JPS62145137A - Analyzing device for incineration gas - Google Patents
Analyzing device for incineration gasInfo
- Publication number
- JPS62145137A JPS62145137A JP60285560A JP28556085A JPS62145137A JP S62145137 A JPS62145137 A JP S62145137A JP 60285560 A JP60285560 A JP 60285560A JP 28556085 A JP28556085 A JP 28556085A JP S62145137 A JPS62145137 A JP S62145137A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- instrument
- piping
- incineration
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、焼却ガス分析装置に係り、特に腐食性ガスを
含む排ガスに好適な焼却ガス分析装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an incineration gas analyzer, and particularly to an incineration gas analyzer suitable for exhaust gas containing corrosive gas.
従来の装置は、特開昭57−66398号に記載のよう
に、冷却用空気を混入することにより排ガスフィルタの
塩化水素による腐食を防止し得るようになっていた。し
かし、焼却ガス分析装置の腐食防止の点については配慮
されていなかった。As described in Japanese Patent Application Laid-Open No. 57-66398, conventional devices have been designed to prevent corrosion of the exhaust gas filter by hydrogen chloride by mixing cooling air. However, no consideration was given to preventing corrosion of the incineration gas analyzer.
従来の問題点は、焼却炉排ガス中に腐食性ガス成分が含
まれることから、ガス温度が降下するとともにドレン化
することにより配管にはピンホール、流量調整弁にはタ
ール分付着による動作不良等の不具合が発生し、連続計
測に支障をきたしている。現装置は、サンプルガスの液
化防止のため。The problem with the conventional method is that the incinerator exhaust gas contains corrosive gas components, and as the gas temperature drops, it becomes a drain, causing pinholes in piping and malfunctions due to tar adhesion to flow rate regulating valves. A problem has occurred, which is interfering with continuous measurement. The current device is used to prevent sample gas from liquefying.
計装配管及び分析装置内ヒータを布設し、サンプルガス
の温度制御を実施している。ヒータの制御は、たとえば
放射線検出器等の使用温度上限値が約60℃であること
、又、焼却炉排ガスの露点が約50℃(設計値)である
ことから、約55℃にて実施している。一方、焼却炉排
ガス成分は、燃焼物により変化するものであり、一時的
な腐食性ガス成分の増加や露点の上昇等が引き起こされ
、上記不具合が発生していると考えられる。不具合対策
として、まず、配管及び機器類の材質を耐腐食性材料に
変更することが考えられろ。耐腐食性の材料としては、
チタン、FRP及びテフロンコーチイン材等がよく知ら
れているが、加工性、耐温度性等を評価するとテフロン
コーテイング材が最良である。しかし、すべての配管及
び機器に対し、テフロンコーテイング材を使用すること
ば難しく、現状の技術レベルでは、流量調整弁及びサン
プルポンプは、テフロンコーティングが困難である。Instrumentation piping and a heater in the analyzer have been installed to control the temperature of the sample gas. Heater control should be carried out at approximately 55°C because, for example, the upper limit of operating temperature for radiation detectors, etc. is approximately 60°C, and the dew point of incinerator exhaust gas is approximately 50°C (design value). ing. On the other hand, the incinerator exhaust gas components change depending on the combustion materials, and it is thought that this causes a temporary increase in corrosive gas components and a rise in the dew point, leading to the above-mentioned problems. As a countermeasure to the problem, the first thing to consider is to change the materials of piping and equipment to corrosion-resistant materials. As a corrosion-resistant material,
Titanium, FRP, and Teflon coated materials are well known, but Teflon coated material is the best when evaluating workability, temperature resistance, etc. However, it is difficult to use Teflon coating material for all piping and equipment, and at the current technological level, it is difficult to coat Teflon coatings on flow rate regulating valves and sample pumps.
本発明の目的は、配管及び機器類の機質を変更すること
なく腐食を防止し、かつ、焼却ガス成分を正確に計測す
ることにある。An object of the present invention is to prevent corrosion without changing the nature of piping and equipment, and to accurately measure incineration gas components.
