JPS62141381A - Piezoelectric driving type valve - Google Patents
Piezoelectric driving type valveInfo
- Publication number
- JPS62141381A JPS62141381A JP28100985A JP28100985A JPS62141381A JP S62141381 A JPS62141381 A JP S62141381A JP 28100985 A JP28100985 A JP 28100985A JP 28100985 A JP28100985 A JP 28100985A JP S62141381 A JPS62141381 A JP S62141381A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valve body
- flow rate
- piezoelectric element
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrically Driven Valve-Operating Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、圧電体を駆動源として弁体の位置を調整し流
体の流量を制御する方′式の弁(本明細書では圧電駆動
式力という)の改良に関するものであり、特に、比較的
小流量域の流体を精度良(制御するに適した圧電駆動式
弁の構成に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a valve (hereinafter referred to as a piezoelectric driven type) that uses a piezoelectric body as a driving source to adjust the position of a valve body and control the flow rate of fluid. The present invention relates to improvements in the power of a piezoelectrically driven valve, which is suitable for precisely controlling fluids in a relatively small flow rate range.
従来、毎分数cc〜数百cc程度の比較的小流量域の流
体を取り扱う場合に使用される弁としては、例えば、ツ
レ/イドを利用したソレノイドバルブ、あるいは金属の
熱膨張を利用したサーマルバルブ(U、S、P 3v6
50,505)等が知られている。Conventionally, valves used to handle fluids in a relatively small flow rate range of several cc to several hundred cc per minute include, for example, solenoid valves that utilize twist/id, or thermal valves that utilize thermal expansion of metal. (U, S, P 3v6
50, 505), etc. are known.
しかしながら、ソレノイドバルブは、微小流量を精度良
く制御することが比較的離しいこと、ソレノイドの励磁
によって生ずる鉄損や抵抗損等により発熱し易いこと、
構造部品が多く比較的複雑なため生産性および保守性に
おいて劣ること等の難点があった。また、サーマルバル
ブは、比較的精度の良い流量制御が可能であり小型の制
御弁が実現できるとうの利点があるものの、金属の熱膨
張を利用して弁を駆動するため応答時間の点で問題があ
った。However, with solenoid valves, it is relatively difficult to accurately control minute flow rates, and they tend to generate heat due to iron loss and resistance loss caused by solenoid excitation.
Since it has many structural parts and is relatively complex, it has disadvantages such as poor productivity and maintainability. In addition, thermal valves have the advantage of being able to control the flow rate with relatively high precision and can be made into small control valves, but they have problems in terms of response time because they use the thermal expansion of metal to drive the valves. was there.
かかる従来技術の問題点を解消するものとして、最近、
圧電駆動式弁が提案され始めている。Recently, in order to solve the problems of the conventional technology,
Piezoelectrically driven valves are beginning to be proposed.
すなわち、例えば流路内に円柱状圧電体を挿入し該圧電
体の軸方向変化により生ずる流路断面積の増減によって
流量を制御するもの(特開昭55−149470号公報
)、高分子圧電材料フィルムより成る複数のバイモルフ
型圧電積層体の周辺部を固定し圧電積層体の変位により
連結されたグイヤ7ラム弁をl′lIl閉するものく特
開昭57−29801号公報)などがある。That is, for example, a method in which a cylindrical piezoelectric body is inserted into a flow path and the flow rate is controlled by increasing or decreasing the cross-sectional area of the flow path caused by changes in the axial direction of the piezoelectric body (Japanese Patent Application Laid-open No. 55-149470), polymer piezoelectric materials. There is a method (Japanese Unexamined Patent Publication No. 57-29801) in which the periphery of a plurality of bimorph type piezoelectric laminates made of film is fixed and a seven-ram valve connected to each other is closed by displacement of the piezoelectric laminates.
しかしながら、上記円柱状圧電体を用いたものは、圧電
体の軸方向の変位を利用しており、その変位量がμm以
下のオーダーであるため流量の調整代が極く僅かである
。また、上記高分子圧電材料フィルムを用いたものは、
素子の中央部分の変位を利用するため、その変位量は通
常100μ船前後と大トいものの、所望の駆動力を得る
ためには多数枚の圧電体を使用しなければならないため
、構造がI!!雑となり信頼性や応答性lこ難点がある
。このため、微小流量域の流体を精度良く制御で詐る小
型の流量制御弁の出現が望まれていた。However, the device using the cylindrical piezoelectric body utilizes the displacement of the piezoelectric body in the axial direction, and since the amount of displacement is on the order of μm or less, the adjustment margin for the flow rate is extremely small. In addition, those using the above-mentioned polymeric piezoelectric material film,
Since the displacement of the central part of the element is used, the amount of displacement is usually large, around 100μ, but in order to obtain the desired driving force, a large number of piezoelectric bodies must be used, so the structure is ! ! This results in poor reliability and responsiveness. For this reason, there has been a desire for a small flow rate control valve that can accurately control fluid in a minute flow rate range.
