacrylate in a heat- and pressure-resistant container [as monomer A, in the general formula, X is a methyl group, n is 3, and the average degree of polymerization m is 10] 55 parts of azobisisobutyronitrile, completely sealed and heated to 130°C while shaking, continued shaking at the same temperature for 2 hours to complete the polymerization reaction and obtain a solidified mass. Ta. Next, 100 parts of butyl acetate was added, and stirring was continued for 3 hours while maintaining the temperature at 130°C to dissolve the solidified material. After cooling, a polymer solution (a polymer solution was obtained).

得られた重合体溶液(2)は透明で粘度がA1共重合体
の分子量が9,000であった。
The obtained polymer solution (2) was transparent, had a viscosity, and had a molecular weight of A1 copolymer of 9,000.

製造例4 撹拌機付きのフラスコにキシレン50部を仕込み、11
0 ’Cに昇温し、撹拌しながらメタクリル酸メチル8
5部、アクリル酸ポリジメチルシロキサンエチル〔単j
1体Aとして、一般式(1)中、Xが水素原子、nが2
、平均重合度mが70のもの〕15部、ベンゾイルパー
オキサイド3部の混合溶液を3時間で滴下した。滴下終
了30分後にキシレフ20部、ベンゾイルパーオキサイ
ド1.5部の混合溶液を20分で滴下し、この滴下終了
後同温度で5時間撹拌を継続して重合反応を完結させt
ム最後にメチルイソブチルケトン30部を加えて冷却し
、重合体溶液(5)を得た。
Production Example 4 50 parts of xylene was placed in a flask equipped with a stirrer, and 11
Raise the temperature to 0'C and add methyl methacrylate while stirring.
5 parts, polydimethylsiloxane ethyl acrylate [single j
As one body A, in the general formula (1), X is a hydrogen atom, and n is 2
, with an average degree of polymerization m of 70] and 3 parts of benzoyl peroxide were added dropwise over 3 hours. 30 minutes after the dropwise addition was completed, a mixed solution of 20 parts of Xyleph and 1.5 parts of benzoyl peroxide was added dropwise over 20 minutes, and after the dropwise addition, stirring was continued at the same temperature for 5 hours to complete the polymerization reaction.
Finally, 30 parts of methyl isobutyl ketone was added and cooled to obtain a polymer solution (5).

得られた重合体溶液(5)は半透明で粘度がP、共重合
体の分子量が43,000であった。
The obtained polymer solution (5) was translucent, had a viscosity of P, and had a copolymer molecular weight of 43,000.

製造例5 撹拌機付きのフラスコにキシレン15部、エチレングリ
コールモノエチルエーテル45部を仕込み、120°C
に昇温し、撹拌しながらメタクリル酸メチル58部、メ
タクリル酸2部、アクリル酸ブチル5部、スチレン10
部、メタクリル酸ポリジメチルシロキサンブチル[単量
体Aとして、一般式flj中、Xがメチル基、nが4、
平均重合度mが30のもの]25部、アゾビスイソブチ
ロニトリル06部の混合溶液を3時間で滴下した。滴下
終了30分後にエチレングリコールモノエチルエーテル
20部、アゾビスイソブチロニトリル0.6部の混合溶
液を20分で滴下し、この滴下終了後同温度で4時間撹
拌を継続して重合反応を完結させた。最後にブチルアル
コール10部、メチルエチルケトン35部を加えて冷却
し、重合体溶液(V)を得た。
Production Example 5 15 parts of xylene and 45 parts of ethylene glycol monoethyl ether were placed in a flask equipped with a stirrer, and heated to 120°C.
58 parts of methyl methacrylate, 2 parts of methacrylic acid, 5 parts of butyl acrylate, and 10 parts of styrene while stirring.
, polydimethylsiloxane butyl methacrylate [as monomer A, in the general formula flj, X is a methyl group, n is 4,
A mixed solution of 25 parts of polymer having an average degree of polymerization m of 30 and 06 parts of azobisisobutyronitrile was added dropwise over 3 hours. 30 minutes after the completion of the dropwise addition, a mixed solution of 20 parts of ethylene glycol monoethyl ether and 0.6 parts of azobisisobutyronitrile was added dropwise over 20 minutes, and after the completion of the dropwise addition, stirring was continued at the same temperature for 4 hours to carry out the polymerization reaction. Completed it. Finally, 10 parts of butyl alcohol and 35 parts of methyl ethyl ketone were added and cooled to obtain a polymer solution (V).

得られた重合体溶液(■)は透明で粘度かに、共重合体
の分子量が27,000であった。
The obtained polymer solution (■) was transparent and had a low viscosity, and the molecular weight of the copolymer was 27,000.

