[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62132912A - Production of block copolymer of propylene - Google Patents

Production of block copolymer of propylene

Info

Publication number
JPS62132912A
JPS62132912A JP27341785A JP27341785A JPS62132912A JP S62132912 A JPS62132912 A JP S62132912A JP 27341785 A JP27341785 A JP 27341785A JP 27341785 A JP27341785 A JP 27341785A JP S62132912 A JPS62132912 A JP S62132912A
Authority
JP
Japan
Prior art keywords
propylene
ethylene
polymerization
reaction
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27341785A
Other languages
Japanese (ja)
Other versions
JPH0580495B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP27341785A priority Critical patent/JPS62132912A/en
Publication of JPS62132912A publication Critical patent/JPS62132912A/en
Publication of JPH0580495B2 publication Critical patent/JPH0580495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the titled copolymer having improved balance of rigidity and impact resistance by the use of a smaller amount of ethylene, by subjecting propylene bulk polymerization at first and carrying out copolymerization of propylene/ethylene in a specific reaction ratio in the presence of an organolithium compound. CONSTITUTION:Firstly propylene alone or together with a small amount (preferably <=6wt%) of another alpha-olefin are polymerized preferably at 50-90 deg.C usually in the presence of a catalyst (e.g., titanium trichloride obtained by reducing titanium tetrachloride with metallic aluminum, hydrogen or organoaluminum compound) in a polymerization amount of preferably 50-95wt%. Then ethylene is fed to the reaction system and propylene is copolymerized with ethylene in the presence of an organolithium compound (e.g., methyllithium, etc.,) in a weight ratio (based on the catalyst) or usually 0.5-100 usually at 30-60 deg.C in such a way that a reaction ratio of propylene/ethylene becomes 80/20-5/95 (weight ratio) to give the aimed copolymer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプロピレンのブロック共重合体の製造方法に関
する。詳しくはプロピレン自身を液状媒体とする塊状重
合法によってプロピレンのブロック共重合体を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a block copolymer of propylene. Specifically, the present invention relates to a method for producing a block copolymer of propylene by a bulk polymerization method using propylene itself as a liquid medium.

〔従来の技術〕[Conventional technology]

ポリプロピレンの耐衝撃性(特に低温での)を改良する
ためにプロピレンと他のα−オレフィン特にエチレンと
の共重合が行なわれ、又、プロセスの簡略化或いは液状
媒体への可溶性ポリマーの減少等が計れることからプロ
ピレン自身を液状媒体する塊状重合方法も行なわれてい
る。ところで塊状重合法でブロック共重合体を製造する
には、プロピレン/エチレンの反応比を小さくするため
にエチレンの使用量を増加して全体の圧力を高くする必
要があり、特尤後段でよりプロピレン/エチレンの反応
比を小さくして連続的に重合することが困難であるとい
う問題があり、これを解決するために連続重合と回分重
合を組合せる方法が試みられている(例えば、特開昭5
7−30534、特開昭57−145114、特開昭5
7−145115、特開昭57−149319、特開昭
57−149320など)。
Copolymerization of propylene with other α-olefins, especially ethylene, has been used to improve the impact resistance of polypropylene (especially at low temperatures), and also to simplify the process or reduce the amount of soluble polymer in the liquid medium. Since propylene itself can be used as a liquid medium, a bulk polymerization method is also used. By the way, in order to produce a block copolymer using the bulk polymerization method, it is necessary to increase the amount of ethylene used and raise the overall pressure in order to reduce the propylene/ethylene reaction ratio. There is a problem that it is difficult to carry out continuous polymerization by reducing the reaction ratio of /ethylene, and to solve this problem, methods of combining continuous polymerization and batch polymerization have been attempted (for example, 5
7-30534, JP-A-57-145114, JP-A-5
7-145115, JP-A-57-149319, JP-A-57-149320, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述の連続重合と回分重合を組合せる方
法は比較的プロピレン/エチレンの反応比の小さい反応
もある程度自由に行うことはできるが、そのためにはエ
チレン分圧を高くする必要があり、多量のエチレンを回
収する必要があるなどの問題があった。
However, although the above-mentioned method of combining continuous polymerization and batch polymerization allows reactions with relatively small propylene/ethylene reaction ratios to be carried out to some extent, it is necessary to increase the ethylene partial pressure, and a large amount of There were problems such as the need to recover ethylene.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者は上記問題を解決する方法について鋭意検討し
、本発明を完成した。
The inventor of the present invention has conducted extensive studies on methods for solving the above problems, and has completed the present invention.