この発明は、」二記要望に鑑み、まず初期流量の設定が
容易であるとともに、使用中の流量の徽@整が容易で発
熱が少なく、しかも応答性の良い小型の圧電駆動式弁を
提供することを目的とする。In view of the above two requests, this invention provides a small piezoelectrically driven valve that is easy to set the initial flow rate, is easy to adjust the flow rate during use, generates little heat, and has good responsiveness. The purpose is to
上記目的を達成するために、本発明は、印加する電圧に
対応して生ずる圧電体の変位を利用して弁体を駆動し、
弁体を弁座に着座または離間させることにより流体の流
量制御を行なう圧電駆動式弁において、弁本体とハウジ
ングとの間に、弾性を有する薄板の一方の面に圧電セラ
ミック体を固着した圧電素子からなる弁体を装着すると
ともに、前記弁本体に設けた一方の流路と連通する弁室
を形成し、該弁室内に前記弁本体に設けた他方の流路に
連通する弁孔を有する弁座を突設して前記弁体と対向せ
しめ、さらに該弁体に対する押圧力の付加、除去等の調
整自在な調整機構を、前記ハウシンンに装着したことを
特徴とするものである。In order to achieve the above object, the present invention drives a valve body using the displacement of a piezoelectric body that occurs in response to an applied voltage,
In a piezoelectrically driven valve that controls the flow rate of fluid by seating or separating the valve body from the valve seat, a piezoelectric element is used between the valve body and the housing, in which a piezoelectric ceramic body is fixed to one surface of a thin elastic plate. A valve that is equipped with a valve body consisting of a valve body, has a valve chamber that communicates with one flow path provided in the valve body, and has a valve hole that communicates with the other flow path provided in the valve body within the valve chamber. The present invention is characterized in that a seat is provided in a protruding manner to face the valve body, and an adjustment mechanism is attached to the housing, which can freely adjust the application and removal of a pressing force to the valve body.
第1図は、本発明による圧電駆動式弁の基本構成の一例
を示す断面図である。FIG. 1 is a sectional view showing an example of the basic configuration of a piezoelectrically driven valve according to the present invention.
第1図において、1は弁本体で、図示しないボルト等公
知の結合手段でハウジング2を固着しており、この弁本
体1とハウジング2との間に弁室11を形成している。In FIG. 1, reference numeral 1 denotes a valve body, which is secured to a housing 2 by known coupling means such as bolts (not shown), and a valve chamber 11 is formed between the valve body 1 and the housing 2.
そして弁本体1から弁室11内に向かって弁孔3を有す
る弁座7が突設されている。また弁本体1とハウジング
2との間には後述のように構成された弁体8がOリング
17を介して挟持されている。さらに、ハウジング2に
はねじを介して弁体8の方向に進退する荷重調整ねじ9
が螺着されており、弁体8を弾力的に押圧するばね10
を装着している(第1図に示す例は荷重+g整ねじ9に
ばね10が内装され、ボール18を介して弁体8を押圧
するようになっている)。なお、弁本体1には弁孔3に
連通する流路4と、流路6を介して弁室11と連通する
流路5とが設けられている。A valve seat 7 having a valve hole 3 protrudes from the valve body 1 into the valve chamber 11. Further, a valve body 8 configured as described below is sandwiched between the valve body 1 and the housing 2 via an O-ring 17. Furthermore, the housing 2 is provided with a load adjusting screw 9 that moves forward and backward in the direction of the valve body 8 via a screw.
A spring 10 is screwed onto the spring 10 and elastically presses the valve body 8.
(In the example shown in FIG. 1, a spring 10 is installed in the load + g adjustment screw 9, and the spring 10 is configured to press the valve body 8 via the ball 18). The valve body 1 is provided with a passage 4 communicating with the valve hole 3 and a passage 5 communicating with the valve chamber 11 via a passage 6.
第2図は、上記構成の本発明圧電駆動式弁における弁体
8の慴成例を示す斜視図である。FIG. 2 is a perspective view showing an example of the construction of the valve body 8 in the piezoelectrically driven valve of the present invention having the above structure.