上記目的は、サンプリングした焼却炉排ガスを一定流量
の乾燥気体で希釈することにより達成される。即ち、腐
食抑制については、サンプルガス中の相対温度を極力下
げること及びサンプルガス中の腐食性ガス成分の絶対量
を極力少なくすることにより効果がある。まず、サンプ
ルガス中の相対温度を下げるには、サンプルガスを除湿
することになるが、たとえば計測項目が、放射性粒子及
びよう素や液化しやすい気体であれば、除湿により、対
象物がドレン中に移行することになる。よって、上記計
測項目に関し、サンプルガスを直接除湿することは、後
段における計測値に誤差が発生することになる。又、ド
レン中に移行した物量を手分析等により補正を加える必
要があり、連続計測の目的からずれることになる。The above objective is achieved by diluting the sampled incinerator exhaust gas with a constant flow of dry gas. That is, corrosion suppression is effective by lowering the relative temperature in the sample gas as much as possible and by reducing the absolute amount of corrosive gas components in the sample gas as much as possible. First, in order to lower the relative temperature in the sample gas, the sample gas must be dehumidified. For example, if the measurement item is radioactive particles, iodine, or a gas that is easily liquefied, dehumidification will cause the object to drain. will be moved to. Therefore, regarding the above measurement items, directly dehumidifying the sample gas will cause errors in the measured values at the subsequent stage. Furthermore, it is necessary to correct the amount of material transferred into the drain by manual analysis, etc., which deviates from the purpose of continuous measurement.
次に、腐食性ガス成分の絶対量を少なくするには、サン
プルガス量を分析装置の計測能力に支障がない程度まで
少なくすることになる。排ガス分析装置は、一定流量を
サンプリングしていることから、サンプルガス量を少な
くし、残り分を腐食性ガスを含まない気体で補うことに
する。補うガスについては、ガス分析装置における分析
項目に影響を与えない管理された気体が適することにな
る。管理された気体というのは、ガス成分が明確である
こと、ガス中に含まれる粒子径が極力小さいこと、かつ
除湿された気体が適することになる。Next, in order to reduce the absolute amount of corrosive gas components, the amount of sample gas must be reduced to an extent that does not interfere with the measurement ability of the analyzer. Since the exhaust gas analyzer samples a constant flow rate, the amount of sample gas will be reduced and the remaining amount will be supplemented with gas that does not contain corrosive gases. As for the supplementary gas, a controlled gas that does not affect the analysis items in the gas analyzer is suitable. A controlled gas is suitable if the gas components are clear, the particle size contained in the gas is as small as possible, and the gas is dehumidified.
そこで、補うガスは、窒素ガス等(約100%)が適す
ることになるが、ボンベによる供給方法では、連続計測
を要求される装置においては、ボンベ容量に限りがある
ため不可となる。Therefore, nitrogen gas or the like (approximately 100%) is suitable as the supplementary gas, but the supply method using a cylinder is not possible in an apparatus that requires continuous measurement because the cylinder capacity is limited.
原子カプラント等においては、設備を構成する各系統の
運転制御及び保守等に必要な圧縮空気を供給する系統が
あり、その中で、空気式の計器や空気作動弁等に使用す
る計装用空気系がある。計装用空気の特徴は、相対湿度
が非常に低い(約0.26%)又、約5μm以上の粒子
は含まれていないことにある。たとえば1分析項目が、
放射性粒子を補集し、放射線計測にあるならば、補うガ
スとして計装用空気が、使用できることになる。In nuclear couplants, etc., there is a system that supplies compressed air necessary for operation control and maintenance of each system that makes up the equipment. There is. Instrument air is characterized by very low relative humidity (approximately 0.26%) and by the fact that it does not contain particles larger than approximately 5 μm. For example, one analysis item is
Instrument air can be used as a supplementary gas to collect radioactive particles and measure radiation.
焼却ガスのサンプリング流量を一定流量に減少させるこ
とは、ガス分析装置内へ持ち込まれる腐食性ガス成分の
絶対量が減少することになる6又。Reducing the sampling flow rate of the incineration gas to a constant flow rate will reduce the absolute amount of corrosive gas components introduced into the gas analyzer.
サンプルガスを一定流量の乾燥気体で混合することは、
間接的にサンプリングガスの相対湿度を下げる機能が働
くこととなる。それによってガス分析装置内へ持ち込ま
れるサンプルガスが、腐食しがたい条件となり得る。ガ
ス分析装置においては。Mixing the sample gas with a constant flow of dry gas is
This indirectly works to lower the relative humidity of the sampling gas. As a result, the sample gas brought into the gas analyzer may be under conditions that make it difficult to corrode. In gas analyzers.
サンプリングガス量が乾燥気体により一定比率で希釈さ
れているため計iil!l値に対し、単純に一定の補正
を加えることが必要となる。Since the amount of sampling gas is diluted with dry gas at a constant ratio, the total amount is il! It is necessary to simply add a certain correction to the l value.