即ち、本発明は、プロピレン自身を液状媒体として初め
にプロピレン単独の重合或いはプロピレンと少量の他の
α−オレフィンの共重合を行い、へ 次イでプロピレン/エチレンの反応比カ80/20〜5
/95 (重量比)である共重合をしてプロピレンのブ
ロック共重合体を製造するに際し、プロピレン/エチレ
ンの反応比が80/2 ト5/95 (重量比)である
共重合を有機リチウムの存在下に行うことを特徴とする
プロピレンのブロック共重合体の製造法である。
That is, in the present invention, propylene itself is used as a liquid medium, and propylene is first polymerized alone or propylene and a small amount of other α-olefin are copolymerized, and then the reaction ratio of propylene/ethylene is 80/20 to 5.
/95 (weight ratio) to produce a propylene block copolymer, the propylene/ethylene reaction ratio is 80/2 to 5/95 (weight ratio). This is a method for producing a block copolymer of propylene, characterized in that it is carried out in the presence of a propylene block copolymer.

本発明においてプロピレンの重合に用いる触媒としては
公知の種々の高立体規則性のポリプロピレンを与える触
媒系が利用可能であり、特に制限はない。例えば、固体
触媒としては四塩化チタンを金属アルミニウム、水素、
有機アルミニウムで還元して得た三塩化チタン或いはそ
れらを電子供与性化合物で変性処理したもの、さらには
ハロゲン化マグネシウムなどの担体或いはそれらを電子
供与性化合物で処理したものをハロゲン化チタンで変性
したものなどが挙げられる。
In the present invention, various known catalyst systems that provide polypropylene with high stereoregularity can be used as catalysts for polymerizing propylene, and there are no particular limitations. For example, as a solid catalyst, titanium tetrachloride can be used as a metal aluminum, hydrogen,
Titanium trichloride obtained by reduction with organoaluminum or those modified with an electron-donating compound; furthermore, supports such as magnesium halide or those treated with an electron-donating compound are modified with a titanium halide. Examples include things.

上記固体触媒は有機アルミニウム化合物及び必要に応じ
電子供与性化合物と併用することでプロピレンの重合に
用いられる。
The above-mentioned solid catalyst is used in the polymerization of propylene in combination with an organoaluminum compound and, if necessary, an electron-donating compound.

有機アルミニウム化合物としてはトリアルキルアルミニ
ウム、ジアルキルアルミニウムハライド、アルキルアル
ミニウムセスキハライド、アルキル了ルミニウムシバラ
イドなどがあげられ、アルキル残基としてはメチル基、
エチル基、プロピル基、ブチル基、ヘキシル基が例示で
きる。また、ノ・ライドとしては塩素、臭素、ヨウ素が
例示できる。
Examples of organoaluminum compounds include trialkylaluminum, dialkylaluminum halide, alkylaluminium sesquihalide, alkyl aluminum civalide, etc., and the alkyl residue includes a methyl group,
Examples include ethyl group, propyl group, butyl group, and hexyl group. Further, examples of the no-ride include chlorine, bromine, and iodine.

必要に応じ立体規則性向上剤として、エステル、エーテ
ル、オルソエステル、アルコキシケイ素などが併用され
る。
If necessary, esters, ethers, orthoesters, alkoxy silicones, and the like are used in combination as stereoregularity improvers.

ここで固体触媒に対する有機アルミニウム及び立体規則
性向上剤の使用量比としては通常それぞれ0.5〜10
0.0.01〜30が適当である。
Here, the usage ratio of organoaluminium and stereoregularity improver to the solid catalyst is usually 0.5 to 10, respectively.
0.0.01-30 is suitable.