本発明における弁体は、基本的にはMS1図に示すよう
にダイヤプラム板12の一方の面に圧電セラミック体1
3を固着してなるいわゆる圧電ユニモルフ型圧電素子か
ら構成されるが、この例ではダイヤプラム板12におけ
る圧電セラミック体固着面とは反対側の面に弾性体14
を固着してなるものである。また、第3図は本発明にお
ける弁座の一例を示す要部斜視図であり、弁座7の弁体
当接部15には放射状に複数個の流量111!%溝16
が形成されている。しかしこの溝16は基本的にはなく
てもよい。Basically, the valve body in the present invention has a piezoelectric ceramic body mounted on one side of a diaphragm plate 12 as shown in Fig. MS1.
In this example, an elastic body 14 is attached to the surface of the diaphragm plate 12 opposite to the surface to which the piezoelectric ceramic body is fixed.
It is made by fixing. Further, FIG. 3 is a perspective view of a main part showing an example of a valve seat in the present invention, and a plurality of flow rates 111! % groove 16
is formed. However, this groove 16 is basically not necessary.
なお、本発明における圧電素子としては、必ずしも圧電
ユニモルフに限定されるものではなく、ダイヤフラム板
の両方の面に圧電セラミック体を固着したいわゆる圧電
バイモルフなどの圧電素子を用いても良い。Note that the piezoelectric element in the present invention is not necessarily limited to a piezoelectric unimorph, and a piezoelectric element such as a so-called piezoelectric bimorph in which a piezoelectric ceramic body is fixed to both surfaces of a diaphragm plate may be used.
」二記楕成の本発明圧電駆動式弁は、次のように作用す
る。圧電セラミック体13に直流電圧を印加すると圧電
素子は外周部から中央部にかけて凸もしくは門に屈曲す
る。本発明においては、この圧電素子自身から弁体8を
形成しているため、圧電素子すなわち弁体8の屈曲運動
により、弁体が弁座7に着座ホたは離間して流体の流量
を制御する。なおこの際、弁座7には流量調整溝16が
形F&され弁体8に弾性体14が固着されていると、弾
性体14の変形程度によって前記流量調整溝16の開口
面積が変化するため、該溝1Gを通って流入する流体の
流量を一層微細に制御することが可能となる。The piezoelectrically driven valve of the present invention having the second structure operates as follows. When a DC voltage is applied to the piezoelectric ceramic body 13, the piezoelectric element bends into a convex or gate shape from the outer periphery to the center. In the present invention, since the valve body 8 is formed from the piezoelectric element itself, the bending movement of the piezoelectric element, that is, the valve body 8 causes the valve body to sit on or away from the valve seat 7, thereby controlling the flow rate of the fluid. do. At this time, if the valve seat 7 has a flow rate adjustment groove 16 shaped like F& and the elastic body 14 is fixed to the valve body 8, the opening area of the flow rate adjustment groove 16 will change depending on the degree of deformation of the elastic body 14. , it becomes possible to more finely control the flow rate of the fluid flowing through the groove 1G.
すなわち、本発明においては、圧電素子に直流電圧を印
加したときに生ずる圧電素子の屈曲運動を利用して弁体
を駆動し、弁本体から弁室への流出入口の開「1部所面
積を変化せしめることにより流量制御するのである。That is, in the present invention, the bending motion of the piezoelectric element that occurs when a DC voltage is applied to the piezoelectric element is used to drive the valve body, and the opening area of the inlet and outlet from the valve body to the valve chamber is reduced. The flow rate is controlled by changing the amount.
また、本発明においては、ハウジング2に螺着した荷重
量整ねじ9をねじることによってこの荷重調整ねじ9を
進退さぜ、これに装着したばね10を介して弁体8に対
する押圧力を調整して所望の初期流量を設定することが
できるのである。Further, in the present invention, the load adjustment screw 9 screwed onto the housing 2 is moved forward and backward by twisting it, and the pressing force against the valve body 8 is adjusted via the spring 10 attached to the load adjustment screw 9. Therefore, the desired initial flow rate can be set.
