[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62133027A - Manufacture of sintered copper alloy having self lubricating property, material sheet and powder for sintered copper alloy - Google Patents

Manufacture of sintered copper alloy having self lubricating property, material sheet and powder for sintered copper alloy

Info

Publication number
JPS62133027A
JPS62133027A JP60274211A JP27421185A JPS62133027A JP S62133027 A JPS62133027 A JP S62133027A JP 60274211 A JP60274211 A JP 60274211A JP 27421185 A JP27421185 A JP 27421185A JP S62133027 A JPS62133027 A JP S62133027A
Authority
JP
Japan
Prior art keywords
powder
copper alloy
weight
raw material
sintered copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60274211A
Other languages
Japanese (ja)
Other versions
JPH066725B2 (en
Inventor
Yoshihisa Yamamura
山村 佳久
Toshiki Kaneko
金子 敏機
Hideaki Ikeda
英明 池田
Hiroshi Sasaki
浩 佐々木
Kunio Kishino
岸野 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60274211A priority Critical patent/JPH066725B2/en
Publication of JPS62133027A publication Critical patent/JPS62133027A/en
Publication of JPH066725B2 publication Critical patent/JPH066725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the titled alloy superior in wear resistance and pressing strength, by mixing specified quantities of Mo and graphite to copper alloy powder having a specified compsn. contg. Ni, Sn, P, forming the mixture to sheet together with organic binder, then sintering it. CONSTITUTION:To copper alloy powder contg. by weight 5-30% Ni, 7-13% Sn, 0.3-2% P, as lubricating powder, 1-5% Mo powder and 1-2.5% graphite powder are mixed to prepare material powder. A suitable quantity of synthetic resin binder is added to the material powder, these are mixed by kneader, etc., to obtain mixture in which the material powders are uniformly dispersed in synthetic resin binder. Next, the mixture is formed to material sheet by rolling mill, etc. The sheet is charged in vacuum sintering furnace, etc., and heated. In this way, synthetic resin binder in material sheet is decomposed and removed, the material powder is sintered and the titled alloy providing superior wear resistance and high compressing strength is obtd.

Description

【発明の詳細な説明】 へ3発明の目的 (1)  産業上の利用分野 本発明は、プレス機のウェアプレート等に用いられる自
己潤滑性を有する焼結銅合金の製造方法、焼結銅合金用
原料シートおよび焼結銅合金用原料粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (1) Industrial Application Field The present invention relates to a method for producing a sintered copper alloy having self-lubricating properties used for wear plates of press machines, etc. The present invention relates to raw material sheets and raw material powders for sintered copper alloys.

(2)従来の技術 従来、この種焼結銅合金の製造方法として、二・7ケル
、スズ、リンおよび黒鉛を含む銅系原料粉末を焼結する
手法が知られている(特公昭58−52547号公報参
照)。
(2) Conventional technology Conventionally, as a method for manufacturing this type of sintered copper alloy, a method of sintering copper-based raw material powder containing 2.7 Kel, tin, phosphorus, and graphite has been known (Japanese Patent Publication No. 1983- (See Publication No. 52547).

(3)発明が解決しようとする問題点 前記黒鉛は潤滑材として機能するもので、その機能を十
分に発揮させるため前記従来法においては多量の黒鉛粉
末が用いられている。
(3) Problems to be Solved by the Invention The graphite functions as a lubricant, and in order to fully exhibit its function, a large amount of graphite powder is used in the conventional method.

その結果、焼結銅合金の圧縮強さが低下し、また前記化
学成分に起因して焼結銅合金の靭性、したがって耐衝撃
性が低いという問題がある。
As a result, there is a problem that the compressive strength of the sintered copper alloy is reduced, and the toughness and therefore the impact resistance of the sintered copper alloy are low due to the chemical components.

さらに前記原料粉末は粉末状態のまま使用されるので、
その取扱性が悪く、焼結銅合金の生産能率に支障を来た
すといった問題もある。
Furthermore, since the raw material powder is used in a powdered state,
There are also problems in that it is difficult to handle and interferes with the production efficiency of sintered copper alloys.

本発明は上記に鑑み、黒鉛の含有量を減らし、また黒鉛
の減量骨を潤滑性を有し耐摩耗性向上に寄与すると共に
靭性向上効果を発揮するモリブデンによって補い、これ
により優れた耐摩耗性および高圧縮強さを備えた自己潤
滑性焼結銅合金を得ることのできる前記製造方法、その
方法の実施に用いられる原料シートおよび同様に用いら
れる原料粉末を提供することを目的とする。
In view of the above, the present invention reduces the graphite content and supplements the reduced graphite bone with molybdenum, which has lubricity and contributes to improving wear resistance, and also exhibits the effect of improving toughness, thereby achieving excellent wear resistance. Another object of the present invention is to provide the above-mentioned manufacturing method capable of obtaining a self-lubricating sintered copper alloy having high compressive strength, a raw material sheet used for carrying out the method, and a raw material powder used similarly.

