[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62143806A - Aluminum nitride powder and production thereof - Google Patents

Aluminum nitride powder and production thereof

Info

Publication number
JPS62143806A
JPS62143806A JP28309285A JP28309285A JPS62143806A JP S62143806 A JPS62143806 A JP S62143806A JP 28309285 A JP28309285 A JP 28309285A JP 28309285 A JP28309285 A JP 28309285A JP S62143806 A JPS62143806 A JP S62143806A
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
less
atn
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28309285A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nakamura
中村 美幸
Yozo Kuranari
倉成 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP28309285A priority Critical patent/JPS62143806A/en
Publication of JPS62143806A publication Critical patent/JPS62143806A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:Crude aluminum nitride powder resulting from direct nitridation is stirred in a nonaqueous solvent of a specific pH and dried in vacuum to produce an aluminum nitride powder of less impurity content, large bulk density and high formability. CONSTITUTION:Crude aluminum nitride powder which has been produced by the direct nitridation of metallic aluminum is treated with a nonaqueous solvent of less than 4pH under stirring. Then, the powder is filtered and the resultant cake of aluminum nitride is dried under vacuum. The resultant aluminum nitride contains less than 1.5wt% of oxygen and less than 300ppm of iron and has more than 0.3 bulk density. The nonaqueous solvent is e.g., glacial acetic acid, acetonitrile or chloroform. The treatment operation is carried out at least at room temperature and the time is preferably at least 1hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不純物が少なく成形性にすぐれた窒化アルミ
ニウム粉末およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an aluminum nitride powder with few impurities and excellent moldability, and a method for producing the same.

〔従来の技術〕[Conventional technology]

高熱伝導性基板の如き窒化アルミニウム(以下、AtN
という。〕成形体の原料として用いられるAtN粉末に
は、At203M元法(以下、還元法という。)により
製造されるもの(特開昭59−207814号公報)と
金属アルミニウム真妥窒化法(以下、直接窒化法という
。)で製造されるものとが知られている。還元法による
AtN粉末は、酸素、鉄などの不純物が少なく高純度で
ある長所を有するが嵩高であるために成形体を成形しに
くいという欠点がある。−万、直接窒化法によるAtN
粉末は、嵩が小さく成形し易い長所を有するが、不純物
の中でも特に陽イオン含有量が2000〜3000 p
pmと多い欠点がある。
Aluminum nitride (hereinafter referred to as AtN) such as a highly thermally conductive substrate
That's what it means. ] AtN powder used as a raw material for the molded body is one produced by the At203M original method (hereinafter referred to as the reduction method) (Japanese Patent Application Laid-open No. 59-207814), and one produced by the metal aluminum true nitriding method (hereinafter referred to as the direct method). It is known that it is manufactured by the nitriding method. AtN powder produced by the reduction method has the advantage of being highly pure with little impurities such as oxygen and iron, but has the disadvantage of being bulky and difficult to mold into compacts. -10,000, AtN by direct nitriding method
Powder has the advantage of being small in bulk and easy to mold, but it has a cation content of 2000 to 3000 p, especially among impurities.
There are many drawbacks such as pm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来技術の欠点を解消するものであって、そ
の目的とするところは、還元法によるAtN粉末と不純
物量が同程度で、しかも嵩比重が大きく成形性に優れた
AtN粉末を提供することにある。
The present invention solves the drawbacks of the prior art, and its purpose is to provide an AtN powder that has the same amount of impurities as AtN powder produced by a reduction method, has a large bulk specific gravity, and has excellent moldability. It's about doing.

〔問題を解決するための手段〕[Means to solve the problem]

すなわち、本発明の第1の発明は、酸素および鉄の含有
量が各々1.5重旭チ以下および300ppm以下で嵩
比重が0.3以上であることを特徴とする窒化アルミニ
ウム粉末であり、第2の発明は、[U窒化法で製造され
た原料窒化アルミニウム粉末k 、PH4以下の非水溶
媒中で攪拌処理した後濾過し、そのケーク状窒化アルミ
ニウムを真空下で乾燥することe%−徴とする第1の発
明の窒化アルミニウム粉末の製造方法である。
That is, the first invention of the present invention is an aluminum nitride powder characterized in that the content of oxygen and iron is 1.5 or less and 300 ppm or less, respectively, and the bulk specific gravity is 0.3 or more, The second invention is [raw material aluminum nitride powder k produced by the U nitriding method], stirred in a non-aqueous solvent with a pH of 4 or less, filtered, and dried the cake-like aluminum nitride under vacuum e%- This is a method for producing aluminum nitride powder according to a first aspect of the invention.