なお、本発明において圧電素子には、直流電源や発振器
等により所定の周波数をもつ電圧を発生し、直接あるい
は増幅器を介してこの電圧が印加されるようになってい
る。そしてこの印加電圧の大きさを調整することにより
圧電素子の屈曲量の調整ができ、また印加電圧のパルス
中と周期を11整することにより圧電素子が屈曲してい
る時間を′I!4整し、弁体の駆動時間を調整すること
ができるようになっている。In the present invention, a voltage having a predetermined frequency is generated by a DC power supply, an oscillator, etc., and this voltage is applied to the piezoelectric element directly or via an amplifier. By adjusting the magnitude of this applied voltage, the amount of bending of the piezoelectric element can be adjusted, and by adjusting the period during the pulse of the applied voltage to 11, the time during which the piezoelectric element is bent can be 'I! 4, and the driving time of the valve body can be adjusted.
以下、本発明を実施例に基づいて、より詳細に説明する
。Hereinafter, the present invention will be explained in more detail based on examples.
(実施例1)
直径161I1m、厚さ0.11Ilfflの黄銅製振
動板(ダイヤフラム板)12に、直径12IIIL11
1厚さ0.27mmのPZT系圧電セラミック体13を
接着したユニモルフ型圧電素子を用いて弁体8を得た。(Example 1) A brass diaphragm plate 12 with a diameter of 161I1m and a thickness of 0.11Ilffl has a diameter of 12IIIL11.
A valve body 8 was obtained using a unimorph type piezoelectric element to which a PZT-based piezoelectric ceramic body 13 having a thickness of 0.27 mm was bonded.
この弁体8のダイヤプラム板(すなわち圧電素子の振動
板)12の周辺部分を、0リング17を介してステンレ
ス鋼からなる弁本体1とハウジング2とで挟持し、第1
図で示したような構造の圧電駆動式ブtを製造した。The peripheral portion of the diaphragm plate (that is, the diaphragm of the piezoelectric element) 12 of this valve body 8 is sandwiched between the valve body 1 made of stainless steel and the housing 2 via an O-ring 17, and the first
A piezoelectrically driven butt t having the structure shown in the figure was manufactured.
なお、本発明にオIいては、弁本体1とハウジング2と
によりダイヤフラム板12を挟持するのに、必ずしもO
りングを介装する必要はないが、ダイヤフラム板12の
両側またはいずれが一方の側にOリングを介装すると、
弁室11の密封度を向」ニすることがでbるので好まし
い。In addition, according to the present invention, the diaphragm plate 12 is not necessarily held between the valve body 1 and the housing 2.
Although it is not necessary to insert an O-ring on either side of the diaphragm plate 12,
This is preferable because the degree of sealing of the valve chamber 11 can be improved.
次に、荷重調整ねじ9によりばね10を介して弁体8を
弁座7の弁体当接部15に押圧する押圧力を111N整
し、圧電素子に電圧を印加しない状態において弁体8が
弁体当接部15に密着するようにした。従って圧電原子
に電圧を印加しない状態ではガス等の流体の流れは阻止
されている。Next, the force for pressing the valve body 8 against the valve body abutting portion 15 of the valve seat 7 is adjusted to 111N using the load adjustment screw 9 via the spring 10, and the valve body 8 is adjusted to 111N when no voltage is applied to the piezoelectric element. It was made to come into close contact with the valve body abutting portion 15. Therefore, when no voltage is applied to the piezoelectric atoms, the flow of fluid such as gas is blocked.
第4図は印加電圧と、圧電素子すなわち弁体8の変位量
との相関を示したものである。印加電圧を上げるにつれ
て変位量も大きくなっており、印加電圧により弁体8の
変位量が調整できることを示しでいる。印加電圧の上昇
時と下降時とで変位量が異なるのは圧電セラミック体1
3のヒステリシスによるものであり、変位量や流量を印
加電圧にフィトバックしてこれを調整すること等により
改善することがで外る。FIG. 4 shows the correlation between the applied voltage and the amount of displacement of the piezoelectric element, that is, the valve body 8. As the applied voltage increases, the amount of displacement also increases, indicating that the amount of displacement of the valve body 8 can be adjusted by changing the applied voltage. The piezoelectric ceramic body 1 has a different amount of displacement when the applied voltage increases and decreases.
This is due to the hysteresis of No. 3, and can be improved by adjusting the amount of displacement and flow rate back to the applied voltage.
上述のように、圧電素子よりなる弁体8が変位し、弁座
7の弁体当接部15から離れたり近接したりして流路の
面積が調整されるのである。As described above, the valve body 8 made of a piezoelectric element is displaced and moved away from or close to the valve body abutting portion 15 of the valve seat 7, thereby adjusting the area of the flow path.
第5図は圧電素子への印加電圧の大きさとガス流量との
相関を示したもので、印加電圧によりガス流量が制御で
きることを示している。FIG. 5 shows the correlation between the magnitude of the voltage applied to the piezoelectric element and the gas flow rate, and shows that the gas flow rate can be controlled by the applied voltage.