B0発明の構成 (]、)  問題点を解決するための手段本発明に係る
自己潤滑性を有する焼結銅合金の製造方法は、ニッケル
 5〜30重量%、スズ7〜13重量%およびリン 0
.3〜2重景%を含有する銅合金粉末に、それに対し潤
滑性粉末としてモリブデン粉末 1〜5重量%および黒
鉛粉末1〜2.5重量%を混合した原料粉末と合成樹脂
バインダとよりなる原料シートを得る工程と;前記原料
シートを加熱して前記合成樹脂バインダを分解すると共
に前記原料粉末を焼結する工程と;を用いることを特徴
とする。
B0 Structure of the Invention (], ) Means for Solving the Problems The method for producing a sintered copper alloy having self-lubricating properties according to the present invention includes 5 to 30% by weight of nickel, 7 to 13% by weight of tin, and 0% of phosphorus.
.. A raw material consisting of a raw material powder, which is a mixture of copper alloy powder containing 3 to 2% by weight, with 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder as lubricating powder, and a synthetic resin binder. The method is characterized by using a step of obtaining a sheet; and a step of heating the raw material sheet to decompose the synthetic resin binder and sintering the raw material powder.

また本発明に係る焼結銅合金用原料シートは、ニッケル
 5〜30重量%、スズ 7〜13重量%およびリン 
0.3〜2重量%を含有する銅合金粉末に、それに対し
潤滑性粉末としてモリブデン粉末 1〜5重量%および
黒鉛粉末 1〜2.5重量%を混合した原料粉末と合成
樹脂バインダとより構成されることを特徴とする。
Further, the raw material sheet for sintered copper alloy according to the present invention contains 5 to 30% by weight of nickel, 7 to 13% by weight of tin, and phosphorus.
Consisting of raw material powder, which is a mixture of copper alloy powder containing 0.3 to 2% by weight, 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder as lubricating powder, and a synthetic resin binder. It is characterized by being

さらに本発明に係る焼結銅合金用原料粉末は、ニッケル
 5〜30重量%、スズ 7〜13重量%およびリン 
0.3〜2重量%を含有する銅合金粉末に、それに対し
潤滑性粉末としてモリブデン ゛粉末 1〜5重量%お
よび黒鉛粉末 1〜2.5重量%を混合したことを特徴
とする。
Further, the raw material powder for sintered copper alloy according to the present invention contains 5 to 30% by weight of nickel, 7 to 13% by weight of tin, and phosphorus.
It is characterized in that copper alloy powder containing 0.3 to 2% by weight is mixed with 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder as lubricating powder.

(2)作 用 潤滑性粉末として、モリブデン粉末と黒鉛粉末の混合粉
末を用いるので、モリブデンの含有量に応じて黒鉛の含
有量を減少し、これにより焼結銅合金の圧縮強さおよび
靭性を向上させることが可能となる。
(2) Function Since a mixed powder of molybdenum powder and graphite powder is used as the lubricating powder, the graphite content is reduced in accordance with the molybdenum content, thereby improving the compressive strength and toughness of the sintered copper alloy. It becomes possible to improve the performance.

また原料粉末を原料シートの形態で用いるので、原料粉
末の取扱性が良好となる。
Furthermore, since the raw material powder is used in the form of a raw material sheet, the raw material powder can be easily handled.

さらに加熱により合成樹脂バインダは分解され、その分
解ガスは原料粉末の構成粉末間より排出されるので、焼
結銅合金における残留ガスに起因した巣の発生、有害ガ
ス成分の侵入等の不具合を確実に回避することができる
Furthermore, the synthetic resin binder is decomposed by heating, and the decomposed gas is discharged from between the constituent powders of the raw material powder, ensuring that defects such as the formation of cavities caused by residual gas in the sintered copper alloy and the intrusion of harmful gas components are prevented. can be avoided.

なお、各化学成分の配合量を前記のように限定した理由
および各化学成分の役割は以下の通りである。
The reason for limiting the blending amount of each chemical component as described above and the role of each chemical component are as follows.

ニッケルはろう材として機能し、原料粉末の焼結性およ
び銅マトリックスの強度を向上させる効果を発揮するが
、その配合量が5重量%を下回ると前記効果が得られず
、また30重量%を上回っても前記効果の向上は望めず
、その上コスト高となる。
Nickel functions as a brazing material and has the effect of improving the sinterability of the raw material powder and the strength of the copper matrix, but if the amount is less than 5% by weight, the above effects cannot be obtained, and if the amount is less than 30% by weight. Even if the amount exceeds the above, no improvement in the above effect can be expected, and furthermore, the cost will increase.

スズは銅と合金化して銅マトリックスの強度および耐摩
耗性を向上させる効果を発揮するが、その配合量が7重
量%を下回ると前記効果が得られず、また13重量%を
上回ると銅合金の融点が低下して焼結銅合金の形状維持
性が悪化する。
Tin alloys with copper and exhibits the effect of improving the strength and wear resistance of the copper matrix, but if the content is less than 7% by weight, the above effects cannot be obtained, and if the content exceeds 13% by weight, the copper alloy The melting point of the sintered copper alloy decreases, and the shape retention of the sintered copper alloy deteriorates.