以下、本発明の内容を第1の発明の詳細な説明する。本
発明のAtN粉末は、例えば直接窒化物により製造され
るものであって、酸素1.5恵竜チ以下、不純物として
鉄? 3.00 ppm以下含有したものである。酸素
の含有量が1.5重量%を、また、鉄の含有量が300
 ppmを超えると基板等の成形体としたときにその熱
伝導率が悪くなるので好ましくない。
Hereinafter, the content of the present invention will be described in detail as a first aspect of the invention. The AtN powder of the present invention is produced by direct nitride, for example, and contains less than 1.5 g of oxygen and iron as an impurity. It contains 3.00 ppm or less. The oxygen content is 1.5% by weight, and the iron content is 300% by weight.
If it exceeds ppm, the thermal conductivity of the molded product such as a substrate will deteriorate, which is not preferable.

次に、本発明のAtN粉末は、嵩比重が0.3以上好ま
しくは0.5以上である。嵩比重が0.3未満では、成
形する際にしまりが悪くグリーンの密度が大きくならな
い。本発明のような高嵩比重を有するAtN粉末は、第
1図において例示する様に、表面に破砕面を有している
ことが特徴であり、第2図において示した還元法による
ものと区別されるものである。
Next, the AtN powder of the present invention has a bulk specific gravity of 0.3 or more, preferably 0.5 or more. If the bulk specific gravity is less than 0.3, compaction will be poor during molding and the density of the green will not increase. The AtN powder having a high bulk specific gravity as used in the present invention is characterized by having a fractured surface on the surface, as illustrated in FIG. It is something that will be done.

また、本発明による粉末の粒子の大きさは平均粒子径で
6μm以下であることが好ましく、3μmを超えると、
酸素や鉄の含有量が多くなった場合と同様、成形体の熱
伝導率が悪くなる傾向がある。
Further, the particle size of the powder according to the present invention is preferably 6 μm or less in terms of average particle diameter, and if it exceeds 3 μm,
As with the case where the content of oxygen or iron increases, the thermal conductivity of the molded body tends to deteriorate.

次に、不発明の第2の発明について説明する。Next, the second uninvented invention will be explained.

この発明で使用される原料AtN粉末は、直接窒化法に
より製造されたものである。具体的に例示すれば、本出
願人の出願である特願昭59−38940号により製造
されたものである。直接窒化法により製造されたuN粉
末は、還元法によるものに比べて嵩比重が大きいので成
形性に優れ、かつ、安価であるが、通常、IFeを含む
陽イオンを2.000〜3.000 ppm程度を含ん
でいるので、本発明では、以下の手順により、不純物を
低減するものである。
The raw material AtN powder used in this invention is produced by a direct nitriding method. A specific example is one manufactured according to Japanese Patent Application No. 59-38940 filed by the present applicant. The uN powder produced by the direct nitriding method has a larger bulk specific gravity than that produced by the reduction method, so it has excellent moldability and is inexpensive. In the present invention, the impurities are reduced by the following procedure.