(実施例2)
第6図は本発明の第2実施例を説明するための図である
。圧電駆動式弁の構造は実施例1 (第1実施例)とほ
ぼ同様とした。(Embodiment 2) FIG. 6 is a diagram for explaining a second embodiment of the present invention. The structure of the piezoelectrically driven valve was almost the same as in Example 1 (first example).
荷重ll!整ねじ9によりばね10を介して弁体8を弁
座7の弁体当接部15に押圧する押圧力を調整し、圧電
素子に電圧を印加しない状態でガス流量が7,000c
論3/n+inとなるようにした。Load ll! The pressure force for pressing the valve body 8 against the valve body abutting portion 15 of the valve seat 7 is adjusted by the set screw 9 via the spring 10, and the gas flow rate is 7,000 c when no voltage is applied to the piezoelectric element.
Theory 3/n+in.
、ffi 6図は以」二の条件下で圧電素子への印加電
圧の大きさとガス流量との相関を示したものである。, ffi Figure 6 shows the correlation between the magnitude of the voltage applied to the piezoelectric element and the gas flow rate under the following conditions.
圧電素子に電圧を印加しない状態では、弁体8と弁体当
接部15との間隔あるいは押圧力は荷重調整ねしにJ:
り調g、されており、ガス流量は7 、0000m3/
111inである。圧電素子に電圧を印加すると初期
位置より圧電素子は変位し、ガス流量は7 、000
cfi3/ minを基点として印加電圧とともに変化
した。When no voltage is applied to the piezoelectric element, the distance or pressing force between the valve body 8 and the valve body contact portion 15 is J:
The gas flow rate is 7,000m3/
It is 111 inches. When a voltage is applied to the piezoelectric element, the piezoelectric element is displaced from its initial position, and the gas flow rate is 7,000.
It changed with the applied voltage with cfi3/min as the base point.
(実施例3)
第7図は第3実施例における圧電駆動式弁の断面図であ
る。(Embodiment 3) FIG. 7 is a sectional view of a piezoelectrically driven valve in a third embodiment.
その構造は前記実施例1.2のものとほぼ同様であるが
、振動板にはさらにその片側に厚さ0.05mmのゴム
14を接着して第2図のような弁体8を構成し、また弁
座7の弁体当接部15には第3図のJ:うに中心から外
周部へ向かう □放射状の流量1111整溝16を形成
した。Its structure is almost the same as that of Example 1.2, but a rubber 14 with a thickness of 0.05 mm is bonded to one side of the diaphragm to form a valve body 8 as shown in FIG. Further, in the valve body abutting portion 15 of the valve seat 7, a radial flow rate 1111 regulating groove 16 is formed.
荷重調整ねじ9に」:りばね10を介して弁体8を弁体
当接部15に押圧する力を11整し、圧電素子に電圧を
印加しない状態で弁体8が弁体当接部15に密着すると
ともに、流量調整溝16をも完全に閉鎖する状態にした
。Load adjustment screw 9: Adjust the force that presses the valve body 8 against the valve body abutting part 15 via the spring 10, and the valve body 8 is set at the valve body abutting part when no voltage is applied to the piezoelectric element. 15, and the flow rate adjustment groove 16 was also completely closed.
この状態から圧電素子への印加電圧を徐々に上昇させる
と圧電素子は徐々に湾曲して弁体8は流量調整溝16の
底部から離れ始め、さらに溝全体から離れた後弁体当接
部15から離れるのである。従って本実施例の構造にす
ると流量の微少量制御が可能である。When the voltage applied to the piezoelectric element is gradually increased from this state, the piezoelectric element gradually curves and the valve body 8 begins to separate from the bottom of the flow rate adjustment groove 16, and after further separating from the entire groove, the valve body abutting portion 15 It moves away from. Therefore, with the structure of this embodiment, it is possible to control the flow rate by a minute amount.
第8図はこの微少量制御を行なったときの印加電圧とガ
ス流量どの相関を示したものであり、50cm3/wi
n以下の@量のガス流量でも十分に制御できることを示
している。Figure 8 shows the correlation between the applied voltage and the gas flow rate when performing this minute amount control.
This shows that sufficient control can be achieved even with a gas flow rate of less than n.