リンは銅マトリックスに析出してその強度および耐摩耗
性を向上させる効果を発揮するが、その配合量が0.3
重量%を下回ると銅合金の融点が高くなって原料粉末の
焼結性が悪化し、また2重量%を上回ると銅合金の融点
が低下して焼結銅合金の形状維持性が悪化する。
Phosphorus precipitates in the copper matrix and has the effect of improving its strength and wear resistance, but when the amount of phosphorus is 0.3
If it is less than 2% by weight, the melting point of the copper alloy will increase and the sinterability of the raw material powder will deteriorate, and if it exceeds 2% by weight, the melting point of the copper alloy will decrease and the shape retention of the sintered copper alloy will deteriorate.

モリブデンは銅合金と強固に結合して焼結銅合金の靭性
、耐摩耗性および潤滑性を向上させる効果を発揮するが
、その配合量が1重量%を下回ると前記効果が得られず
、また5重量%を上回ると原料シートの成形が困難とな
り、また焼結銅合金の焼結強度および密度が低下する。
Molybdenum has the effect of strongly bonding with copper alloys and improving the toughness, wear resistance, and lubricity of sintered copper alloys, but if the amount of molybdenum is less than 1% by weight, the above effects cannot be obtained; If it exceeds 5% by weight, it becomes difficult to form the raw material sheet, and the sintering strength and density of the sintered copper alloy decrease.

黒鉛は焼結銅合金の潤滑性を向上させる効果を発揮する
が、その配合量が1重量%を下回ると前記効果が得られ
ず、また2、5重量%を上回ると焼結銅合金の圧縮強さ
が低下する。
Graphite has the effect of improving the lubricity of the sintered copper alloy, but if the amount is less than 1% by weight, the above effect cannot be obtained, and if it exceeds 2.5% by weight, it will cause compression of the sintered copper alloy. Strength decreases.

(3)実施例 第1図は摺動部材工を示し、その摺動部材Iはベース材
2と、その−面に溶着された自己潤滑性焼結銅合金3と
よりなる。焼結銅合金3はその焼結時ベース材2に溶着
されたものである。
(3) Embodiment FIG. 1 shows the construction of a sliding member, in which the sliding member I consists of a base material 2 and a self-lubricating sintered copper alloy 3 welded to its negative surface. The sintered copper alloy 3 is welded to the base material 2 during sintering.

次に第2、第3図を参照しながら前記摺動部材lの製造
方法について説明する。
Next, a method for manufacturing the sliding member 1 will be explained with reference to FIGS. 2 and 3.

i、原料シートの製造 噴霧法により得られた、ニッケル 25重量%、スズ 
10重量%、リン 1.1重量%および残部銅からなり
、標準篩110メソシユを通過し得る粒度の銅合金粉末
 92重量%、 機械的粉砕法により得られた、標準篩270メソシユを
通過し得る粒度のモリブデン粉末 2.5重量%、およ
び 機械的粉砕法により得られた、標準篩28メツシユを通
過し得るが、65メツシユを′a過し得ない粒度の人造
黒鉛粉末 2.5重量% よりなる原料粉末と、 四フフ化エチレン樹脂とアクリル樹脂をl:1に混合し
、その混合樹脂にそれに対し50重量%の水を添加して
エマルジョン化した合成樹脂バインダ 3重量%と を、第2図(81に示すようにニーダ4に投入し、それ
らを3分間混合して原料粉末を合成樹脂バインダ中に均
一に分散させた混合物Mを得る。
i. 25% by weight of nickel, tin obtained by the spraying method for manufacturing raw material sheets.
Copper alloy powder consisting of 10% by weight, 1.1% by weight of phosphorus and the balance copper, with a particle size that can pass through a standard sieve of 110 sieve; 92% by weight, which can pass through a standard sieve of 270 sieve, obtained by a mechanical grinding method. From 2.5% by weight of molybdenum powder with a particle size that can pass through a standard sieve of 28 meshes but not 65 meshes, obtained by mechanical grinding method. and 3% by weight of a synthetic resin binder obtained by mixing a tetrafluoroethylene resin and an acrylic resin at a ratio of 1:1 and adding 50% by weight of water to the mixed resin to form an emulsion. As shown in Figure 81, they are put into a kneader 4 and mixed for 3 minutes to obtain a mixture M in which the raw material powder is uniformly dispersed in a synthetic resin binder.

第2図(blに示すように、混合物Mをヒータ5上に移
し、それを80〜150℃に加熱して水分を蒸発し乾燥
する。
As shown in FIG. 2 (bl), the mixture M is transferred onto a heater 5 and heated to 80 to 150°C to evaporate water and dry it.

第2図(C1に示すように、加熱状態に在る混合物Mを
ロール機6に数回通し、厚さ2〜3 amの原料シート
Sを得る。
As shown in FIG. 2 (C1), the heated mixture M is passed through the roll machine 6 several times to obtain a raw material sheet S having a thickness of 2 to 3 am.

第2図(d)に示すように、原料シートSをヒータ5上
に移し、それを80〜120°Cで30分間加熱し、ロ
ール成形時の歪を除去する。
As shown in FIG. 2(d), the raw material sheet S is transferred onto the heater 5 and heated at 80 to 120° C. for 30 minutes to remove distortion during roll forming.