なお、原料AtN粉末中の含まれる陽イオンの中で鉄分
については、その鉱物組成がセメンタイト、ヘマタイト
、マグネタイトあるいはα鉄であってもよいが、除去効
果の最も大きいα鉄を含む場合が有利である。また、鉄
以外のカルシウム、マグネシウム、アルミニウム、シリ
コンなどの陽イオンk 5000 ppm以上含む粉末
である場合はその除去効果の面から3μm以下の粒度に
することが有利である。その理由は、原料AtN粉末粒
子の表面に鉄系鉱物が濃縮されている境界相全露出させ
反応を促進させることができるからである。次に、以上
のAtN粉末’fr pH4以下の非水溶媒中で攪拌処
理する。
Regarding iron among the cations contained in the raw AtN powder, the mineral composition may be cementite, hematite, magnetite, or alpha iron, but it is advantageous to contain alpha iron, which has the greatest removal effect. be. Further, in the case of powder containing cations other than iron such as calcium, magnesium, aluminum, silicon, etc. in an amount of 5000 ppm or more, it is advantageous to use a particle size of 3 μm or less in view of the removal effect. The reason for this is that the reaction can be promoted by exposing the entire boundary phase in which iron-based minerals are concentrated on the surface of the raw material AtN powder particles. Next, the above AtN powder'fr is stirred in a non-aqueous solvent having a pH of 4 or less.

非水溶媒としては、氷酢酸、アセトニトリル、クロロホ
ルム等が挙げられるが、その濃度は2日4以下の水素イ
オン濃度である。−が4をこえる溶媒下であっては、前
記陽イオンの除去に時間を要し、場合によっては、除去
可能な鉄形態鉱物の半量以下しか除去出来ないこともあ
る。
Examples of the non-aqueous solvent include glacial acetic acid, acetonitrile, chloroform, etc., and the concentration thereof is a hydrogen ion concentration of 4 or less per day. In a solvent in which - exceeds 4, it takes time to remove the cations, and in some cases, less than half of the removable iron-form minerals can be removed.

処理条件について説明すると、温度については少なくと
も常温で、また、時間については少なくとも1時間とす
ることが好ましい。常温未満で処理時間が1時間未満で
は前記濃度の場合と同様に陽イオンの除去が充分でない
傾向となる。
Regarding the processing conditions, it is preferable that the temperature is at least room temperature and the time is at least 1 hour. If the temperature is lower than room temperature and the treatment time is less than 1 hour, the removal of cations tends to be insufficient, as in the case of the above concentration.

次いで、攪拌処理したAtN粉末は通常のヌツチェ方式
等による濾過を行うが、濾過洗滌液としてレエ、前記氷
酢醐等の如き非水溶媒またはアセトン、アルコール類の
AtN粉末を溶解させなくかつAtN粉末と反応しない
非水溶媒を用いる。
Next, the stirred AtN powder is filtered by the usual Nutsche method, etc., but as a filtration washing liquid, a non-aqueous solvent such as Rhae, the above-mentioned ice vinegar, etc., or acetone, an alcohol without dissolving the AtN powder is used. Use a non-aqueous solvent that does not react with

濾過洗滌して得たケーク状AtNは、100℃前後の温
度で乾燥するが、真空下で行なうことが望ましい。その
理由は、乾燥時のAtNの酸化金極力防止するためであ
る。充分乾燥したAtN粉末は室温まで冷却して取り出
し製品とする。
The cake-like AtN obtained by filtering and washing is dried at a temperature of around 100°C, but it is preferable to dry it under vacuum. The reason for this is to prevent gold oxidation of AtN as much as possible during drying. The sufficiently dried AtN powder is cooled to room temperature and taken out as a product.

以上、説明したように本発明による方法は、安価でかつ
成形性に優れた直接窒化法にょるAtN粉末を原料とし
、AtNの酸化を防ぎつつ鉄を含む陽イオンの少ないA
tN粉末を製造する点に特徴があるが、加えて、非水溶
媒で処理されているために、粒子表面が親油基で被覆さ
れた状態となっているので成形体を製造する際、焼結助
剤等との混合が有利となり、また、粒子表面の安定化に
もつながる。
As explained above, the method according to the present invention uses AtN powder produced by the direct nitriding method, which is inexpensive and has excellent formability, as a raw material, and prevents the oxidation of AtN while reducing the amount of iron-containing cations.
It is unique in that it produces tN powder, but in addition, since it is treated with a non-aqueous solvent, the particle surface is coated with lipophilic groups, so when producing a compact, it is difficult to sinter. Mixing with a binder or the like is advantageous and also leads to stabilization of the particle surface.