本発明においては重合媒体としてはプロピレン自身が使
用されるが、20wt%程度までヘキサン、ヘフリン、
ベンゼン、トルエンなどの他の不済性媒体を併用しても
良く、この場合も含むものである。
In the present invention, propylene itself is used as the polymerization medium, but up to about 20 wt% hexane, heflin,
Other futile media such as benzene and toluene may also be used in combination, and this is also included.

本発明においては、初めのプロピレン単独或いはプロピ
レンと少量の他のα−オレフィンの共重合は上記触媒系
のみで行われる。この条件下での重合量は全重合量の5
0〜95重量%とするのが好ましく、50重量%より少
ないとポリプロピレン本来の剛性が失かれ好ましくない
。また、95重量%より多いと耐衝撃縁の改良が充分で
な、・。
In the present invention, the initial copolymerization of propylene alone or of propylene and a small amount of other α-olefins is carried out using only the above catalyst system. The amount of polymerization under this condition is 5 of the total amount of polymerization.
The content is preferably 0 to 95% by weight, and if it is less than 50% by weight, the original rigidity of polypropylene is lost, which is not preferable. Also, if the amount is more than 95% by weight, the impact-resistant edge will not be improved enough.

なお、プロピレンと共重合させるα−オレフィンは、エ
チレン、ブテン−1、ヘキセン−1,2−メチルペンテ
ン−1などであり、その共重合量は6重量%以下とする
のが望ましく、6重量%を越えると共重合体の剛性が低
下し、好ましくない。
The α-olefin to be copolymerized with propylene is ethylene, butene-1, hexene-1,2-methylpentene-1, etc., and the amount of copolymerization is preferably 6% by weight or less, and 6% by weight. If it exceeds this, the rigidity of the copolymer will decrease, which is not preferable.

この間の重合は重合温度50〜90℃で行うのが好まし
く、そのときの重合圧力は使用する不活性溶媒、分子量
の調整のための水素量、重合温度などにより定まる。
The polymerization during this period is preferably carried out at a polymerization temperature of 50 to 90°C, and the polymerization pressure at that time is determined by the inert solvent used, the amount of hydrogen for adjusting the molecular weight, the polymerization temperature, etc.

本発明においては、次いでプロピレン/エチレンの反応
比が80/20〜5/95重量比であるように共重合さ
れる。ここで重要なのはこの反応の際に有機リチウムを
系内に存在させることである。
In the present invention, copolymerization is then carried out so that the reaction ratio of propylene/ethylene is 80/20 to 5/95 by weight. What is important here is that organolithium be present in the system during this reaction.

ここに用いる有機リチウムとしては、アルキルリチウム
、アリールリチウム、フェニルリチウムなどが例示でき
、特に、メチル+1チウム、エチルリチウム、ブチルリ
チウムなどのアルキルリチウムが好ましい。
Examples of the organolithium used here include alkyllithium, aryllithium, and phenyllithium, with alkyllithiums such as methyl+1thium, ethyllithium, and butyllithium being particularly preferred.

有機リチウムの使用量としては特に制限はないが、固体
触媒に対して0.5〜100重量比で用いるのが一般的
であり、上述の有機アルミニウムを併用することも可能
である。プロピレン/エチレンの共重合反応は通常30
〜60℃で行うのが一般的であり、圧力は所望のエチレ
ン及び水素の気相濃度とすることで定まる。
There is no particular restriction on the amount of organic lithium used, but it is generally used in a weight ratio of 0.5 to 100 with respect to the solid catalyst, and the above-mentioned organic aluminum can also be used in combination. The propylene/ethylene copolymerization reaction is usually 30
It is generally carried out at a temperature of 60° C. to 60° C., and the pressure is determined by the desired concentration of ethylene and hydrogen in the gas phase.

本発明において、プロピレン/エチレンの反応比が80
/20より大きいと耐衝撃性の改良効果が不充分であり
、又5/’95より小さい場合も耐衝撃性の改良効果が
充分でない。
In the present invention, the reaction ratio of propylene/ethylene is 80
If it is larger than /20, the effect of improving impact resistance is insufficient, and if it is smaller than 5/'95, the effect of improving impact resistance is insufficient.