以上、詳述したように本発明による圧電駆動式弁は、変
位量の比較的大きな圧電ユニモルフ等の圧電素子により
弁体を構成するとともに、ハウジングに荷重調整ねじを
設け、このねじを回すことによって弁体と弁体当接部と
の間隔や弁体への押圧力を調整してガスの初期流量を調
整するとともに、外部からの印加電圧により弁体の初期
位置からの変位量を制御することによりがス等の流体の
流量を制御することができるものである。As described above in detail, the piezoelectrically driven valve according to the present invention has a valve body composed of a piezoelectric element such as a piezoelectric unimorph having a relatively large amount of displacement, and a load adjusting screw is provided in the housing, and the load adjustment screw is turned. Adjusting the initial flow rate of gas by adjusting the distance between the valve body and the valve body contacting part and the pressing force on the valve body, and controlling the amount of displacement of the valve body from its initial position by externally applied voltage. It is possible to control the flow rate of fluid such as gas.
また、弁体の弁体当接部側の表面にゴム等の軟質材料を
被着したり、弁座の弁体当接部に溝等の凹凸を形成した
りすることにより、極微少量から比較的大きな流量まで
流量制御ができるものである。In addition, by applying a soft material such as rubber to the surface of the valve body contacting part of the valve body, or by forming grooves or other irregularities on the valve body contact part of the valve seat, we can reduce the It is possible to control the flow rate up to a target flow rate.
本発明において用いる圧電素子の形状は上記実施例のも
のに限るのではなく、前記のように、圧電ユニモルフや
これと同等の慢能をもつ圧電バイモルフなどでもよい。The shape of the piezoelectric element used in the present invention is not limited to that of the embodiments described above, but may be a piezoelectric unimorph or a piezoelectric bimorph having an equivalent ability as described above.
また、弁体の表面に被着する軟質材料の材質は上記実施
例のようにゴムに限るものではなく、弁体当接部の凹凸
に適応するものであれば他のものでもよい。そしてこの
凹凸の形状も上記実施例のように溝に限るものではない
。Further, the material of the soft material adhered to the surface of the valve body is not limited to rubber as in the above embodiment, but may be any other material as long as it is suitable for the irregularities of the valve body abutting portion. The shape of these irregularities is not limited to the grooves as in the above embodiments.
なおまた、弁体の初期位置のI′p!整機構も上記実施
例のようにねじに限るものではなく、弁体の位置や押圧
力を変化させうるものであればよい。Furthermore, I′p! of the initial position of the valve body! The adjusting mechanism is not limited to a screw as in the above embodiment, but may be any mechanism as long as it can change the position and pressing force of the valve body.
さらに、上記実施例では電圧を加えることによってガス
流量を増加させたが、電圧を逆方向に加えることにより
ガス流量を減少させる方向で制御してもよい。Further, in the above embodiment, the gas flow rate was increased by applying a voltage, but the gas flow rate may be controlled to be decreased by applying a voltage in the opposite direction.
以上、詳述したことから明らかなように、本発明による
圧電駆動式弁は、次のような特有の効果を有するもので
ある。As is clear from the above detailed description, the piezoelectrically driven valve according to the present invention has the following unique effects.
(1)変位量の比較的大きな圧電ユニモルフや圧電バイ
モルフにより弁体の駆動を行なうことにより極少量から
比較的大きな量まで連続的に流体の流量を制御すること
ができる。(1) By driving the valve body with a piezoelectric unimorph or piezoelectric bimorph that has a relatively large amount of displacement, the flow rate of fluid can be continuously controlled from a very small amount to a relatively large amount.
(2)電圧を印加しないときの流体の初期流量を弁の外
部から調整でき、微少量付近とともに大流量付近でも流
体の流量を精密に制御することがでトる。(2) The initial flow rate of the fluid when no voltage is applied can be adjusted from outside the valve, making it possible to precisely control the flow rate of the fluid both in the vicinity of very small amounts and in the vicinity of large flow rates.
(3)圧電素子に印加する電圧の大外さやパルス中、周
波数等を変化させることにより、容易と流体の流量が調
整できる。(3) The flow rate of the fluid can be easily adjusted by changing the magnitude, pulse, frequency, etc. of the voltage applied to the piezoelectric element.
(4)一般に数μSeeから数ll1secと応答速度
の早い圧電素子自身により弁が構成されているため、流
体の流量制御時の応答性が良い。(4) Since the valve is constituted by the piezoelectric element itself, which generally has a fast response speed of several μSee to several 11 seconds, the response when controlling the fluid flow rate is good.