原料シートSの密度は4.8g/cro3で、第2図・
fe)に示すようにロール状に巻いて保存される。
The density of the raw material sheet S is 4.8 g/cro3, as shown in Figure 2.
It is stored by winding it into a roll as shown in fe).

ii、摺動部材の製造 第2図(f)に示すように、原料シートSから縦200
1、横200龍の原料板Pを裁断し、その原料板Pを縦
200龍、横200鶴、厚さ19mmのJ[S  5S
41で表わされる網板製ベース材2の上面にアクリル系
接着剤を用いて貼着し、その上面を縦210鰭、横21
0鶴、厚さ2龍のセラミックファイバ(商品名カオウー
ル)よりなり通気性を有するガス抜き用シート6を用い
て覆い、さらにシート6の上面に縦200關、横200
龍、厚さ3B鶴の前記と同材質の鋼板よりなる加圧体7
を載置する。
ii. Manufacture of sliding member As shown in FIG. 2(f), from the raw material sheet S,
1. Cut the raw material plate P with a width of 200 mm, and cut the raw material plate P into a J [S 5S
It is attached to the upper surface of the net board base material 2 represented by 41 using acrylic adhesive, and the upper surface is 210 fins vertically and 21 fins horizontally.
It is covered with a breathable degassing sheet 6 made of ceramic fiber (trade name Kao Wool) with a thickness of 0.0 and 2.
Pressurizing body 7 made of the same material as the above for Dragon and Tsuru with a thickness of 3B.
Place.

加圧体7ば、焼結時において原料粉末を加圧し焼結銅合
金3の密度を向上させるために用いられるものであるが
、この加圧体7を直接原料板P上に載せると、合成樹脂
バインダ等より生じる分解ガスのガス抜き性が悪く、ま
た原料板Pにおける外周部の、結合力を失った原料粉末
が分解ガスの噴出圧により飛散する。そこで加圧体7と
原料板Pとの間に原料板Pよりも大きな前記シート6を
介在させ、その通気性を利用してガス排出路を形成し、
また原料粉末の飛散を防止する。このような使用目的を
十分に達成するためには、原料板Pの大きさとシート6
の厚さとの間に相関関係がある。例えば、原料板Pの厚
さ21mにおいて、その大きさが縦800、横80mm
ではシート6の厚さは1■−1縦2001璽、横200
商lではシート6の厚さは2鶴となる。なお、前記厚さ
を有する原料板Pの大きさが縦60鶴、横60龍以下で
ある場合、合成樹脂バインダ等の熱分解が極めて遅い場
合等においてはシート6が無くても分解ガスのガス抜き
が容易に行われ、また原料粉末の飛散は生じない。
The pressurizing body 7 is used to press the raw material powder during sintering to improve the density of the sintered copper alloy 3, but if this pressurizing body 7 is placed directly on the raw material plate P, the synthesis The degassing performance of the cracked gas generated from the resin binder and the like is poor, and the raw material powder at the outer periphery of the raw material plate P that has lost its binding strength is scattered by the ejection pressure of the cracked gas. Therefore, the sheet 6, which is larger than the raw material plate P, is interposed between the pressurizing body 7 and the raw material plate P, and a gas discharge path is formed using its breathability.
It also prevents the raw material powder from scattering. In order to fully achieve this purpose, the size of the raw material plate P and the sheet 6 must be
There is a correlation between the thickness of For example, when the thickness of the raw material plate P is 21 m, its size is 800 mm in length and 80 mm in width.
Then, the thickness of sheet 6 is 1■-1 length 2001, width 200
With a quotient of 1, the thickness of the sheet 6 is 2. In addition, if the size of the raw material plate P having the above-mentioned thickness is less than 60 mm in length and 60 mm in width, the decomposition gas may be absorbed even without the sheet 6 in cases where the thermal decomposition of synthetic resin binder etc. is extremely slow. Evacuation is easy and the raw material powder does not scatter.

ガス抜き用シート6は、原料粉末の焼結温度でその粉末
および加圧体7に対して非融着性を持つことが必要であ
る。この要件を満たす材料としては前記セラミックファ
イバの外にアスベスト、ロックウール等力く8亥当する
。またシート6を用いない場合には、原料粉末に対する
加圧体7の融着を防止すべく、加圧体7に離型剤を塗布
する、加圧体7と原料板Pとの間にアルミナ等のセラミ
ック体を介在する等の手段を採用する。
The degassing sheet 6 is required to have non-adhesive properties to the powder and the pressurizing body 7 at the sintering temperature of the raw material powder. In addition to the ceramic fibers, there are 8 other materials that meet this requirement, such as asbestos and rock wool. In addition, when the sheet 6 is not used, a mold release agent is applied to the pressurizing body 7 in order to prevent the pressurizing body 7 from fusing to the raw material powder. A method such as interposing a ceramic body such as the like is adopted.

前記積層物を真空焼結炉8内に設置して第3図に示す加
熱条件で合成樹脂バインダおよびアクリル系接着剤の熱
分解、原料粉末の焼結およびベース材に対する焼結銅合
金の溶着を行う。キャリアガスとしては窒素ガスが用い
られ、真空度はITorrである。
The laminate was placed in a vacuum sintering furnace 8, and the synthetic resin binder and acrylic adhesive were thermally decomposed, the raw material powder was sintered, and the sintered copper alloy was welded to the base material under the heating conditions shown in FIG. conduct. Nitrogen gas is used as a carrier gas, and the degree of vacuum is ITorr.