プロピレン/エチレンの反応比力80/20〜5/95
での共重合を行う部分は全体の重合に対して50〜5重
量%とするのが好ましく、50重量%を越えると、剛性
が不良となったりしやすく、5重量%未満では耐衝撃性
が不良となったりする。
Propylene/ethylene reaction specific force 80/20 to 5/95
It is preferable that the copolymerized portion is 50 to 5% by weight based on the total polymerization. If it exceeds 50% by weight, the rigidity tends to be poor, and if it is less than 5% by weight, the impact resistance will deteriorate. It may become defective.

〔実施例〕〔Example〕

以下、実施例を挙げ、本発明をさらに説明する。 Hereinafter, the present invention will be further explained with reference to Examples.

参考例1 1)固体触媒成分の調製 直径12朋の鋼球9kgの入った内容積41の粉砕用ポ
ットに窒素雰囲気中で塩化マグネシウム300り、テト
ラエトキシシラン60d及びα、α、α−トリクロロト
ルエン45−を入れ、40時間振とうして粉砕した。
Reference Example 1 1) Preparation of solid catalyst component In a pulverizing pot with an internal volume of 41 and containing 9 kg of steel balls with a diameter of 12 mm, 300 g of magnesium chloride, 60 g of tetraethoxysilane, and α,α,α-trichlorotoluene were added in a nitrogen atmosphere. 45- was added and shaken for 40 hours to pulverize.

上記共粉砕物300gを51のフラスコに入れ、四塩化
チタン1.51とトルエン1.51を加え、100℃で
30分間攪拌処理したのち、静置し、上澄液を除く処理
を2回行ない、さらに41のn−へブタンを用いて固形
分を洗浄することを10回繰り返した。得られた固体触
媒スラリーの一部分をサンプリングし、チタン分を分析
したところ1.9wt%であった。
300 g of the above co-pulverized material was placed in a No. 51 flask, 1.51 g of titanium tetrachloride and 1.51 g of toluene were added, stirred at 100°C for 30 minutes, allowed to stand, and the supernatant liquid removed twice. , and then washing the solid content with 41 n-hebutane was repeated 10 times. A portion of the obtained solid catalyst slurry was sampled and the titanium content was analyzed and found to be 1.9 wt%.

ii)重合反応 内容積51のオートクレーブに窒素雰囲気下上記固体触
媒20■、ジエチルアルミニウムクロライド0 、12
8d、p−)ルイル酸メチル0.06iおよびトリエチ
ルアルミニウム0.03−を加え、次いでプロピレン1
.8 kgを装入し、さらに水素を3.3Nl加え、7
5°Cで2時間重合反応を行った、その後未反応のプロ
ピレンをパージし、ポリマーを取り出し、乾燥秤量した
。得られた重合体の135℃テトラリン溶液での極限粘
度数、沸騰n−へブタンで6時間抽出した抽出残分の割
合(以下、それぞれη、IIと略記する)を測定した。
ii) In a polymerization reaction autoclave with an internal volume of 51 cm, 20 cm of the above solid catalyst and 0.12 cm of diethylaluminium chloride were added under a nitrogen atmosphere.
8d, p-) Add 0.06i of methyl ruylate and 0.03i of triethylaluminum, then add 1 of propylene.
.. Charge 8 kg, add 3.3Nl of hydrogen, and
The polymerization reaction was carried out at 5°C for 2 hours, after which unreacted propylene was purged, and the polymer was taken out and weighed dry. The intrinsic viscosity of the obtained polymer in a tetralin solution at 135° C. and the proportion of the extraction residue extracted with boiling n-hebutane for 6 hours (hereinafter abbreviated as η and II, respectively) were measured.

結果は表−1に示す。The results are shown in Table-1.