〔実施例〕〔Example〕

以下、実施例をあげてさらに具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 表に示す直接窒化法により製造した市販AtN粉末20
gを、水素イオン濃度10−1モル/ t(pH1)に
調整したアセトニトリル−塩化水素系非水溶媒200d
’e入れたポリエチレン製容器の中に投入し室温で1時
間攪拌しつつ酸処理を行なった。次いで、濾過洗滌液に
ア七トンを用い、ヌッチェ装置にて濾過洗滌した。その
後、そのケークを真空乾燥器(東洋製作所(株)製、商
品名r VAOUMDRY工NG ovxaJ ) K
入し−ア 00mHgx  100’Cで一昼夜乾燥し
製品AtN粉末を得た。得られたAtN粉末の倍率60
00の顕微鏡写真を第1図に示す。
Example 1 Commercially available AtN powder 20 manufactured by the direct nitriding method shown in the table
200 d of acetonitrile-hydrogen chloride non-aqueous solvent adjusted to a hydrogen ion concentration of 10-1 mol/t (pH 1)
The mixture was placed in a polyethylene container containing 100 ml of water, and the acid treatment was carried out while stirring at room temperature for 1 hour. Next, the filtered and washed solution was filtered and washed using a Nutsche apparatus using A7Tone. Thereafter, the cake was dried in a vacuum dryer (manufactured by Toyo Seisakusho Co., Ltd., product name: VAOUMDRY).
The product was dried at 00 mHg x 100'C for a day and a night to obtain a product AtN powder. Magnification of the obtained AtN powder: 60
A micrograph of 00 is shown in FIG.

次に、この粉末2.0 、F t−黒鉛ダイス(15■
11I)に入れ高周波加熱炉を用い、圧力100 KL
I/ cm2、温度2000℃、1気圧窒素ガス雰囲気
下で2時間加圧焼結しAtN焼結体を得た。このAtN
焼結体を研削研磨した後に物性を測定した。その結・果
を、AtN粉末の分析結果とともに表に示す。
Next, this powder 2.0, Ft-graphite dice (15
11I) using a high-frequency heating furnace at a pressure of 100 KL.
Pressure sintering was performed at I/cm2 at a temperature of 2000°C for 2 hours in a nitrogen gas atmosphere of 1 atm to obtain an AtN sintered body. This AtN
After grinding and polishing the sintered body, its physical properties were measured. The results are shown in the table along with the analysis results of the AtN powder.

実施例2 アセトニトリル−塩化水素系非水溶媒の水素イオン濃度
を10−r5モル/l (pH3)とした以外は実施例
1と同様に行なった。その結果を表に示す。
Example 2 The same procedure as in Example 1 was conducted except that the hydrogen ion concentration of the acetonitrile-hydrogen chloride nonaqueous solvent was set to 10-r5 mol/l (pH 3). The results are shown in the table.

比較例1〜3 アセトニトリル−塩化水素系非水溶媒の水素イオン濃度
’tlO−5モル/ t(pH5)としたこと以外は実
施例1と同様にして行なった(比較例1〕。
Comparative Examples 1 to 3 The same procedure as in Example 1 was carried out except that the hydrogen ion concentration of the acetonitrile-hydrogen chloride nonaqueous solvent was set to 'tlO-5 mol/t (pH 5) (Comparative Example 1).

実施例1で使用した直[i化法による市販AtN粉末を
そのまま用いて同様に試験した(比較例2λ還元法によ
る市販のAtN粉末(その倍率1ooo。
The same test was carried out using the commercially available AtN powder produced by the direct conversion method used in Example 1 (Comparative Example 2) The commercially available AtN powder produced by the λ reduction method (its magnification was 100%).

の顕微鏡写真を第2図に示す)全そのまま用いて同様に
試験した(比較例3)。
(A micrograph of which is shown in FIG. 2) was used as it was and tested in the same manner (Comparative Example 3).

以上の結果を表に示す。The above results are shown in the table.

表に記載した測定値の測定は次の方法によった。The measured values listed in the table were measured by the following method.

(1)平均粒子径(μm)・・・Fisher社のFS
SS法による。
(1) Average particle diameter (μm)...Fisher's FS
According to SS method.

(2酸素(重量%)・・・r、Boo社To −136
型酸素分析計による。
(2 oxygen (weight%)...r, Boo Co. To -136
Based on type oxygen analyzer.