+a+  第1加熱ゾーン(第3図AI)この加熱ゾー
ンA、は常温から600℃までである。常温からの昇温
速度は20℃/分で、炉内は600℃にて60分間恒温
状態に保持される。
+a+ First heating zone (FIG. 3 AI) This heating zone A is from room temperature to 600°C. The temperature increase rate from room temperature is 20° C./min, and the inside of the furnace is maintained at a constant temperature of 600° C. for 60 minutes.

この加熱ゾーンA1では、先ず、積層物の水分が蒸発し
、次いで560〜600°Cの範囲で合成樹 ゛脂バイ
ンダ中の四フッ化エチレン樹脂およびアークリル樹脂並
びにアクリル系接着剤が熱分解されてガス化する。分解
ガスは原料粉末の構成粉末間よりシート6を通じて排出
される。ベース材2の外周部に在る結合力を失った原料
粉末の飛散はシート6により防止される。
In this heating zone A1, the moisture in the laminate is first evaporated, and then the tetrafluoroethylene resin, the acrylic resin, and the acrylic adhesive in the synthetic resin binder are thermally decomposed in the range of 560 to 600°C. Gasify. The cracked gas is discharged through the sheet 6 from between the constituent powders of the raw material powder. The sheet 6 prevents the raw material powder that has lost its bonding strength from scattering around the outer periphery of the base material 2 .

fbl  第2加熱ゾーン(第3図A2)この加熱ゾー
ンA2は略900℃である。第1加熱ゾーンA1からの
昇温速度は20℃/分で、炉内は略900℃にて30分
間恒温状態に保持される。この加熱ゾーンA2では原料
粉末およびベース材2の均熱化が図られる。
fbl Second heating zone (Fig. 3 A2) This heating zone A2 is approximately 900°C. The temperature increase rate from the first heating zone A1 is 20° C./min, and the inside of the furnace is maintained at a constant temperature of approximately 900° C. for 30 minutes. In this heating zone A2, the raw material powder and the base material 2 are heated uniformly.

fcl  第3加熱ゾーン(第3図A3)この加熱ゾー
ンA、は略1020℃である。第2加熱ゾーンA2から
の昇温速度はlO°C/分で、炉内は略1020 ’c
にて30分間恒温状態に保持される。この加熱ゾーンA
3は、原料粉末において固相と液相が共存する手法相温
度域であり、液相により同相聞の気孔が埋められ、また
加圧体7の加圧力により液相の流動が増進されて焼結が
進行し、密度の高い焼結銅合金3が得られる。同時に焼
結銅合金3がベース材2に溶着する。この場合ニッケル
がリンと合金化してそのろう材としての機能によりベー
ス材2に対する焼結銅合金3の溶着が確実に行われる。
fcl Third heating zone (A3 in FIG. 3) This heating zone A is approximately 1020°C. The temperature increase rate from the second heating zone A2 is 10°C/min, and the temperature inside the furnace is approximately 1020°C.
The temperature was maintained at constant temperature for 30 minutes. This heating zone A
3 is a method phase temperature range where a solid phase and a liquid phase coexist in the raw material powder, the pores between the same phase are filled with the liquid phase, and the fluidity of the liquid phase is promoted by the pressure of the pressurizing body 7, resulting in sintering. The sintering progresses and a sintered copper alloy 3 with high density is obtained. At the same time, the sintered copper alloy 3 is welded to the base material 2. In this case, nickel is alloyed with phosphorus, and its function as a brazing material ensures that the sintered copper alloy 3 is welded to the base material 2.

この加熱ゾーンA:Iでは、原料粉末における液相の流
動が緩慢であるから黒鉛の浮遊、偏析が発生せず、した
がって焼結銅合金の潤滑性はその全体に亘って均等とな
る。
In this heating zone A:I, since the flow of the liquid phase in the raw material powder is slow, floating and segregation of graphite does not occur, and therefore the lubricity of the sintered copper alloy becomes uniform throughout.

+d+  冷却ゾーン(第3図B) 真空焼結炉8内に、その内部気圧が500mmHgとな
るまで窒素ガスを導入し、冷却ファンにより窒素ガスを
循環させて焼結銅合金3、ベース材2等を冷却する。
+d+ Cooling zone (Fig. 3B) Nitrogen gas is introduced into the vacuum sintering furnace 8 until the internal pressure reaches 500 mmHg, and the nitrogen gas is circulated by a cooling fan to cool the sintered copper alloy 3, base material 2, etc. to cool down.

上記加熱冷却工程を経て第1図に示す摺動部材1が得ら
れる。
The sliding member 1 shown in FIG. 1 is obtained through the heating and cooling process described above.

焼結銅合金3は密度 6.3 g /am’ 、ロック
ウェル硬さHR835以上、気孔率 13%であり、そ
の外周部の欠落も生じていなかった。
Sintered copper alloy 3 had a density of 6.3 g/am', a Rockwell hardness of HR835 or more, and a porosity of 13%, and no chipping occurred on the outer periphery.