参考例2 75°Cで2時間重合反応を行なった後に更にオートク
レーブの温度を40℃に降温し、40℃で1時間攪拌を
続けるほかは参考例1を繰返し、重合体を得た。得られ
た重合体のη、IIを測定した。
Reference Example 2 After carrying out the polymerization reaction at 75°C for 2 hours, the temperature of the autoclave was further lowered to 40°C, and Reference Example 1 was repeated except that stirring was continued at 40°C for 1 hour to obtain a polymer. The η and II of the obtained polymer were measured.

参考例3 40°Cに降温した後エチレン分圧が10kg/crd
−Gとなるようにエチレンを装入するほかは参考例2を
繰返し、重合体を得た。得られた重合体のη、IIを測
定した。結果を表−1に示す。
Reference example 3 After cooling down to 40°C, ethylene partial pressure is 10kg/crd
Reference Example 2 was repeated except that ethylene was charged so that -G was obtained, and a polymer was obtained. The η and II of the obtained polymer were measured. The results are shown in Table-1.

参考例2.3の結果に見られるように、75℃で2時間
重合した後の40℃での反応は、エチレンの有無にかか
わらず、はとんど連行していない。
As seen in the results of Reference Example 2.3, the reaction at 40° C. after polymerization at 75° C. for 2 hours was hardly entrained, regardless of the presence or absence of ethylene.

実施例1〜4及び比較例1〜3 参考例2において40℃に降温した後に表に示したエチ
レン分圧となるようにエチレンを装入し、ロック共重合
体のη、11およびメルトフローインデックス(MI)
を測定した。また、共重合部での反応比をカラム分別法
(中部化学関係学協会支部連合秋季大会第13回講演予
稿集3A20 (昭和57年))によって求めたエチレ
ンとプロピレンの共重合部の全重量W、と該部のエチレ
ン含量W2より(W+−W2)/W2として算出した。
Examples 1 to 4 and Comparative Examples 1 to 3 In Reference Example 2, after the temperature was lowered to 40°C, ethylene was charged so that the ethylene partial pressure was as shown in the table, and η, 11 and melt flow index of the rock copolymer were (MI)
was measured. In addition, the total weight W of the copolymerization portion of ethylene and propylene was determined by the column fractionation method (Chubu Chemical Association Branch Federation Autumn Conference 13th Lecture Proceedings 3A20 (1982)) to determine the reaction ratio in the copolymerization portion. , and the ethylene content W2 of the part was calculated as (W+-W2)/W2.

これらの結果を表−1に示す。These results are shown in Table-1.

得られたブロック重合体に公知の安定剤を添加して造粒
し、さらに厚さ1間のインジェクションシートを作り、
以下の物性値を測定した。結果を表−2に示す。
A known stabilizer is added to the obtained block polymer and granulated, and an injection sheet with a thickness of 1 mm is made.
The following physical property values were measured. The results are shown in Table-2.

曲げ剛性度    ASTM D−747−63(20
°C)デュポン衝撃強度  JIS K−6718(2
0℃、−10°C) 有機リチウムを添加することで低いエチレン分圧でも比
較的エチレンの多い反応比で重合が進行しており(表−
1参照)、同じ反応比で同じ共重合部とした場合、有機
アルミニウムだけで重合したものより剛性と耐衝撃性の
バランスが良好であるC表−2)。
Bending stiffness ASTM D-747-63 (20
°C) DuPont impact strength JIS K-6718 (2
(0°C, -10°C) By adding organolithium, polymerization progressed at a relatively high ethylene reaction ratio even at low ethylene partial pressure (Table -
1), and when the same reaction ratio and the same copolymerization portion are used, the balance between rigidity and impact resistance is better than that obtained by polymerizing only organic aluminum (Table C-2).

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することにより効率的にプ′ロピレ
ンのブロック共重合体を製造でき、工業的に極めて価値
がある。即ち、比較的低いエチレン分圧においてもプロ
ピレン/エチレンの反応比の小さいプロピレン−エチレ
ンの共重合体を製造することが可能であり、より低いエ
チレン分圧で、言い換えれば、より少ないエチレンの使
用で所望のプロピレン/エチレンの反応比の共重合部を
得ることが可能であり、工業的に極めて価値がある。
By carrying out the method of the present invention, a propylene block copolymer can be efficiently produced and is of great industrial value. In other words, it is possible to produce a propylene-ethylene copolymer with a small propylene/ethylene reaction ratio even at a relatively low ethylene partial pressure, and in other words, it is possible to produce a propylene-ethylene copolymer with a small propylene/ethylene reaction ratio. It is possible to obtain a copolymerized portion with a desired propylene/ethylene reaction ratio, and it is extremely valuable industrially.