(3)鉄(ppm )・・・アルカリ融解−吸光光度法
による。
(3) Iron (ppm): Based on alkali melting-absorption photometry.

(4)嵩比重(!j/α3)・・・細用ミク四ン(株)
パウダーテスター。
(4) Bulk specific gravity (!j/α3)...Choyo Mikufour Co., Ltd.
Powder tester.

(5)グリーン密度の相対値(係)・・・グリーン成形
体の嵩密度をAtHの真比重 (3,20)で除した値。
(5) Relative value of green density (correspondence): value obtained by dividing the bulk density of the green molded body by the true specific gravity (3, 20) of AtH.

(6)熱伝導率の相対値(%〕・・・還元法で製造した
AtN粉末を用いたときの焼結 体の熱伝導率に対する相対値。
(6) Relative value of thermal conductivity (%): Relative value to the thermal conductivity of the sintered body when AtN powder produced by the reduction method is used.

〔発明の効果〕〔Effect of the invention〕

本発明の第1の発明によれば、不純物量の少ない成形性
に優れたA4N粉末を得ることができる。
According to the first aspect of the present invention, it is possible to obtain A4N powder with a small amount of impurities and excellent moldability.

本発明の第2の発明によれば、直接窒化法で製造した安
価なAtN粉末粉末酸処理することにより簡単に第1の
発明のAtN粉末を製造することができる。
According to the second invention of the present invention, the AtN powder of the first invention can be easily produced by acid-treating the inexpensive AtN powder produced by the direct nitriding method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明(実施例1)によるAtN粉末の倍率6
000の、また、第2図は還元法で製造した市販AtN
粉末(比較例3)の倍率i oooc+の顕微鏡写真で
ある。 特許出願人 電気化学工業株式会社 手  続  補  正  書(方式) 昭和61年3月 5日 特許庁長官 宇 賀  道 部 殴 1、事件の表示 昭和60年特許願第283092号 2、発明の名称 窒化アルミニウム粉末およびその製造方法3、補正をす
る者 事件との関係   特許出願人 ■100 住所  東京都千代田区有楽町1丁目4番1号昭和61
年2月25日(発送日) 明細書第10頁第13〜16行を次のとおり訂iする。
Figure 1 shows AtN powder according to the present invention (Example 1) at a magnification of 6.
000, and Figure 2 shows the commercially available AtN produced by the reduction method.
It is a micrograph of the powder (Comparative Example 3) at a magnification of i oooc+. Patent Applicant: Denki Kagaku Kogyo Co., Ltd. Procedural Amendment (Method) March 5, 1985 Commissioner of the Patent Office Michibe Uga 1, Indication of the Case 1985 Patent Application No. 283092 2, Name of the Invention Nitriding Aluminum powder and its manufacturing method 3, relationship with the amended case Patent applicant ■100 Address 1-4-1 Yurakucho, Chiyoda-ku, Tokyo 1986
February 25, 2019 (shipment date) Page 10, lines 13 to 16 of the specification are revised as follows.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素および鉄の含有量が各々1.5重量%以下お
よび300ppm以下で嵩比重が0.3以上であること
を特徴とする窒化アルミニウム粉末。
(1) An aluminum nitride powder having an oxygen and iron content of 1.5% by weight or less and 300ppm or less, respectively, and a bulk specific gravity of 0.3 or more.
(2)金属アルミニウム直接窒化法で製造された原料窒
化アルミニウム粉末をpH4以下の非水溶媒中で攪拌処
理をした後濾過し、そのケーク状窒化アルミニウムを真
空下で乾燥することを特徴とする酸素および鉄の含有量
が各々1.5重量%以下および300ppm以下で嵩比
重が0.3以上である窒化アルミニウム粉末の製造方法
(2) Oxygen, which is characterized by stirring the raw material aluminum nitride powder produced by the metal aluminum direct nitriding method in a non-aqueous solvent with a pH of 4 or less, filtering it, and drying the cake-like aluminum nitride under vacuum. and a method for producing aluminum nitride powder having an iron content of 1.5% by weight or less and 300ppm or less, respectively, and a bulk specific gravity of 0.3 or more.
JP28309285A 1985-12-18 1985-12-18 Aluminum nitride powder and production thereof Pending JPS62143806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28309285A JPS62143806A (en) 1985-12-18 1985-12-18 Aluminum nitride powder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28309285A JPS62143806A (en) 1985-12-18 1985-12-18 Aluminum nitride powder and production thereof