前記摺動部材1を、それに機械加工および含油処理を施
した後プレス機のウェアプレートとして用い、機能テス
トを行ったところ表■の結果が得られた。表中、Aは前
記工程を経て得られた摺動部材に、Bは比較例としての
鋳鉄に黒鉛を埋め込んだ摺動部材にそれぞれ該当する。
After subjecting the sliding member 1 to mechanical processing and oil impregnation treatment, a functional test was conducted using it as a wear plate of a press machine, and the results shown in Table 3 were obtained. In the table, A corresponds to the sliding member obtained through the above process, and B corresponds to a sliding member obtained by embedding graphite in cast iron as a comparative example.

また相手材において鋳鉄十黒鉛は比較例Bと同一の構成
を有する。
In addition, the mating material of cast iron and graphite has the same structure as Comparative Example B.

表    I 表■から明らかなように摺動部材Aは比較例Bと略同等
の耐摩耗性を備え、優れた摺動特性を有する。
Table I As is clear from Table (■), sliding member A has approximately the same wear resistance as Comparative Example B, and has excellent sliding properties.

表■は、ニッケル 28.7重量%、スズ 8.5重量
%、リン 0.63重量%を含有する銅合金粉末に対し
モリブデン粉末(Mo)および黒鉛粉末(G)の配合量
を種々変更した原料粉末を用いて前記同様に原料シート
を製造し、その原料シートから裁断された原料板を10
40°Cl2O分間加熱の焼結条件下で真空焼結して得
られた焼結銅合金のロックウェル硬さHRBを示す。
Table ■ shows that the blending amounts of molybdenum powder (Mo) and graphite powder (G) were varied in copper alloy powder containing 28.7% by weight of nickel, 8.5% by weight of tin, and 0.63% by weight of phosphorus. A raw material sheet is manufactured in the same manner as described above using raw material powder, and the raw material sheet cut from the raw material sheet is
The Rockwell hardness HRB of a sintered copper alloy obtained by vacuum sintering under sintering conditions of heating at 40° C12O for minutes is shown.

表   ■ 表■から明らかなように、黒鉛含有量の減少に伴い焼結
銅合金の硬さが向上し、また同一黒鉛含有量においてモ
リブデン含有量の増加に伴い硬さが向上する。これによ
り焼結銅合金の耐摩耗性の向上が図られる。
Table ■ As is clear from Table ■, the hardness of the sintered copper alloy improves as the graphite content decreases, and at the same graphite content, the hardness improves as the molybdenum content increases. This improves the wear resistance of the sintered copper alloy.

第4図は焼結銅合金の圧縮強さを示し、この圧縮強さは
モリブデンの含有量とは関係がなく、黒鉛含有量の増加
に伴い減少することが明らかである。プレス機のウェア
プレート等の摺動部材に要求される圧縮強さは17〜2
5kg/mm2であり、これを満足するためには黒鉛含
有量を1〜285重量%に設定する必要がある。
FIG. 4 shows the compressive strength of the sintered copper alloy, and it is clear that this compressive strength is independent of the molybdenum content and decreases with increasing graphite content. The compressive strength required for sliding parts such as press wear plates is 17 to 2.
5 kg/mm2, and in order to satisfy this, it is necessary to set the graphite content to 1 to 285% by weight.

合成樹脂バインダは原料粉末に対して1〜4重量%配合
される。その理由は合成樹脂バインダの配合量が1重量
%を下回ると原料シートの保形性が悪く、また原料粉末
間の結合力が弱くなってその粉末の脱落を発生し、一方
4重量%を上回ると焼結銅合金の気孔率が高くなって密
度の低下、形状精度の悪化等を招来し、また残留炭素が
多くなって焼結性の阻害、ベース材に対する焼結銅合金
の溶着不良等を招来するからである。
The synthetic resin binder is blended in an amount of 1 to 4% by weight based on the raw material powder. The reason for this is that when the amount of synthetic resin binder is less than 1% by weight, the shape retention of the raw material sheet is poor, and the binding force between the raw material powders becomes weak, causing the powder to fall off, whereas when it exceeds 4% by weight. This increases the porosity of the sintered copper alloy, resulting in a decrease in density and deterioration of shape accuracy, and increases residual carbon, which inhibits sinterability and causes poor welding of the sintered copper alloy to the base material. Because it invites you.

C8発明の効果 本発明によれば、潤滑性粉末としてモリブデン粉末と黒
鉛粉末との混合粉末を用いるので、モリブデンの含有量
に応して黒鉛の含有量を減少させることができ、これに
より黒鉛含有量の減少に基づいて優れた圧縮強さを有し
、またモリブデンの添加に基づいて靭性、したがって耐
衝撃特性を向上させた耐摩耗性の良好な自己潤滑性焼結
銅合金を得ることができる。
C8 Effects of the Invention According to the present invention, since a mixed powder of molybdenum powder and graphite powder is used as the lubricating powder, the content of graphite can be reduced in accordance with the content of molybdenum. A self-lubricating sintered copper alloy with good wear resistance can be obtained which has excellent compressive strength based on the reduction of the amount and also has improved toughness and therefore impact resistance properties based on the addition of molybdenum. .

また第2発明によれば、原料粉末を原料シートの形態で
用いるので、原料粉末の取扱性が良好で焼結銅合金の生
産能率を向上させることができる。
Further, according to the second invention, since the raw material powder is used in the form of a raw material sheet, the raw material powder can be easily handled and the production efficiency of the sintered copper alloy can be improved.