Claims (1)

【特許請求の範囲】[Claims] 1、プロピレン自身を液状媒体として、初めにプロピレ
ン単独の重合或いはプロピレンと少量の他のα−オレフ
ィンとの共重合を行い、次いでプロピレン/エチレンの
反応比が80/20〜5/95(重量比)である共重合
してプロピレンのブロック共重合体を製造するに際し、
プロピレン/エチレンの反応比が80/20〜5/95
(重量比)である共重合を有機リチウムの存在下に行う
ことを特徴とするプロピレンのブロック共重合体の製造
方法。
1. Using propylene itself as a liquid medium, first polymerize propylene alone or copolymerize propylene with a small amount of other α-olefin, and then adjust the reaction ratio of propylene/ethylene to 80/20 to 5/95 (weight ratio). ) to produce a block copolymer of propylene,
Propylene/ethylene reaction ratio is 80/20 to 5/95
(weight ratio) in the presence of an organolithium.
JP27341785A 1985-12-06 1985-12-06 Production of block copolymer of propylene Granted JPS62132912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27341785A JPS62132912A (en) 1985-12-06 1985-12-06 Production of block copolymer of propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27341785A JPS62132912A (en) 1985-12-06 1985-12-06 Production of block copolymer of propylene

Publications (2)

Publication Number Publication Date
JPS62132912A true JPS62132912A (en) 1987-06-16
JPH0580495B2 JPH0580495B2 (en) 1993-11-09

Family

ID=17527603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27341785A Granted JPS62132912A (en) 1985-12-06 1985-12-06 Production of block copolymer of propylene

Country Status (1)

Country Link
JP (1) JPS62132912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132113A (en) * 1988-11-11 1990-05-21 Mitsubishi Petrochem Co Ltd Production of propylene block copolymer
US5468810A (en) * 1993-07-27 1995-11-21 Ube Industries, Ltd. Process for producing a propylene block copolymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132113A (en) * 1988-11-11 1990-05-21 Mitsubishi Petrochem Co Ltd Production of propylene block copolymer
US5468810A (en) * 1993-07-27 1995-11-21 Ube Industries, Ltd. Process for producing a propylene block copolymer

Also Published As

Publication number Publication date
JPH0580495B2 (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JP2818199B2 (en) Syndiotactic polypropylene resin composition and method for producing the same
JPS62132912A (en) Production of block copolymer of propylene
JPH0725832B2 (en) Propylene polymerization method
JPS6368622A (en) Production of propylene block copolymer
JPS6358165B2 (en)
JPH0580496B2 (en)
JPS6368648A (en) Crystalline polypropylene resin composition and production thereof
CN113214416B (en) Combined external electron donor, olefin polymerization catalyst and application thereof, and polyolefin and preparation method thereof
JPS62141014A (en) Production of propylene block copolymer
CA1079485A (en) Titanium trichloride catalyst component
JPH0618839B2 (en) Process for producing block copolymer of propylene
JPS643889B2 (en)
JPS60152511A (en) Polymerization of alpha-olefin
JP2553042B2 (en) Olefin Polymerization Method
JPH0816140B2 (en) Process for producing block copolymer of propylene
JPS61123605A (en) Production of polyethylene
JPS5856362B2 (en) Production method of titanium trichloride catalyst
JP3614243B2 (en) Polypropylene resin composition
JPH0522725B2 (en)
JPS63218709A (en) Polymerization of propylene
JPS612706A (en) Polymerization of propylene
JPS62227911A (en) Polymerization of propylene
JPH0471924B2 (en)
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou
JPH01193310A (en) Production of polyolefin resin composition