製造例6 撹拌機付きのフラスコにキシレン120部、メタクリル
酸トリメチルシロキサンプロピル〔単量体Aとして、一
般式(1)中、Xがメチル基、nが3、平均重合度mが
Oのもの]100部、ベンゾイルパーオキサイド15部
を仕込み、撹拌しながら140°Cに昇温し、遷流状態
で3時間撹拌を継続して重合反応を完結させ、重合体溶
液αつを得た。
Production Example 6 120 parts of xylene in a flask equipped with a stirrer, trimethylsiloxanepropyl methacrylate [as monomer A, in general formula (1), X is a methyl group, n is 3, and average degree of polymerization m is O] 100 parts of benzoyl peroxide and 15 parts of benzoyl peroxide were charged, the temperature was raised to 140° C. with stirring, and the stirring was continued for 3 hours in a transitional state to complete the polymerization reaction, and a polymer solution α was obtained.

得られた重合体溶液(至)は透明で粘度がA3、重合体
の分子量が1,000であった。
The resulting polymer solution was transparent, had a viscosity of A3, and had a polymer molecular weight of 1,000.

製造例7 撹拌機付きのフラスコに酢酸ブチル30部を仕込み、8
0 ’Cに昇温し、撹拌しながらメタクリル酸メチル7
2部、メタクリル酸ブチル12部、メタクリル酸ポリジ
メチルシロキサンプロピル[単量体Aとして、一般式f
+)中、Xはメチル基、nが3、平均重合度mが20の
もの]36部、ベンゾイルパーオキサイド0.6部の混
合溶液を4時間で滴下した。滴下終了30分後に酢酸ブ
チル20部、ベンゾイルパーオキサイド0.2部の混合
溶液を20分で滴下し、この滴下終了後同温度で5時間
撹拌を継続して重合反応を完結させた。最後にトルエン
130部を加えて冷却し、重合体溶液αIDを得た。
Production Example 7 Place 30 parts of butyl acetate in a flask equipped with a stirrer, and add 8 parts of butyl acetate.
Raise the temperature to 0'C and add methyl methacrylate while stirring.
2 parts, butyl methacrylate 12 parts, polydimethylsiloxanepropyl methacrylate [as monomer A, general formula f
(in which X is a methyl group, n is 3, and average degree of polymerization m is 20)] and 0.6 parts of benzoyl peroxide were added dropwise over 4 hours. Thirty minutes after the completion of the dropwise addition, a mixed solution of 20 parts of butyl acetate and 0.2 parts of benzoyl peroxide was added dropwise over 20 minutes, and after the completion of the dropwise addition, stirring was continued at the same temperature for 5 hours to complete the polymerization reaction. Finally, 130 parts of toluene was added and cooled to obtain a polymer solution αID.

得られた重合体溶液(VfDは透明で粘度がZ、共重合
体の分子量が150,000であった。
The resulting polymer solution (VfD) was transparent, had a viscosity of Z, and had a copolymer molecular weight of 150,000.

製造例8 撹拌機付きのフラスコにキシレン120部を仕込み、1
05°Cに昇温し、撹拌しながらメタクリル酸メチル1
20部、メタクリル酸ポリジメチルシロキサンメチル〔
単量体Aとして、一般式flj中、Xがメチル基、nが
1、平均重合度mか8のもの]120部、アゾビスイソ
ブチロニトリル12部の混合溶液を2時間で滴下した。
Production Example 8 120 parts of xylene was charged into a flask equipped with a stirrer, and 1
Raise the temperature to 05°C and add methyl methacrylate 1 while stirring.
20 parts, polydimethylsiloxane methyl methacrylate [
As the monomer A, a mixed solution of 120 parts of monomer A of the general formula flj, where X is a methyl group, n is 1, and average degree of polymerization is m or 8] and 12 parts of azobisisobutyronitrile was added dropwise over 2 hours.

滴下終了後同温度で30分保持したのちキシレン40部
、アゾビスイソブチロニトリル0.6部の混合溶液を1
5分で滴下し、この滴下終了後同温度で4時間撹拌を継
続して重合反応を完結させた。最後にキシレン80部を
加えて冷却し、重合体溶液(Vlll)を得た。
After the dropwise addition was completed, the temperature was kept at the same temperature for 30 minutes, and then 1 part of a mixed solution of 40 parts of xylene and 0.6 parts of azobisisobutyronitrile was added.
The mixture was added dropwise in 5 minutes, and after the completion of the dropwise addition, stirring was continued for 4 hours at the same temperature to complete the polymerization reaction. Finally, 80 parts of xylene was added and cooled to obtain a polymer solution (Vllll).

得られた重合体溶液[相]は白濁し粘度がW、共重合体
の分子量が72,000であった。
The obtained polymer solution [phase] was cloudy, had a viscosity of W, and a copolymer molecular weight of 72,000.