Publications (1)

Publication Number Publication Date
JPS62143806A true JPS62143806A (en) 1987-06-27

Family

ID=17661111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28309285A Pending JPS62143806A (en) 1985-12-18 1985-12-18 Aluminum nitride powder and production thereof

Country Status (1)

Country Link
JP (1) JPS62143806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219067A (en) * 1988-02-29 1989-09-01 Kyocera Corp Sintered body consisting of aluminum nitride and its production
WO2014038676A1 (en) * 2012-09-07 2014-03-13 株式会社トクヤマ Method for producing water-resistant aluminum nitride powder
JP2020100543A (en) * 2018-12-20 2020-07-02 日亜化学工業株式会社 Silicon-containing aluminum nitride particles, method for producing the same, and light emitting device
JP2022067865A (en) * 2020-10-21 2022-05-09 株式会社燃焼合成 AlN PARTICLE AND METHOD FOR PRODUCING THE SAME

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219067A (en) * 1988-02-29 1989-09-01 Kyocera Corp Sintered body consisting of aluminum nitride and its production
WO2014038676A1 (en) * 2012-09-07 2014-03-13 株式会社トクヤマ Method for producing water-resistant aluminum nitride powder
CN104603049A (en) * 2012-09-07 2015-05-06 株式会社德山 Method for producing water-resistant aluminum nitride powder
US9399577B2 (en) 2012-09-07 2016-07-26 Tokuyama Corporation Method for producing water-resistant aluminum nitride powder
JPWO2014038676A1 (en) * 2012-09-07 2016-08-12 株式会社トクヤマ Method for producing water-resistant aluminum nitride powder
CN104603049B (en) * 2012-09-07 2016-12-21 株式会社德山 The manufacture method of water-resistant aluminum nitride powder
JP2020100543A (en) * 2018-12-20 2020-07-02 日亜化学工業株式会社 Silicon-containing aluminum nitride particles, method for producing the same, and light emitting device
JP2022067865A (en) * 2020-10-21 2022-05-09 株式会社燃焼合成 AlN PARTICLE AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
US3933961A (en) Tabletting spherical dental amalgam alloy
EP0434165A1 (en) Process for preparing fine powders of aluminiumnitride
DE59103837D1 (en) Process for the production of fine-grained, sinter-active nitride and carbonitride powders of titanium.
JPS58110632A (en) Silicon nitride-base sintering material and manufacture
JPS62143806A (en) Aluminum nitride powder and production thereof
US6080485A (en) Yttrium oxide-aluminum oxide composite particles and method for the preparation thereof
USRE29093E (en) Tabletting spherical dental amalgam alloy
JPH0653564B2 (en) Method for purifying hexagonal boron nitride
JPS5884108A (en) Manufacture of high purity alpha-type silicon nitride
JPH10203806A (en) Production of boron nitride powder
JPH07216474A (en) Production of high purity metallic chromium
JPH05229805A (en) Production of aluminum nitride powder
JPH0524810A (en) Production of aluminum nitride powder
JPS60131863A (en) Electrical insulating silicon carbide sintered body
JPS6340709A (en) Production of easy-to-sinter high-purity silicon nitride fine powder
JPS6148506A (en) Refining method of fine particle by gaseous phase process
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH01133983A (en) Manufacture of aluminum nitride sintered body
JPH0465307A (en) Production of aluminum nitride powder
JPS6227003B2 (en)
JP3838691B2 (en) Silicon nitride grinding aid and its use
JPH1053466A (en) Production of highly precise inorganic sintered compact
JPH04191342A (en) Production of alloy containing rare earth metal by using reduction-diffusion process
JPS62256764A (en) Manufacture of silicon carbide sintered body
JPS60174807A (en) Refining method of fine particle