この場合、加熱により合成樹脂バインダは分解され、そ
の分解ガスは原料粉末の構成粉末間より排出されるので
、焼結銅合金における残留ガスに起因した巣の発生、有
害ガス成分の侵入等の不具合を確実に回避することがで
きる。
In this case, the synthetic resin binder is decomposed by heating and the decomposed gas is emitted from between the constituent powders of the raw material powder, resulting in problems such as the formation of cavities due to residual gas in the sintered copper alloy and the intrusion of harmful gas components. can be definitely avoided.

さらに第3発明によれば、圧縮強さ、靭性および耐摩耗
性の優れた自己潤滑性焼結銅合金を得ることができる。
Furthermore, according to the third invention, a self-lubricating sintered copper alloy having excellent compressive strength, toughness and wear resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は摺動部材の斜視図、第2図は摺動部材の製造工
程説明図、第3図は焼結工程における時間と温度の関係
を示すグラフ、第4図は焼結銅合金における黒鉛含有量
と圧縮強さの関係を示すグラフである。 S・・・原料シート、3・・・焼結銅合金時 許 出 
願 人  本田技研工業株式会社第3図 第4図 黒鉛含有量(重量%) 第2図 (a)            (b)(f) 」 (d)
Figure 1 is a perspective view of the sliding member, Figure 2 is an explanatory diagram of the manufacturing process of the sliding member, Figure 3 is a graph showing the relationship between time and temperature in the sintering process, and Figure 4 is a graph showing the relationship between time and temperature in the sintered copper alloy. It is a graph showing the relationship between graphite content and compressive strength. S...Raw material sheet, 3...For sintered copper alloy.
Applicant Honda Motor Co., Ltd. Figure 3 Figure 4 Graphite content (wt%) Figure 2 (a) (b) (f) (d)

Claims (3)

【特許請求の範囲】[Claims] (1) ニッケル5〜30重量%、スズ7〜13重量%
およびリン0.3〜2重量%を含有する銅合金粉末に、
それに対し潤滑性粉末としてモリブデン粉末1〜5重量
%および黒鉛粉末1〜2.5重量%を混合した原料粉末
と合成樹脂バインダとよりなる原料シートを得る工程と
;前記原料シートを加熱して前記合成樹脂バインダを分
解すると共に前記原料粉末を焼結する工程と;を用いる
ことを特徴とする自己潤滑性を有する焼結銅合金の製造
方法。
(1) Nickel 5-30% by weight, tin 7-13% by weight
and copper alloy powder containing 0.3 to 2% by weight of phosphorus,
On the other hand, a step of obtaining a raw material sheet made of a synthetic resin binder and a raw material powder mixed with 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder as lubricating powder; A method for producing a sintered copper alloy having self-lubricating properties, comprising: decomposing a synthetic resin binder and sintering the raw material powder.
(2) ニッケル5〜30重量%、スズ7〜13重量%
およびリン0.3〜2重量%を含有する銅合金粉末に、
それに対し潤滑性粉末としてモリブデン粉末1〜5重量
%および黒鉛粉末1〜2.5重量%を混合した原料粉末
と合成樹脂バインダとよりなる焼結銅合金用原料シート
(2) Nickel 5-30% by weight, tin 7-13% by weight
and copper alloy powder containing 0.3 to 2% by weight of phosphorus,
On the other hand, a raw material sheet for a sintered copper alloy is made of a raw material powder mixed with 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder as lubricating powder, and a synthetic resin binder.
(3) ニッケル5〜30重量%、スズ7〜13重量%
およびリン0.3〜2重量%を含有する銅合金粉末に、
それに対し潤滑性粉末としてモリブデン粉末1〜5重量
%および黒鉛粉末1〜2.5重量%を混合してなる焼結
銅合金用原料粉末。
(3) Nickel 5-30% by weight, tin 7-13% by weight
and copper alloy powder containing 0.3 to 2% by weight of phosphorus,
On the other hand, a raw material powder for a sintered copper alloy is prepared by mixing 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder as lubricating powder.
JP60274211A 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property Expired - Lifetime JPH066725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60274211A JPH066725B2 (en) 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60274211A JPH066725B2 (en) 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property

Publications (2)

Publication Number Publication Date
JPS62133027A true JPS62133027A (en) 1987-06-16
JPH066725B2 JPH066725B2 (en) 1994-01-26

Family

ID=17538581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60274211A Expired - Lifetime JPH066725B2 (en) 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property

Country Status (1)