製造例9 撹拌機付きのフラスコに酢酸ブチル180部を仕込み、
110°Cに昇温し、撹拌しながらメタクリル酸メチル
150部、メタクリル酸ブチル30部、メタクリル酸ポ
リジメチルシロキサンペンチル〔単量体Aとして、一般
式(1)中、Xがメチル基、nが5、平均重合度mが2
のもの]180部、アゾビスイソブチロニトリル3,6
部の混合溶液を3時間で滴下した。滴下終了30分後に
酢酸ブチル60部、アゾビスインブチロニトリル1.8
部の混合溶液を15分で滴下し、この滴下終了後同温度
で4時間撹拌を継続して重合反応を完結させた。
Production Example 9 180 parts of butyl acetate was placed in a flask equipped with a stirrer,
The temperature was raised to 110°C, and while stirring, 150 parts of methyl methacrylate, 30 parts of butyl methacrylate, polydimethylsiloxane pentyl methacrylate [as monomer A, in general formula (1), X is a methyl group and n is 5, average degree of polymerization m is 2
] 180 parts, azobisisobutyronitrile 3,6
part of the mixed solution was added dropwise over 3 hours. 30 minutes after completion of dropping, add 60 parts of butyl acetate and 1.8 parts of azobisin butyronitrile.
A mixed solution of 50% was added dropwise over 15 minutes, and after the dropwise addition was completed, stirring was continued at the same temperature for 4 hours to complete the polymerization reaction.

最後にキシレン120部を加えて冷却し、重合体溶液■
を得た。
Finally, 120 parts of xylene was added and cooled to form a polymer solution.
I got it.

得られた重合体溶液■は透明で粘度がK、共重合体の分
子量が65,000であった。
The resulting polymer solution (2) was transparent, had a viscosity of K, and had a copolymer molecular weight of 65,000.

製造例10 耐熱耐圧の容器中にメタクリル酸メチル87部、メタク
リル酸ポリジメチルシロキサンプロピル〔単量体Aとし
て、一般式fll中、Xがメチル基、nが3、平均重合
度mが75のもの113部、ベンゾイルパーオキサイド
4部を仕込み、完全密封して振蕩しながら120°Cに
昇温し、同温度で3時間振蕩を継続して重合反応を完結
させ、白濁した粘稠物を得た。次いで、酢酸ブチル10
0部を加えて120°Cに保ちながら1時間振蕩を続け
て白濁した粘稠物を溶解し、冷却したのち重合体溶液(
℃を得た。
Production Example 10 In a heat-resistant and pressure-resistant container, 87 parts of methyl methacrylate, polydimethylsiloxane propyl methacrylate [as monomer A, in the general formula flll, X is a methyl group, n is 3, and the average degree of polymerization m is 75 113 parts and 4 parts of benzoyl peroxide were charged, completely sealed and heated to 120°C while shaking, and shaking was continued at the same temperature for 3 hours to complete the polymerization reaction and obtain a cloudy viscous substance. . Then, butyl acetate 10
0 parts was added and kept at 120°C while stirring for 1 hour to dissolve the cloudy viscous substance. After cooling, the polymer solution (
℃ was obtained.

得られた重合体溶液(X)は白濁し粘度がF、共重合体
の分子量が32,000であった。
The obtained polymer solution (X) was cloudy, had a viscosity of F, and had a copolymer molecular weight of 32,000.

実施例1〜10 重合体溶液(11〜■を用いて、後記の第1表に示す配
合組成(表中の数値は重量%)により、2.00Orp
mのホモミキサーで混合分散して、10種の水中防汚被
覆剤を調製した。なお、配合成分中、オイルブルー2N
[オリエント化学(陶製の商品名]は染料、デイスパロ
ン6900−20X[捕水化成(閑製の商品名]および
アエロシール300[日本アエロシール■製の商品名]
はいずれもタレ土用添加剤である。
Examples 1 to 10 Using polymer solutions (11 to
10 types of underwater antifouling coatings were prepared by mixing and dispersing them using a homomixer. In addition, among the ingredients, Oil Blue 2N
[Orient Chemical (product name of ceramic product) is dye, Disparon 6900-20X [water-capturing chemical product (product name of blank product]) and Aeroseal 300 [product name of Nippon Aeroseal ■]
Both are additives for sagging soil.

比較例1〜3 重合体溶液(11〜(2)の代わりに重合体溶液(VE
I−(X)を用いた以外は、実施例1〜10と全く同様
にして、後記第1表に示す配合組成からなる3皿の水中
防汚被覆剤を調製した。
Comparative Examples 1-3 Polymer solution (VE) instead of polymer solution (11-(2))
Three dishes of underwater antifouling coatings having the formulation shown in Table 1 below were prepared in exactly the same manner as in Examples 1 to 10, except that I-(X) was used.