(5)圧電素子自身の厚みは数μ飴程度であり、弁全体
の構造が非常に小型に形成できる6(6)圧電セラミッ
クスは絶縁体であり、電流がほとんど流れないため、発
熱量が非常に少ない。(5) The thickness of the piezoelectric element itself is about the same as a few micrometers of candy, allowing the entire valve structure to be made very compact.6 (6) Piezoelectric ceramics are insulators and almost no current flows, so they generate very little heat. There are few.
(7)弁体表面に適当な材質の軟質材料を被着したり、
弁座の弁体当接部lこ適宜の形状、寸法の溝等の凹凸を
殴けることにより、流体の微少な流量を比較的容易に制
御することができるものである。(7) Applying a suitable soft material to the surface of the valve body,
By forming irregularities such as grooves of appropriate shapes and dimensions on the valve body abutting portion of the valve seat, the minute flow rate of fluid can be controlled relatively easily.
第1図は本発明による圧電駆動式弁の基本構成を説明す
るための断面図、第2図は同じく弁体の構成例を示す斜
視図、第3図は同じく弁座の一例を示す要部斜視図、第
4図は印加電圧と圧電素子の変位量との相関を示す図、
15図、第6図は第1実施例と第2実施例とにおける圧
型素子への印加電圧とが大流量との相関を示す図、第7
図は第3実施例における本発明による圧電駆動式弁の断
面図、第8図は同じく印加電圧とガス流量との相関を示
す図である。FIG. 1 is a sectional view for explaining the basic structure of a piezoelectrically driven valve according to the present invention, FIG. 2 is a perspective view showing an example of the structure of a valve body, and FIG. 3 is a main part showing an example of a valve seat. A perspective view, FIG. 4 is a diagram showing the correlation between the applied voltage and the amount of displacement of the piezoelectric element,
15 and 6 are diagrams showing the correlation between the voltage applied to the pressure type element and the large flow rate in the first embodiment and the second embodiment, and FIG.
The figure is a cross-sectional view of a piezoelectrically driven valve according to the present invention in a third embodiment, and FIG. 8 is a diagram similarly showing the correlation between applied voltage and gas flow rate.
Claims (5)
用して弁体を駆動し、弁体を弁座に着座または離間させ
ることにより流体の流量制御を行なう圧電駆動式弁にお
いて、弁本体とハウジングとの間に、弾性を有する薄板
の一方の面に圧電セラミック体を固着した圧電素子から
なる弁体を装着するとともに、前記弁本体に設けた一方
の流路と連通する弁室を形成し、該弁室内に前記弁本体
に設けた他方の流路に連通する弁孔を有する弁座を突設
して前記弁体と対向せしめ、さらに該弁体に対する押圧
力の付加、除去等の調整自在な調整機構を、前記ハウジ
ングに装着したことを特徴とする圧電駆動式弁。(1) In a piezoelectrically driven valve that controls the flow rate of fluid by driving a valve body using the displacement of a piezoelectric body that occurs in response to an applied voltage and seating or separating the valve body from a valve seat. A valve body made of a piezoelectric element having a piezoelectric ceramic body fixed to one surface of a thin elastic plate is installed between the main body and the housing, and a valve chamber communicating with one flow path provided in the valve body is provided. A valve seat having a valve hole communicating with the other flow path provided in the valve body is provided in the valve chamber to face the valve body, and a pressing force is applied to and removed from the valve body. A piezoelectrically driven valve characterized in that a freely adjustable adjustment mechanism is attached to the housing.
に軟質材料を被着したことを特徴と する特許請求の範囲第1項記載の圧電駆動式弁。(2) A piezoelectrically driven valve according to claim 1, characterized in that a soft material is adhered to the other surface of the piezoelectric element to which the piezoelectric ceramic body is fixed.
ことを特徴とする特許請求の範囲第1項または第2項記
載の圧電駆動式弁。(3) The piezoelectrically driven valve according to claim 1 or 2, characterized in that an unevenness such as a groove is formed on the surface of the valve seat facing the valve body.
を特徴とする特許請求の範囲第1項〜第3項のいずれか
に記載の圧電駆動式弁。(4) The piezoelectrically driven valve according to any one of claims 1 to 3, wherein the piezoelectric element is a unimorph piezoelectric element.