以下、本発明の一実施例を第1図により説明する。本実
施例は、焼却排ガス中に含まれる放射性粒子を連続的に
捕集しながら、放射線を計測するシステムである。放射
線計測装置における検出器の感度は、一般的な目標値(
設計値)に対し検出器の実力値が、10倍以上のより良
い値となっている。そこで、従来のサンプリングガス量
1に対し、サンプリングガス量を1/10とし、9/1
0を乾燥気体のガス量とすることにより、放射線計測装
置におけるサンプリングガス総量を1とする。その結果
、腐食性ガス成分の絶対量は、1/10に減少し、乾燥
気体により相対温度を効果的に下げることとなる。つま
り、腐食進行速度としては、従来速度を基準にすると、
本発明によれば、すくなくとも1/10以下になってい
ることがわかる。このことは、焼却物の変化により、腐
食性ガス成分の増減に対し、かなり余裕をもつ設計とな
ると考えられる。第1図においては、乾燥気体として計
装用空気を用いている。計装用空気については、下記の
ごとく種々の配慮をしている。An embodiment of the present invention will be described below with reference to FIG. This example is a system that measures radiation while continuously collecting radioactive particles contained in incineration exhaust gas. The sensitivity of the detector in a radiation measurement device is a general target value (
The actual value of the detector is more than 10 times better than the designed value. Therefore, compared to the conventional sampling gas amount of 1, the sampling gas amount was set to 1/10, and 9/1
By setting 0 to be the amount of dry gas, the total amount of sampling gas in the radiation measuring device is set to 1. As a result, the absolute amount of corrosive gas components is reduced by a factor of 10, and the dry gas effectively lowers the relative temperature. In other words, the corrosion progression rate is based on the conventional rate.
It can be seen that according to the present invention, it is at least 1/10 or less. This is considered to provide a design with considerable leeway for increases and decreases in corrosive gas components due to changes in the incinerated material. In FIG. 1, instrumentation air is used as the drying gas. Regarding instrument air, various considerations are made as shown below.
まず約5μm程度の粒子を含んでいるため、放射線計測
装置におけるフィルタと同程度の塵埃除去部の設置、他
系統における使用負荷変動により圧力調整部の設置、サ
ンプルガスと計装用空気を一定に混合するための流量制
御部の設置、サンプルガス温度と計装用空気の温度差を
なくすための計装用空気温度制御部を設置している。First, since it contains particles of about 5 μm, a dust removal section with the same size as a filter in a radiation measurement device is installed, and a pressure adjustment section is installed due to fluctuations in usage load in other systems, and the sample gas and instrumentation air are constantly mixed. A flow control unit has been installed to control the temperature of the sample gas, and an instrumentation air temperature control unit has been installed to eliminate the temperature difference between the sample gas temperature and the instrumentation air.
第2図に、従来の放射線計測システムを示す。FIG. 2 shows a conventional radiation measurement system.
本発明によれば、焼却ガス分析装置の腐食による不具合
を防止し得ることになり、焼却炉排ガスを連続的に監視
可能となる。従来は、設備運開後、約半年程度で腐食に
よる不具合が発生し、復旧された後、又、不具合が発生
している状況であり、焼却設備運転に支障をきたしてい
る。According to the present invention, it is possible to prevent malfunctions due to corrosion of the incineration gas analyzer, and it is possible to continuously monitor incinerator exhaust gas. Conventionally, problems due to corrosion would occur approximately six months after the facility was put into operation, and even after restoration, the problem would occur again, hindering the operation of the incineration facility.
排ガスのサンプル量を減少させることにより、腐食性ガ
ス成分の絶対量を減少させ、かつ、乾燥空気を混合させ
、サンプルガス流量の総量を一定とす名ことにより、間
接的にサンプルガス中の相対湿度を下げることとなり、
腐食を進行させる要因を軽減させた効果がある。従って
、焼却設備の運転を円滑にすると共に焼却ガス分析装置
のメンテナンス性の改善が十分に実施される。By reducing the sample amount of exhaust gas, the absolute amount of corrosive gas components is reduced, and by mixing dry air and keeping the total sample gas flow rate constant, indirectly the relative amount of corrosive gas components in the sample gas is It will reduce humidity,
This has the effect of reducing factors that promote corrosion. Therefore, the operation of the incineration equipment is made smooth, and the maintainability of the incineration gas analyzer is sufficiently improved.