比較例4〜7 重合体溶液(I)〜(2)の代わりに、KE45TS[
信越化学工業側製の商品名;オリゴマー状常温硬化形シ
リコーンゴム50重量%トルエン溶液]またはこれとK
 F −69[信越化学工業■製の商品名;シリコーン
オイル]、l5OVG 10(JISK−2231の流
動パラフィン)、ペトロラタム1号(JISK−223
5の石油ワックス)との混合物を用いた以外は、実施例
1〜10と同様にして後記第1表に示す配合組成からな
る4種の水中防汚被覆剤を調製した。
Comparative Examples 4 to 7 Instead of polymer solutions (I) to (2), KE45TS[
Product name manufactured by Shin-Etsu Chemical; Oligomeric room temperature curing silicone rubber 50% by weight toluene solution] or this and K
F-69 [product name manufactured by Shin-Etsu Chemical Co., Ltd.; silicone oil], 15OVG 10 (liquid paraffin according to JISK-2231), petrolatum No. 1 (JISK-223
Four types of underwater antifouling coatings having the compositions shown in Table 1 below were prepared in the same manner as in Examples 1 to 10, except that a mixture with petroleum wax (No. 5) was used.

比較例8 重合体溶液(I)〜■の代わりに有機錫共重合体溶液を
用いた以外は、実施例1〜10と同様にして、後記第1
表に示す配合組成からなる水中防汚被覆剤を調製した。
Comparative Example 8 In the same manner as Examples 1 to 10, except that an organic tin copolymer solution was used instead of polymer solutions (I) to
An underwater antifouling coating having the composition shown in the table was prepared.

なお、上記の有機錫共重合体溶液とは、メタクリル酸メ
チル40部、アクリル酸オクチル20部、メタクリル酸
トリブチル錫40部を用いて重合した共重合体溶液で、
共重合体の重量平均分子量が90.000の透明なキシ
レン50重量%溶液である。
The above-mentioned organotin copolymer solution is a copolymer solution polymerized using 40 parts of methyl methacrylate, 20 parts of octyl acrylate, and 40 parts of tributyltin methacrylate.
The copolymer has a weight average molecular weight of 90.000 and is a transparent 50% by weight solution in xylene.

以上の実施例1〜10および比較例1〜8の各被覆剤に
つき、以下の物理性能試験、被膜表面の滑り角の測定お
よび防汚性能試験を行い、その性能を評価した。
Each of the coating materials of Examples 1 to 10 and Comparative Examples 1 to 8 described above was subjected to the following physical performance test, measurement of the sliding angle of the coating surface, and antifouling performance test to evaluate the performance.

〈物理性能試験〉 各被覆剤の貯蔵安定性、乾燥性および密着性を下記方法
にて測定した。結果は後記の第2表に示されるとおりで
あった。
<Physical Performance Test> The storage stability, drying properties, and adhesion of each coating material were measured by the following methods. The results were as shown in Table 2 below.

A)貯蔵安定性 各被覆剤を容量250CCのマヨネーズビンに200 
CC入れ、蓋をして密封した。これを温度70°C2湿
度75%の恒温恒湿器中に保存して、2週間後の各試料
の増粘度により、貯蔵安定性を判定した。初期粘度より
増加率が10%未満のとき○、10%以上100%未満
のとき△、100%以上のとき×と評価した。
A) Storage Stability 200ml of each coating was added to a mayonnaise bottle with a capacity of 250cc.
I put it in CC and sealed it with a lid. This was stored in a constant temperature and humidity chamber at a temperature of 70° C. and a humidity of 75%, and the storage stability was determined based on the degree of viscosity increase of each sample after 2 weeks. When the increase rate was less than 10% from the initial viscosity, it was evaluated as ○, when it was 10% or more and less than 100%, it was evaluated as Δ, and when it was 100% or more, it was evaluated as ×.

B)乾燥性 JIS K 5400.5.8の方法に準じて行った。B) Drying property It was carried out according to the method of JIS K 5400.5.8.

すなわち、各被覆剤をフィルムアプリケーターにてウェ
ット膜厚100μの厚さでガラス板に塗布したものにつ
いて測定を行った。半硬化乾燥時間が1時間未満を○、
1時間以上3時間未満を△、3時間以上を×と評価した
。なお、各試験板は温度20°C1湿度75%の恒温恒
温室にて乾燥を行った。
That is, the measurement was performed on a glass plate coated with each coating agent to a wet film thickness of 100 μm using a film applicator. ○ if the semi-curing drying time is less than 1 hour;
1 hour or more and less than 3 hours was evaluated as △, and 3 hours or more was evaluated as ×. Each test plate was dried in a thermostatic chamber at a temperature of 20° C. and a humidity of 75%.

C)密着性 J IS K 5400.6.15の基盤目試験の方法
に準じて行った。すなわち、各被覆剤をフィルムアプリ
ケーターにてウェット膜厚100pnの厚さで磨き鋼板
(150X70X1++++++)に塗布し、1週間、
温度20’C,湿度75%の恒温恒湿室にて乾燥させた
被膜にカッターナイフで20mmの長さに十字に下地ま
で達する切り傷をつけた。その中心地の試験板裏面より
エリクセン試験機にて10mmの押し出しを行った。そ
の際、被膜表面の十字切り偏部の中心より剥離した長さ
によって密着性を判定した。剥離Oのとき○、5mm未
満のとき△、5 mm以上のとき×と評価した。
C) Adhesion It was carried out according to the method of the substrate test of JIS K 5400.6.15. That is, each coating agent was applied to a polished steel plate (150 x 70 x 1 +++++++) with a wet film thickness of 100 pn using a film applicator, and then applied for one week.
The coating was dried in a constant temperature and humidity chamber at a temperature of 20'C and a humidity of 75%, and a cut was made in a cross pattern reaching the base layer with a length of 20 mm using a cutter knife. Extrusion of 10 mm was performed from the back surface of the test plate at the center using an Erichsen tester. At that time, adhesion was determined by the length of peeling from the center of the cross-cut uneven portion of the coating surface. The evaluation was rated as ○ when the peeling was O, △ when the peeling was less than 5 mm, and × when the peeling was 5 mm or more.