の範囲第1項〜第4項のいずれかに記載の圧電駆動式弁
。(5) The piezoelectrically driven valve according to any one of claims 1 to 4, wherein the fluid is a gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28100985A JPS62141381A (en) | 1985-12-16 | 1985-12-16 | Piezoelectric driving type valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28100985A JPS62141381A (en) | 1985-12-16 | 1985-12-16 | Piezoelectric driving type valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62141381A true JPS62141381A (en) | 1987-06-24 |
Family
ID=17633006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28100985A Pending JPS62141381A (en) | 1985-12-16 | 1985-12-16 | Piezoelectric driving type valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62141381A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62181768U (en) * | 1986-05-08 | 1987-11-18 | ||
US5029805A (en) * | 1988-04-27 | 1991-07-09 | Dragerwerk Aktiengesellschaft | Valve arrangement of microstructured components |
US5340081A (en) * | 1993-06-07 | 1994-08-23 | The United States Of America As Represented By The United States Department Of Energy | Means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection |
JP2013508825A (en) * | 2009-10-15 | 2013-03-07 | ピヴォタル システムズ コーポレーション | Method and apparatus for gas flow control |
US8857456B2 (en) | 2008-01-18 | 2014-10-14 | Pivotal Systems Corporation | Method and apparatus for in situ testing of gas flow controllers |
US9400004B2 (en) | 2010-11-29 | 2016-07-26 | Pivotal Systems Corporation | Transient measurements of mass flow controllers |
US10401202B2 (en) | 2015-07-10 | 2019-09-03 | Pivotal Systems Corporation | Method and apparatus for gas flow control |
-
1985
- 1985-12-16 JP JP28100985A patent/JPS62141381A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62181768U (en) * | 1986-05-08 | 1987-11-18 | ||
JPH0313658Y2 (en) * | 1986-05-08 | 1991-03-28 | ||
US5029805A (en) * | 1988-04-27 | 1991-07-09 | Dragerwerk Aktiengesellschaft | Valve arrangement of microstructured components |
US5340081A (en) * | 1993-06-07 | 1994-08-23 | The United States Of America As Represented By The United States Department Of Energy | Means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection |
US8857456B2 (en) | 2008-01-18 | 2014-10-14 | Pivotal Systems Corporation | Method and apparatus for in situ testing of gas flow controllers |
JP2013508825A (en) * | 2009-10-15 | 2013-03-07 | ピヴォタル システムズ コーポレーション | Method and apparatus for gas flow control |
US9523435B2 (en) | 2009-10-15 | 2016-12-20 | Pivotal Systems Corporation | Method and apparatus for gas flow control |
US9904297B2 (en) | 2009-10-15 | 2018-02-27 | Pivotal Systems Corporation | Method and apparatus for gas flow control |
US9983595B2 (en) | 2009-10-15 | 2018-05-29 | Pivotal Systems Corporation | Method and apparatus for gas flow control |
US9400004B2 (en) | 2010-11-29 | 2016-07-26 | Pivotal Systems Corporation | Transient measurements of mass flow controllers |
US10401202B2 (en) | 2015-07-10 | 2019-09-03 | Pivotal Systems Corporation | Method and apparatus for gas flow control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW381205B (en) | Gas supplying device with a pressure flow controller | |
JP3586075B2 (en) | Pressure type flow controller | |
US4695034A (en) | Fluid control device | |
US6062256A (en) | Micro mass flow control apparatus and method | |
JPH06323457A (en) | Piezoelectric type pressure control valve | |
JPS62141381A (en) | Piezoelectric driving type valve | |
US5470045A (en) | Solenoid-actuated diaphragm valve with biased disc spring | |
JPS6228585A (en) | Piezoelectrically driven valve | |
US4782860A (en) | Magnetic flow control valve | |
JPS6231784A (en) | Piezoelectric driving type valve | |
JPS61127983A (en) | Fluid control valve | |
JPS62215174A (en) | Diaphragm type piezo-electric actuation valve | |
JP3377077B2 (en) | Valve body and electromagnetic control valve using the same | |
JPS62177384A (en) | Piezoelectric driven valve | |
JPH07310842A (en) | Fine flow rate adjustment valve | |
JPS62283271A (en) | Piezo-electric driven type valve | |
TWI753708B (en) | Diaphragm valves, flow control devices, fluid control devices, and semiconductor manufacturing equipment | |
JP7382054B2 (en) | Valve devices and flow control devices | |
JPS62177383A (en) | Piezoelectric driven valve | |
JPH01105080A (en) | Piezoelectric flow control valve | |
JP2529388B2 (en) | Valve for gas flow controller | |
JP2687213B2 (en) | Fluid powder control valve | |
JPS62215175A (en) | Ceramic coated piezo-electric actuation valve | |
JPH11265217A (en) | Pressure type flow controller | |
JPH0356342B2 (en) |