Country Link
JP (1) JPH066725B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442537A (en) * 1987-08-08 1989-02-14 Hitachi Powdered Metals Valve guide material and its production
JPH04276036A (en) * 1991-03-01 1992-10-01 Mitsubishi Shindoh Co Ltd Cu alloy sheet material for electrical and electronic parts having effect of suppressing wear in blanking die
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US20130223774A1 (en) * 2010-11-08 2013-08-29 Diamet Corporation Cu-BASED OIL-IMPREGNATED SINTERED BEARING
CN103757464A (en) * 2014-01-02 2014-04-30 江苏大学 Copper-based self-lubricating composite material and preparation method thereof
WO2016035880A1 (en) * 2014-09-04 2016-03-10 株式会社ダイヤメット Cu-BASED SINTERED BEARING AND PRODUCTION METHOD FOR Cu-BASED SINTERED BEARING
WO2017010059A1 (en) * 2015-07-16 2017-01-19 オイレス工業株式会社 Multi-layered sliding member
CN109487115A (en) * 2018-11-14 2019-03-19 中国地质大学(北京) It is a kind of using sucrose as the copper-graphite composite materials preparation method of binder
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182871A (en) * 1975-01-18 1976-07-20 Nippon Kokuen Kogyo Kk
JPS5852547A (en) * 1981-09-24 1983-03-28 Fujitsu Ltd Measuring device for concentration distribution of impurities in semiconductor crystal
JPS60221506A (en) * 1984-04-17 1985-11-06 Honda Motor Co Ltd Formation of sliding surface in machine tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182871A (en) * 1975-01-18 1976-07-20 Nippon Kokuen Kogyo Kk
JPS5852547A (en) * 1981-09-24 1983-03-28 Fujitsu Ltd Measuring device for concentration distribution of impurities in semiconductor crystal
JPS60221506A (en) * 1984-04-17 1985-11-06 Honda Motor Co Ltd Formation of sliding surface in machine tool

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442537A (en) * 1987-08-08 1989-02-14 Hitachi Powdered Metals Valve guide material and its production
JPH04276036A (en) * 1991-03-01 1992-10-01 Mitsubishi Shindoh Co Ltd Cu alloy sheet material for electrical and electronic parts having effect of suppressing wear in blanking die
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US7648773B2 (en) 2003-05-26 2010-01-19 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
JP2016056453A (en) * 2010-11-08 2016-04-21 株式会社ダイヤメット METHOD MANUFACTURING Cu-BASED OIL-IMPREGNATED SINTERED BEARING
JPWO2012063786A1 (en) * 2010-11-08 2014-05-12 株式会社ダイヤメット Cu-based sintered oil-impregnated bearing
US20130223774A1 (en) * 2010-11-08 2013-08-29 Diamet Corporation Cu-BASED OIL-IMPREGNATED SINTERED BEARING
EP2639321A4 (en) * 2010-11-08 2016-04-27 Diamet Corp Cu-based oil-containing sintered bearing
US9476453B2 (en) 2010-11-08 2016-10-25 Diamet Corporation Cu-based oil-impregnated sintered bearing
JP6121164B2 (en) * 2010-11-08 2017-04-26 株式会社ダイヤメット Cu-based sintered oil-impregnated bearing
CN103757464A (en) * 2014-01-02 2014-04-30 江苏大学 Copper-based self-lubricating composite material and preparation method thereof
WO2016035880A1 (en) * 2014-09-04 2016-03-10 株式会社ダイヤメット Cu-BASED SINTERED BEARING AND PRODUCTION METHOD FOR Cu-BASED SINTERED BEARING
US10745780B2 (en) 2014-09-04 2020-08-18 Diamet Corporation Cu-based sintered bearing and production method for Cu-based sintered bearing
US10532406B2 (en) 2014-09-11 2020-01-14 Diamet Corporation Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
WO2017010059A1 (en) * 2015-07-16 2017-01-19 オイレス工業株式会社 Multi-layered sliding member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor
CN109487115A (en) * 2018-11-14 2019-03-19 中国地质大学(北京) It is a kind of using sucrose as the copper-graphite composite materials preparation method of binder
CN109487115B (en) * 2018-11-14 2020-05-22 中国地质大学(北京) Preparation method of copper-carbon composite material with sucrose as binder

Also Published As

Publication number Publication date
JPH066725B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
CN104399985B (en) Preparation method of diamond segment
JPH0432122B2 (en)
JPS62133027A (en) Manufacture of sintered copper alloy having self lubricating property, material sheet and powder for sintered copper alloy
JPH01219101A (en) Iron powder for powder metallurgy and production thereof
JP2013023732A (en) Al BRONZE SINTERED ALLOY-SLIDING MATERIAL AND METHOD FOR PRODUCING THE SAME
KR900007785B1 (en) Tin coating ferrous composite powder and method of producing same
JPH0639605B2 (en) Multi-layer sintered sliding member with cast iron backing
US5579533A (en) Method of making a soldering iron tip from a copper/iron alloy composite
JPS62133028A (en) Manufacture of self lubricative sintered copper alloy
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JPS62146995A (en) Production of single and composite sliding materials
JPS62146228A (en) Manufacture of self lubricating sintered copper alloy
JPS6149375B2 (en)
JPS6096746A (en) Composite material and preparation thereof
JPS62133007A (en) Production of self-lubricative sliding member
JPS62146994A (en) Sliding member
US5951737A (en) Lubricated aluminum powder compositions
JP3578409B2 (en) Manufacturing method of sintered sliding member
JP3397332B2 (en) Sintered sliding member and manufacturing method thereof
JP3485270B2 (en) Wet friction material
JPS6311559A (en) Manufacture of self-lubricating composite material
JP3332393B2 (en) Sintered sliding member and manufacturing method thereof
CN111826568A (en) Preparation method of WC-6 Co-graphite self-lubricating hard alloy
JP3397333B2 (en) Sintered sliding member and manufacturing method thereof
JPH11264031A (en) Sintered metal friction member and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term