第   2   表 上記第2表の結果から明らかなように、乾燥性。Table 2 As is clear from the results in Table 2 above, drying properties.

密着性、貯蔵安定性のいずれについても実施例1〜10
は良好であった。シリコーンゴム系の比較例4〜7につ
いては乾燥性、密着性、貯蔵安定性のいずれも不良であ
った。比較例8は貯蔵安定性のみ若干劣った。なお、比
較例1〜3は、乾燥後も表面粘着性が残っていた。
Examples 1 to 10 for both adhesion and storage stability
was in good condition. Comparative Examples 4 to 7 using silicone rubber had poor drying properties, adhesion properties, and storage stability. Comparative Example 8 was slightly inferior only in storage stability. In addition, in Comparative Examples 1 to 3, surface tackiness remained even after drying.

く被膜表面の滑り角の測定〉 前記乾燥性試験で用いた各試験板につき、第1図(4)
、(B)に示す滑り角測定機を用いて以下の要領で被膜
表面の滑り角を測定した。なお、上記測定機は、透明ガ
ラス板1と、このガラス板1上に一端A側が固定治具2
により固定されかっ他端B側が支柱3により支えられて
この支柱3に沿って上方に移動しうるように設けられた
可動板4とから構成されている。
Measurement of sliding angle of coating surface> Figure 1 (4) for each test plate used in the drying test.
The slip angle of the film surface was measured in the following manner using the slip angle measuring device shown in (B). The above measuring machine has a transparent glass plate 1 and a fixing jig 2 on the glass plate 1 with one end on the A side.
The movable plate 4 is fixed by a support column 3, and the other end B side is supported by a support column 3, and is provided so as to be movable upward along the support column 3.

まず、第1囚人に示すように、透明ガラス板1上に、試
験板5をその被膜形成側が上方に位置するように、可動
板4を介して水平に置き、この試験板5上で可動板4の
一端Aつまり固定冶具2からの距離γが185朋の位置
に注射器にて2CCの滅菌濾過海水を滴下して水滴6を
形成する。その後、第2図(B)に示すように、可動板
4の他端B側を支柱3に沿って1馴/秒の速度で上方に
移動させ、試験板5を傾斜させる。試験板5上の水滴が
滑り始めるときの傾斜角αを測定し、これを被膜表面の
滑り角とした。
First, as shown to the first prisoner, the test plate 5 is placed horizontally on the transparent glass plate 1 with the film forming side facing upward, with the movable plate 4 interposed therebetween. A water droplet 6 is formed by dropping 2 CC of sterilized filtered seawater using a syringe at one end A of 4, that is, at a position where the distance γ from the fixing jig 2 is 185 mm. Thereafter, as shown in FIG. 2(B), the other end B side of the movable plate 4 is moved upward along the support 3 at a speed of 1/sec to tilt the test plate 5. The inclination angle α at which the water droplets on the test plate 5 begin to slide was measured, and this was taken as the sliding angle of the coating surface.

なお、上記の測定は、温度25°C2湿度75%の恒温
・断湿室にて行い、各試験板につき3回の測定を行って
、その平均値で表わした。結果は、下記の第3表に示さ
れるとおりであった。
The above measurements were performed in a constant temperature/humidity chamber at a temperature of 25° C. and a humidity of 75%, and each test panel was measured three times, and the average value was expressed. The results were as shown in Table 3 below.

第   3   表 上記第3表の結果から明らかなように、実施例1〜10
については、顔料を含まないものが平均8.6度で、顔
料を含むものも平均9.3度であり、比較例1〜8の1
12〜25.0度に比べて小さい値であった。
Table 3 As is clear from the results in Table 3 above, Examples 1 to 10
The average temperature for those without pigment was 8.6 degrees, and the average temperature for those containing pigment was 9.3 degrees, compared to Comparative Examples 1 to 8.
This value was smaller than that of 12 to 25.0 degrees.

く防汚性能試験〉 各被覆剤を、サンドブラスト処理鋼板に予めタールビニ
ル系防錆塗料を塗布してなる塗装板(100X 200
 X 1 mm )の両面に、乾燥膜厚が片面120μ
となるようにスプレー塗りにより2回塗装して、試験板
を作製した。
Antifouling performance test> Each coating was applied to a sandblasted steel plate coated with a tarvinyl rust preventive paint (100 x 200
x 1 mm), with a dry film thickness of 120μ on one side.
A test board was prepared by spray painting twice so that the result was as follows.