凹面の簡星な説明
第1図は本発明の一実施例の放射線計測システムの概要
図、第2図は従来の放射線計測システl\の概要図であ
る。Brief Explanation of Concave Surface FIG. 1 is a schematic diagram of a radiation measurement system according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional radiation measurement system I\.
Claims (1)
ステムにおいて、乾燥気体による希釈装置を設けたこと
を特徴とする焼却ガス分析装置。1. An incineration gas analyzer characterized in that an exhaust gas analysis system comprising an instrumentation pipe and an incineration gas analyzer is provided with a dilution device using dry gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60285560A JPS62145137A (en) | 1985-12-20 | 1985-12-20 | Analyzing device for incineration gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60285560A JPS62145137A (en) | 1985-12-20 | 1985-12-20 | Analyzing device for incineration gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62145137A true JPS62145137A (en) | 1987-06-29 |
Family
ID=17693127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60285560A Pending JPS62145137A (en) | 1985-12-20 | 1985-12-20 | Analyzing device for incineration gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62145137A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01143932A (en) * | 1987-11-05 | 1989-06-06 | Horiba Instr Inc | Proportional exhaust sampling system |
JPH01245126A (en) * | 1988-03-28 | 1989-09-29 | Tosoh Corp | Analysis apparatus for concentration of gas in chlorine |
JPH01248056A (en) * | 1988-03-29 | 1989-10-03 | Tosoh Corp | Hydrogen concentration analyzing device in wet chlorine |
JP2003075307A (en) * | 2001-08-31 | 2003-03-12 | Nikkiso Co Ltd | Sampling system for sampling gas of exhaust gas having radioactive material |
-
1985
- 1985-12-20 JP JP60285560A patent/JPS62145137A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01143932A (en) * | 1987-11-05 | 1989-06-06 | Horiba Instr Inc | Proportional exhaust sampling system |
JPH01245126A (en) * | 1988-03-28 | 1989-09-29 | Tosoh Corp | Analysis apparatus for concentration of gas in chlorine |
JPH01248056A (en) * | 1988-03-29 | 1989-10-03 | Tosoh Corp | Hydrogen concentration analyzing device in wet chlorine |
JP2003075307A (en) * | 2001-08-31 | 2003-03-12 | Nikkiso Co Ltd | Sampling system for sampling gas of exhaust gas having radioactive material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2074389C1 (en) | Process of uninterrupted check of flow composed of mixture of steam, disperse particles and gases potentially containing hydrogen chloride and passing through exhaust pipes and system its implementation | |
US4738147A (en) | Low flow sampling and analysis system | |
AU2008202646B2 (en) | Controlled humidification calibration checking of continuous emissions monitoring system | |
KR100195892B1 (en) | Method and apparatus for supplying gas to an analyzer with a very high sensitivity | |
US20080282764A1 (en) | Calibration checking for continuous emissions monitoring system | |
JPS62145137A (en) | Analyzing device for incineration gas | |
Hampl et al. | Use of tracer gas technique for industrial exhaust hood efficiency evaluation–where to sample? | |
WO2004069393A2 (en) | Sample handling system with solvent washing | |
USH1757H (en) | Method and apparatus for automated isokinetic sampling of combustor flue gases for continuous monitoring of hazardous metal emissions | |
CN210014212U (en) | Gas pipeline gas quality analysis integration detection device | |
CN219915507U (en) | Chromatographic auxiliary sample injection device | |
JP2012103119A (en) | Removal effect measurement system | |
CN113686746B (en) | PM (particulate matter) 2.5 Online mass concentration real-time compensation device and method | |
JPH11226341A (en) | Method and apparatus for clarification of gas | |
CN116087391A (en) | Organic matter waste gas LEL on-line monitoring system | |
CN210465350U (en) | VOCs on-site rapid detection device in soft furniture | |
Licki et al. | Monitoring and control systems for an EB flue gas treatment pilot plant—Part I. Analytical system and methods | |
CN110297066B (en) | VOCs concentration on-line measuring device | |
CZ282516B6 (en) | Apparatus for monitoring atmosphere inside a nuclear plant safety tank | |
TWI657887B (en) | ALL-IN-ONE VOCs MEASUREMENT INSTRUMENT | |
CN118776993A (en) | Tail gas analysis method | |
CN221826816U (en) | VOCs non-methane total hydrocarbon on-line monitoring system | |
CN213456320U (en) | Portable waste gas sampling measurement system | |
CN220251885U (en) | Flue gas monitoring system | |
JPS63302386A (en) | Radiation measuring apparatus |