この試験板につき、兵庫県洲本市由良湾にて、24ケ月
の海水浸漬を行い、試験塗膜上の付着生物の占有面積(
付着面積)の割合を経時的に測定した。結果は、下記の
第4表に示されるとおりであった。
This test board was immersed in seawater for 24 months in Yura Bay, Sumoto City, Hyogo Prefecture, and the area occupied by attached organisms on the test coating (
The percentage of adhesion area) was measured over time. The results were as shown in Table 4 below.

第  4  表 上記第4表の結果から明らかなように、実施例1〜10
は24ケ月経過後においても生物の付着は0%であるが
、比較例4においては3ケ月後に、比較例1〜3および
比較例5〜7においては6ケ月後に、比較例8において
は18ケ月後に生物の付着が見られた。
Table 4 As is clear from the results in Table 4 above, Examples 1 to 10
Even after 24 months, the adhesion of organisms was 0%, but in Comparative Example 4, after 3 months, in Comparative Examples 1 to 3 and Comparative Examples 5 to 7, after 6 months, and in Comparative Example 8, after 18 months. Later, biological adhesion was observed.

なお、比較例1の防汚性の悪さは、用いた重合体溶液o
’111)における単量体Aの一般式中のnが1のため
、エステル形成部の結合が弱く、ポリジメチルシロキサ
ン基が重合反応中脱離し、膜となったときの粘着の原因
となり、また海水中ではこの部分が膜より抜は出してし
まい防汚持続性がなかったことによるものと考えられる
In addition, the poor antifouling property of Comparative Example 1 is due to the polymer solution o used.
Since n in the general formula of monomer A in '111) is 1, the bond in the ester forming part is weak, and the polydimethylsiloxane group is detached during the polymerization reaction, causing adhesion when formed into a film. This is thought to be due to the fact that this part was extracted from the membrane in seawater, and the stain resistance did not last.

また、比較例2では、用いた重合体溶液(℃における単
量体Aの一般式中のnが5のため、これより形成された
被膜が軟化して、乾燥しても粘着性が残り表面張力も大
きくなり、防汚性が悪くなったものと考えられる。さら
に、比較例3では、用いた重合体溶液α)における単量
体Aの一般式中のmが75と大きいため、重合反応性が
著しく劣り、未反応の単量体Aが膜から分離し、膜は白
化しその均一性を保てず、防汚持続性か悪くなったもの
と考えられる。
In addition, in Comparative Example 2, since n in the general formula of monomer A at ℃ used was 5, the film formed from this softened and remained sticky even after drying. It is thought that the tension increased and the antifouling properties deteriorated.Furthermore, in Comparative Example 3, m in the general formula of monomer A in the polymer solution α) used was as large as 75, so the polymerization reaction It is thought that this is because the unreacted monomer A separated from the membrane, the membrane became white and could not maintain its uniformity, and the antifouling durability deteriorated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A) 、 03)は水中防汚被覆剤から形成さ
れる防汚被膜の表面滑り角を測定する方法を示す側面図
である。
FIG. 1(A), 03) is a side view showing a method for measuring the surface slip angle of an antifouling film formed from an underwater antifouling coating agent.

Claims (1)

【特許請求の範囲】[Claims] (1)つぎの一般式; ▲数式、化学式、表等があります▼…(1) (ただし、式中、Xは水素原子またはメチル基、nは2
〜4の整数、mは平均重合度で0〜70を表わす) で示される単量体Aの一種または二種以上の重合体、お
よび/または上記単量体Aの一種または二種以上とこれ
らと共重合し得るビニル重合性単量体Bの一種または二
種以上とからなる共重合体を必須成分として含有する水
中防汚被覆剤。
(1) The following general formula; ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) (However, in the formula, X is a hydrogen atom or a methyl group, and n is 2
an integer of ~4, m represents an average degree of polymerization of 0 to 70) and/or one or more of the above monomers A and these An underwater antifouling coating agent containing as an essential component a copolymer consisting of one or more vinyl polymerizable monomers B that can be copolymerized with the vinyl polymerizable monomer B.
JP29891885A 1985-12-27 1985-12-27 Underwater antifouling coating agent Granted JPS62156172A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29891885A JPS62156172A (en) 1985-12-27 1985-12-27 Underwater antifouling coating agent
NO865269A NO177464C (en) 1985-12-27 1986-12-23 Use of a Si-containing polymer as a binder in an antifouling paint
CA000526215A CA1274649A (en) 1985-12-27 1986-12-23 Antifouling coating
GB8630822A GB2188938B (en) 1985-12-27 1986-12-23 Antifouling coating composition comprising a polymer having siloxane and/or alkylsilyl groups
US07/209,813 US4883852A (en) 1985-12-27 1988-06-22 Antifouling coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29891885A JPS62156172A (en) 1985-12-27 1985-12-27 Underwater antifouling coating agent

Publications (2)

Publication Number Publication Date
JPS62156172A true JPS62156172A (en) 1987-07-11
JPH0560503B2 JPH0560503B2 (en) 1993-09-02

Family

ID=17865861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29891885A Granted JPS62156172A (en) 1985-12-27 1985-12-27 Underwater antifouling coating agent

Country Status (1)

Country Link
JP (1) JPS62156172A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290768A (en) * 1986-06-10 1987-12-17 Kansai Paint Co Ltd Antifouling paint composition
JPS636067A (en) * 1986-06-26 1988-01-12 Nippon Paint Co Ltd Water-repellent antifouling coating composition
JPS63168469A (en) * 1986-12-29 1988-07-12 Shin Etsu Chem Co Ltd Room temperature-curable paint composition
JPS6429475A (en) * 1987-07-24 1989-01-31 Shinetsu Chemical Co Antifouling paint composition
JPH01284513A (en) * 1988-05-11 1989-11-15 Chuo Rika Kogyo Kk Acrylic emulsion composition
JPH01319518A (en) * 1988-06-20 1989-12-25 Nisshin Kagaku Kogyo Kk Silicone/acrylic copolymer composition
WO1991016383A1 (en) * 1990-04-25 1991-10-31 Kansai Paint Company, Limited Automotive topcoating composition
JPH05230161A (en) * 1992-02-18 1993-09-07 Shin Etsu Chem Co Ltd Graft copolymer and coating composition using the same
US5409994A (en) * 1990-04-25 1995-04-25 Kansai Paint Company, Limited Automotive top coating composition
WO1996014214A1 (en) * 1994-11-07 1996-05-17 Sony Chemicals Corporation Thermal transfer recording medium
CN1040990C (en) * 1993-07-15 1998-12-02 中国科学院兰州化学物理研究所 Single-component pollution-free coating
JPH11263937A (en) * 1998-03-19 1999-09-28 Nof Corp Double layer coated film and method for antifouling
JP2003268300A (en) * 2002-03-14 2003-09-25 Nippon Yushi Basf Coatings Kk Top coating for automobile outer panel, coating method and coating film
JP2006503159A (en) * 2002-10-15 2006-01-26 ナルコ エナジー サーヴィシーズ,エル.ピー. Composition and method for preventing adhesion of dirt in the step of (meth) acrylic acid
EP1974951A1 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Coating composition for thermal transfer image-receiving sheet, and thermal transfer image-receiving sheet
US7670743B2 (en) 2005-03-04 2010-03-02 Ricoh Company, Ltd. Image forming method
US7785762B2 (en) 2005-12-15 2010-08-31 Ricoh Company, Ltd. Image forming apparatus and image forming method
US7928175B2 (en) 2003-03-14 2011-04-19 Mitsubishi Rayon Co., Ltd. Antifouling paint composition
US10409129B2 (en) 2016-05-11 2019-09-10 Ricoh Company, Ltd. Electrochromic element
US10429710B2 (en) 2016-05-13 2019-10-01 Ricoh Company, Ltd. Electrochromic device
US10975296B2 (en) 2017-01-26 2021-04-13 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
US11106106B2 (en) 2018-03-19 2021-08-31 Ricoh Company, Ltd. Electrochromic device, electronic dimming eyeglasses, augmented reality eyeglasses, and camera
US11370963B2 (en) 2018-07-25 2022-06-28 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
US11859131B2 (en) 2018-07-25 2024-01-02 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118356B2 (en) * 1996-12-12 2008-07-16 日本ペイント株式会社 Antifouling paint composition
EP2017676B1 (en) 2006-04-17 2014-07-23 Ricoh Company, Ltd. Image forming apparatus, image forming method, and process cartridge
EP2078988B1 (en) 2008-01-10 2013-06-26 Ricoh Company, Ltd. Image forming apparatus and image forming method
JP5402279B2 (en) 2008-06-27 2014-01-29 株式会社リコー Electrophotographic photoreceptor, method for producing the same, and image forming apparatus using the same
JP6786858B2 (en) 2015-06-19 2020-11-18 株式会社リコー Electrochromic compounds and electrochromic compositions
JP2018136468A (en) 2017-02-23 2018-08-30 株式会社リコー Electrochromic display and method for manufacturing the same
EP3712695B1 (en) 2019-03-20 2022-02-23 Ricoh Company, Ltd. Electrochromic device, wearable device, and method for driving electrochromic device
US11970662B2 (en) 2019-07-31 2024-04-30 Ricoh Company, Ltd. Electrochromic element
US12091612B2 (en) 2020-03-30 2024-09-17 Ricoh Company, Ltd. Electrochromic element
JP7472705B2 (en) 2020-07-29 2024-04-23 株式会社リコー Electrochromic element, electrochromic light control element, and electrochromic device
WO2022113702A1 (en) 2020-11-30 2022-06-02 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290768A (en) * 1986-06-10 1987-12-17 Kansai Paint Co Ltd Antifouling paint composition
JPH0645770B2 (en) * 1986-06-10 1994-06-15 関西ペイント株式会社 Antifouling paint composition
JPS636067A (en) * 1986-06-26 1988-01-12 Nippon Paint Co Ltd Water-repellent antifouling coating composition
JPS63168469A (en) * 1986-12-29 1988-07-12 Shin Etsu Chem Co Ltd Room temperature-curable paint composition
JPH0369950B2 (en) * 1986-12-29 1991-11-05 Shinetsu Chem Ind Co
JPS6429475A (en) * 1987-07-24 1989-01-31 Shinetsu Chemical Co Antifouling paint composition
JPH01284513A (en) * 1988-05-11 1989-11-15 Chuo Rika Kogyo Kk Acrylic emulsion composition
JPH01319518A (en) * 1988-06-20 1989-12-25 Nisshin Kagaku Kogyo Kk Silicone/acrylic copolymer composition
WO1991016383A1 (en) * 1990-04-25 1991-10-31 Kansai Paint Company, Limited Automotive topcoating composition
US5409994A (en) * 1990-04-25 1995-04-25 Kansai Paint Company, Limited Automotive top coating composition
JPH05230161A (en) * 1992-02-18 1993-09-07 Shin Etsu Chem Co Ltd Graft copolymer and coating composition using the same
CN1040990C (en) * 1993-07-15 1998-12-02 中国科学院兰州化学物理研究所 Single-component pollution-free coating
WO1996014214A1 (en) * 1994-11-07 1996-05-17 Sony Chemicals Corporation Thermal transfer recording medium
JPH11263937A (en) * 1998-03-19 1999-09-28 Nof Corp Double layer coated film and method for antifouling
JP2003268300A (en) * 2002-03-14 2003-09-25 Nippon Yushi Basf Coatings Kk Top coating for automobile outer panel, coating method and coating film
JP2006503159A (en) * 2002-10-15 2006-01-26 ナルコ エナジー サーヴィシーズ,エル.ピー. Composition and method for preventing adhesion of dirt in the step of (meth) acrylic acid
JP4741235B2 (en) * 2002-10-15 2011-08-03 ナルコ エナジー サーヴィシーズ,エル.ピー. Composition and method for preventing adhesion of dirt in the step of (meth) acrylic acid
US7928175B2 (en) 2003-03-14 2011-04-19 Mitsubishi Rayon Co., Ltd. Antifouling paint composition
US7670743B2 (en) 2005-03-04 2010-03-02 Ricoh Company, Ltd. Image forming method
US7785762B2 (en) 2005-12-15 2010-08-31 Ricoh Company, Ltd. Image forming apparatus and image forming method
EP1974951A1 (en) 2007-03-30 2008-10-01 FUJIFILM Corporation Coating composition for thermal transfer image-receiving sheet, and thermal transfer image-receiving sheet
US10409129B2 (en) 2016-05-11 2019-09-10 Ricoh Company, Ltd. Electrochromic element
US10429710B2 (en) 2016-05-13 2019-10-01 Ricoh Company, Ltd. Electrochromic device
US10975296B2 (en) 2017-01-26 2021-04-13 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
US11106106B2 (en) 2018-03-19 2021-08-31 Ricoh Company, Ltd. Electrochromic device, electronic dimming eyeglasses, augmented reality eyeglasses, and camera
US11370963B2 (en) 2018-07-25 2022-06-28 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
US11859131B2 (en) 2018-07-25 2024-01-02 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element

Also Published As

Publication number Publication date
JPH0560503B2 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
JPS62156172A (en) Underwater antifouling coating agent
US5116611A (en) Antifouling paint
TWI343404B (en) Silyl ester copolymer compositions
KR960005430B1 (en) Antifouling paint
JP6979791B2 (en) Leveling agent for paints using amphipathic block copolymers
JP7178167B2 (en) antifouling composition
US4883852A (en) Antifouling coating
JP2017507203A (en) Water-soluble coating composition having improved open time
KR20190129735A (en) Antifouling coating composition
JP5958157B2 (en) Coating method
JPS62283167A (en) Underwater antifouling coating agent
JP2775862B2 (en) Biofouling prevention paint composition
JPH0446306B2 (en)
JP2600813B2 (en) Underwater antifouling coating agent
JP2600842B2 (en) Underwater antifouling coating agent
JP3510975B2 (en) Curable resin composition
JPS63110268A (en) Aquatic antifouling coating agent
JP2002348536A (en) Antifouling coating composition and coating film of the same
CN116348557A (en) Antifouling compounds
JP2775861B2 (en) Biofouling prevention paint composition
JPH01121374A (en) Aquatic antifouling coating agent
JP3957790B2 (en) Paint composition
JPH011772A (en) Underwater antifouling coating
JPH011773A (en) Underwater antifouling coating
JPS63168476A (en) Underwater antifouling coating agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees