[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6213051B2 - - Google Patents

Info

Publication number
JPS6213051B2
JPS6213051B2 JP54125630A JP12563079A JPS6213051B2 JP S6213051 B2 JPS6213051 B2 JP S6213051B2 JP 54125630 A JP54125630 A JP 54125630A JP 12563079 A JP12563079 A JP 12563079A JP S6213051 B2 JPS6213051 B2 JP S6213051B2
Authority
JP
Japan
Prior art keywords
added
mixture
complex
yield
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54125630A
Other languages
Japanese (ja)
Other versions
JPS5648244A (en
Inventor
Hiroyuki Nishide
Manabu Kaneda
Juichi Oono
Hidetoshi Tsuchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12563079A priority Critical patent/JPS5648244A/en
Publication of JPS5648244A publication Critical patent/JPS5648244A/en
Publication of JPS6213051B2 publication Critical patent/JPS6213051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はガス吸着剤に係り、特に、5配位高
スピン型鉄ポルフイリン錯体を有効成分とするガ
ス吸着剤に関する。 従来、式 (ここで、各R1は水素原子、ビニル基またはエチ
ル基)で示される鉄ポルフイリン錯体が中心鉄
Fe()の状態において、適当な軸配位子(ピ
リジンやイミダゾール)の存在の下に酸素分子を
軸配位座に吸着する能力を有することが知られて
いる。しかしながら、ピリジンやイミダゾールを
軸配位子として加えた場合、その軸配位子は二つ
の軸配位座に配位し、例えば、 (ただし、−−はポルフイリン環平面を側方向から
見た状態を示す。以下同じ)のような6配位(低
スピン)構造を取り、酸素がイミダゾールを押し
のけて配位する必要があるばかりでなく、スピン
を低スピンから高スピンに組みかえる必要がある
ため、水中のような酸化劣化を受けやすい条件下
では酸素錯体は生成しにくい。 このようなことから、C.K.ChangおよびT.G.
Traylerは式 で示される近位塩基型鉄ポルフイリン錯体を合成
した(Proc.Nat.Acad.Sci.USA70巻2674頁
1973)。 この錯体は、式 で示すような安定5配位(高スピン)構造を取り
やすく、空配位の第6座で酸素を効率よく吸着で
きるとされている。しかしながら、この化合物に
おいて、実際には、イミダゾール基が充分に配位
しないことがわかつた。すなわち、メチル置換基
とポルフイリン環との立体障害が強すぎる結果、
この錯体は5配位構造をとりにくく当該イミダゾ
ール基の配位していない4配位構造との混合体と
なる。この4配位錯体は非常に速やかに酸素によ
つて酸化されるので酸素吸着性が著しく劣つたも
のとなる。 この発明は安定な5配位高スピン型構造のみを
取る近位塩基型鉄ポルフイリン錯体を有効成分と
してなるガス吸着剤を提供することを目的とす
る。 この発明によれば、一般式 (ここで、〓は式 で示されるポルフイリン環を有し、中心に鉄
()が配位した鉄ポルフイリン錯体、Xは水素
原子、C1〜C20アルキル基またはアルカリ金属、
Rはメチル基またはエチル基およびnは4、5ま
たは6)で示される近位塩基型鉄ポルフイリン錯
体を有効成分としてなるガス吸着剤が提供され
る。 式(A)で示される近位塩基型鉄ポルフイリン錯体
は、アミド結合とイミダゾール基を連結する基
が、従来の(−CH2)−とは異なり、(−CH2)−4〜6
であり、これによつて、驚くべきことに、当該錯
体は安定な5配位高スピン型構造のみを取り、水
中、室温においても酸素を可逆的に吸脱着すると
いう優れた効果を奏する。この効果はRがメチル
基そしてnが5のとき特に優れている。 また、式(A)で示される錯体はXの種類によつて
溶解性を変化させることができる。例えば、Xが
水素原子またはアルカリ金属例えばナトリウムや
カリウムの場合は水溶性であり、XがC1〜C20
ルキル基の場合は油溶性である。 式(A)で示される錯体の製造方法の一例を示す
と、まず次のような反応式に従つてN−(ω−ア
ミノアルキル)−2−メチルイミダゾールを合成
する。 上記反応()では、カリウムフタルイミドを
約3倍モル量のアルキレンブロミド例えばペンタ
メチレンブロミドに懸濁させ、190〜200℃で加熱
撹拌する。反応終了後、放冷し、水蒸気蒸留によ
つて未反応ペンタメチレンブロミドを除去する。
残渣にエーテルと水を加え、振とう後、エーテル
層を分離する。残つた水層をエーテルで抽出し、
エーテル抽出液をNa2SO4で乾燥し、エーテルを
減圧留去する。得られた油状物をクロロホルムに
溶解し、過後液を減圧濃縮して固体状残渣を
得る。これをエタノールで再結晶させて目的とす
るN−(ω−ブロモアルキル)フタルイミドを得
る。 反応()では、無水トルエンに油性水素化ナ
トリウムを懸濁させ、2−メチルイミダゾール
(2MeIm)を加えてN2ガスを通じながら沸点還流
させる。これに反応()で得たN−(ω−ブロ
モアルキル)フタルイミドのトルエン溶液を加え
沸点還流させる。この反応混合物を過し、残渣
をトルエンで洗浄し、液と洗液を併せて溶媒を
減圧留去して油状残渣を得る。これをシリカゲル
カラムによりクロロホルム/メタノール(20/
1)で精製し、薄層クロマトグラフ法により第4
流出物を採取する。溶媒を減圧留去して目的のN
−(ω−フタルイミドアルキル)−2−メチルイミ
ダゾールを得る。 反応()では、反応()で得た生成物をメ
タノールに溶解し、100%抱水ヒドラジンを加え
沸点還流させる。これに水を加えた後、メタノー
ルを減圧留去し、濃塩酸を加え沸点還流させる。
この反応混合物を0℃に冷却し、生じる沈でんを
去して液を減圧濃縮し粉末状残渣を得る。こ
れをエタノールから再結晶し、目的のN−(ω−
アミノアルキル)−2−メチルイミダゾール
(AAMI)を得る。 さてこうして得たAAMIを用いて、次の反応式
に従つて式(A)で示される錯体を得る。 (上記各式において、〇はポルフイリン、〓はFe
を導入したポルフイリン、X′はC1〜C20アルキル
基を示す) 上記反応()は二つの径路を取ることができ
る。(A)では、ジカルボキシポルフイリンモノエス
テルおよびトリエチルアミン(Et3N)をCH2Cl2
に溶解し、−10℃でクロルギ酸エチル(ECC)を
加え、ある時間経過後AAMIを加えて反応させ
る。反応生成物をシリカゲルカラムによりクロロ
ホルム/エタノール(15/1)で分離精製する。
(B)ではポルフイリンモノエステルをCH2Cl2に溶
解し、0℃でN,N′−ジシクロヘキシルカルボ
ジイミド(DCC)を加え、これにAAMIを加えて
室温で終夜反応させる。得られた反応生成物を(A)
と同様に精製する。 反応()では、反応()で得た生成物を
DMFに溶解し、N2気流下でFeCl2・nH2Oを加え
還流させる。生成物を塩基性アルミナカラムを用
いてクロロホルム/エタノール(80/1)で精製
して目的の生成物を得る。 反応()は式(A)におけるXが水素原子の場合
におこなうもので、反応()で得た生成物に水
酸化カリウムを加え、室温で反応させる。しかる
後塩酸で中和し、加水分解生成物を析出させる。
この反応()の工程を採るときは、X′はメチ
ル基やエチル基のような低級アルキル基であるこ
とが好都合である。 上記反応に用いられるジカルボキシポルフイリ
ンは二つのカルボキシル基を持つポルフイリン環
を有するものであればどのようなものでもよい
が、代表的なもの式 (ここで、各R1は水素原子、ビニル基またはエチ
ル基)で示される。 こうして得られる式(A)で示される錯体はそのま
ま固体として、また適当な溶媒の溶液として酸素
を初め、COやNOを可逆的に吸脱着する。こと
に、この発明のガス吸着剤は水中、室温において
も酸素を可逆的に吸脱着するという優れた効果を
有する。溶液の形態にあるこの発明のガス吸着剤
は式(A)で示される錯体を10-6モル/以上の濃度
で含んでいることが好ましい。 式(A)で示される錯体は溶液の状態で高濃度に存
在する場合には、2分子の衝突による次式 (ここで、
The present invention relates to a gas adsorbent, and particularly to a gas adsorbent containing a five-coordinated high spin type iron porphyrin complex as an active ingredient. Conventionally, formula (where each R 1 is a hydrogen atom, vinyl group, or ethyl group)
It is known that in the Fe() state, it has the ability to adsorb oxygen molecules to the axial coordinate site in the presence of a suitable axial ligand (pyridine or imidazole). However, when pyridine or imidazole is added as an axial ligand, the axial ligand coordinates to two axial sites, e.g. (However, -- indicates the state of the porphyrin ring plane viewed from the side. The same applies hereinafter.) It is necessary to take a six-coordinated (low spin) structure such that oxygen displaces imidazole and coordinates. Since the spin must be recombined from low spin to high spin, oxygen complexes are difficult to form under conditions that are susceptible to oxidative degradation, such as in water. For this reason, CCKhang and TG
Trailer is a formula We synthesized the proximal base type iron porphyrin complex shown in (Proc. Nat. Acad. Sci. USA Vol. 70, p. 2674).
1973). This complex has the formula It is said that it is easy to form a stable five-coordinate (high spin) structure as shown in Figure 2, and that oxygen can be adsorbed efficiently at the vacant sixth position. However, it has been found that in this compound, the imidazole group is actually not sufficiently coordinated. In other words, as a result of too strong steric hindrance between the methyl substituent and the porphyrin ring,
This complex is difficult to form a 5-coordinate structure and becomes a mixture with a 4-coordinate structure in which the imidazole group is not coordinated. This four-coordination complex is oxidized very quickly by oxygen, resulting in extremely poor oxygen adsorption properties. The object of the present invention is to provide a gas adsorbent containing a proximal base type iron porphyrin complex having only a stable five-coordinate high spin type structure as an active ingredient. According to this invention, the general formula (Here, 〓 is the expression An iron porphyrin complex having a porphyrin ring shown in
There is provided a gas adsorbent comprising as an active ingredient a proximal base type iron porphyrin complex in which R is a methyl group or an ethyl group and n is 4, 5 or 6). In the proximal base type iron porphyrin complex represented by formula (A), the group connecting the amide bond and the imidazole group is different from the conventional ( -CH2 ) -3 , and is ( -CH2 ) -4 to 6 .
As a result, surprisingly, the complex has only a stable five-coordinate high-spin structure and exhibits the excellent effect of reversibly adsorbing and desorbing oxygen even in water and at room temperature. This effect is particularly excellent when R is a methyl group and n is 5. Further, the solubility of the complex represented by formula (A) can be changed depending on the type of X. For example, when X is a hydrogen atom or an alkali metal such as sodium or potassium, it is water-soluble, and when X is a C1 - C20 alkyl group, it is oil-soluble. As an example of the method for producing the complex represented by formula (A), first, N-(ω-aminoalkyl)-2-methylimidazole is synthesized according to the following reaction formula. In the above reaction (), potassium phthalimide is suspended in about three times the molar amount of alkylene bromide, such as pentamethylene bromide, and the suspension is heated and stirred at 190 to 200°C. After the reaction is completed, the mixture is allowed to cool and unreacted pentamethylene bromide is removed by steam distillation.
Ether and water are added to the residue, and after shaking, the ether layer is separated. Extract the remaining aqueous layer with ether,
The ether extract is dried over Na 2 SO 4 and the ether is removed under reduced pressure. The obtained oil was dissolved in chloroform, and the filtered solution was concentrated under reduced pressure to obtain a solid residue. This is recrystallized from ethanol to obtain the desired N-(ω-bromoalkyl)phthalimide. In reaction (), oily sodium hydride is suspended in anhydrous toluene, 2-methylimidazole (2MeIm) is added, and the mixture is brought to boiling point reflux while passing in N2 gas. A toluene solution of N-(ω-bromoalkyl)phthalimide obtained in reaction () is added to this and the mixture is refluxed at the boiling point. The reaction mixture is filtered, the residue is washed with toluene, and the liquid and washing liquid are combined and the solvent is distilled off under reduced pressure to obtain an oily residue. This was filtered through a silica gel column using chloroform/methanol (20/
1) and purified by thin layer chromatography.
Collect spillage. Distill the solvent under reduced pressure to obtain the desired N
-(ω-phthalimidoalkyl)-2-methylimidazole is obtained. In reaction (), the product obtained in reaction () is dissolved in methanol, 100% hydrazine hydrate is added, and the mixture is brought to boiling point reflux. After adding water to this, methanol is distilled off under reduced pressure, concentrated hydrochloric acid is added, and the mixture is brought to boiling point reflux.
The reaction mixture was cooled to 0°C, the resulting precipitate was removed, and the liquid was concentrated under reduced pressure to obtain a powdery residue. This was recrystallized from ethanol and the desired N-(ω-
Aminoalkyl)-2-methylimidazole (AAMI) is obtained. Now, using the AAMI thus obtained, a complex represented by formula (A) is obtained according to the following reaction formula. (In each of the above formulas, 〇 is porphyrin, 〓 is Fe
The above reaction () can take two routes. In (A), dicarboxyporphyrin monoester and triethylamine (Et 3 N) are combined in CH 2 Cl 2
Ethyl chloroformate (ECC) is added at -10°C, and after a certain period of time, AAMI is added and reacted. The reaction product is separated and purified using a silica gel column using chloroform/ethanol (15/1).
In (B), porphyrin monoester is dissolved in CH 2 Cl 2 , N,N'-dicyclohexylcarbodiimide (DCC) is added at 0°C, AAMI is added thereto, and the mixture is reacted overnight at room temperature. The obtained reaction product (A)
Refine in the same way as. In reaction (), the product obtained in reaction () is
Dissolve in DMF, add FeCl 2 .nH 2 O under N 2 flow, and reflux. The product is purified with chloroform/ethanol (80/1) using a basic alumina column to obtain the desired product. Reaction () is carried out when X in formula (A) is a hydrogen atom, and potassium hydroxide is added to the product obtained in reaction () and the reaction is carried out at room temperature. Thereafter, it is neutralized with hydrochloric acid to precipitate the hydrolysis product.
When this reaction step () is adopted, it is convenient that X' is a lower alkyl group such as a methyl group or an ethyl group. The dicarboxyporphyrin used in the above reaction may be of any type as long as it has a porphyrin ring with two carboxyl groups, but typical ones with the formula (Here, each R 1 is a hydrogen atom, a vinyl group, or an ethyl group). The complex represented by formula (A) thus obtained reversibly adsorbs and desorbs oxygen, CO and NO, either as a solid as it is or as a solution in an appropriate solvent. In particular, the gas adsorbent of the present invention has an excellent effect of reversibly adsorbing and desorbing oxygen even in water and at room temperature. The gas adsorbent of the present invention in the form of a solution preferably contains the complex represented by formula (A) at a concentration of 10 -6 mol/or more. When the complex represented by formula (A) exists at high concentration in a solution state, the following formula is obtained due to the collision of two molecules. (here,

【式】および[expression] and

【式】は近位塩基B が中心鉄に配位した状態および解離した状態をそ
れぞれ示す)に従つて2量化が進み、ガス吸脱着
能が経時的に減少する場合がある。 上記のような場合には、用いた溶媒に可溶な高
分子増粘剤を添加した混合溶液とすれば、上記2
量化反応が著しく減少し、酸素吸脱着能が改善で
きる。もちろん、錯体が低濃度である場合でも高
分子増粘剤の添加は酸素吸脱着能を向上させる。 上記高分子増粘剤は数平均分子量(n)が
5000以上の非イオン性高分子であれば、どのよう
なものでもよく、例えば、ポリスチレン、ポリメ
チルメタクリレート、ポリアクリルアミド、ポリ
N−ビニルピロリドンポリエチレンオキシド、多
糖類(特にデキストラン)等であり、用いた溶媒
に可溶なものを選択すればよい。この高分子増粘
剤は1ないし10%好ましくは2ないし5%加える
ことが望ましい。 特に、この発明のガス吸着剤を水溶液の形態で
用いる場合、上記高分子増粘剤としてデキストラ
ンを用いると、それが還元能を持つため式(A)で示
される錯体の中心鉄をFe()からFe()へ
ゆつくりと還元させるので、Na2S2O4等の還元剤
を添加(通常、錯体の約5倍モル量用いる)して
中心鉄をFe()に還元させる必要がなく好都
合である。 なお、この発明のガス吸着剤を水溶液の形態で
用いる場合、N2やアルゴン等の不活性雰囲気下
で水溶液を調製する。 この発明のガス吸着剤は気体中からの微量の
NO、COまたはO2の除去、触媒的反応の助触媒
等に有用である。 以下、実施例に沿つてこの発明のガス吸着剤を
説明するが、それに先立ち、式(A)で示される錯体
の合成例を記す。 合成例 1 N−(5−アミノペンチル)−2−メチルイミダ
ゾールの合成 (A) カリウムフタルイミド60.0g(0.324モル)
をペンタメチレンブロミド250g(1.0モル)に
懸濁させ、190〜200℃の油浴中で12時間で加熱
撹拌した。反応終了後、放冷し、水蒸気蒸留に
よつて未反応ペンタメチレンプロミドを除去し
た。残渣にエーテルと水を加え、振とう後、エ
ーテル層を分離した。残つた水層をエーテルで
2回抽出し、エーテル抽出液をNa2SO4で乾燥
し、エーテルを減圧留去して褐色油状残渣を得
た。得られた油状残渣をクロロホルムに溶解
し、過後液を減圧濃縮して褐色固体状残渣
(63.8g)を得た。これをエタノールから再結
晶させて目的とするN−(5−ブロモペンチ
ル)フタルイミドを得た。収量48.0g(収率
50.1%)。 (B) 無水トルエン50mlに50%油性水素化ナトリウ
ム1.17gを懸濁させ、2−メチルイミダゾール
2.0g(24.4ミリモル)を加えてN2ガスを通じ
ながら5時間沸点還流させた。これに上記(A)で
得たN−(5−ブロモペンチル)フタルイミド
7.2g)24.4ミリモル)のトルエン溶液を加え
15時間沸点還流させた。放冷後、反応混合物を
過し、褐色沈でん物をトルエンで洗浄し、
液と洗液を併せて溶媒を減圧留去して褐色油状
残渣を得た。これをシリカゲルカラム(φ3×
45cm)によりクロロホルム/メタノール(20/
1)で精製し薄層クロマトグラフ法(Rf
0.42、クロロホルム/メタノール(10/1);
f=0.19クロロホルム/メタノール(20/
1))により第4流出物を採取した。溶媒を減
圧留去して目的のN−(5−フタルイミドペン
チル)−2−メチルイミダゾールを淡黄色粉末
として得た。収量2.63g(収率36.3%)。 (C) 上記(B)で得た生成物17.7g(59.5ミリモル)
をメタノール250mlに溶解し、100%抱水ヒドラ
ジン2.98g(59.5ミリモル)を加え1.5時間沸点
還流させた。これに水200mlを加えた後、メタ
ノールを減圧留去し、濃塩酸200mlを加え2時
間沸点還流させた。この反応混合物を0℃に冷
却し、生じる白色沈でんを去して液を減圧
濃縮し淡黄色粉末状残渣を得た。これをエタノ
ールから再結晶して目的のN−(5−アミノペ
ンチル)−2−メチルイミダゾール(APeMI)
を淡黄色結晶として得た。収量12.1g(収率
84.7%)。 APeMIの構造確認はNMRによりおこない、次
表に示す結果を得た。
[Formula] shows the state in which the proximal base B is coordinated with the central iron and the state in which it is dissociated, respectively), dimerization progresses and the gas adsorption/desorption ability may decrease over time. In the above case, if a mixed solution is added with a soluble polymer thickener in the solvent used, the above 2.
The quantification reaction is significantly reduced and the oxygen adsorption/desorption ability can be improved. Of course, the addition of a polymeric thickener improves the oxygen adsorption/desorption capacity even at low concentrations of the complex. The above polymer thickener has a number average molecular weight (n) of
Any nonionic polymer having a molecular weight of 5,000 or more may be used, such as polystyrene, polymethyl methacrylate, polyacrylamide, polyN-vinylpyrrolidone polyethylene oxide, polysaccharide (especially dextran), etc. What is necessary is to select one that is soluble in the solvent. It is desirable to add this polymeric thickener in an amount of 1 to 10%, preferably 2 to 5%. In particular, when the gas adsorbent of the present invention is used in the form of an aqueous solution, when dextran is used as the polymer thickener, the central iron of the complex represented by formula (A) is reduced by Fe() because it has a reducing ability. Since it slowly reduces the central iron to Fe(), there is no need to add a reducing agent such as Na 2 S 2 O 4 (usually used in an amount approximately 5 times the molar amount of the complex) to reduce the central iron to Fe(). It's convenient. Note that when the gas adsorbent of the present invention is used in the form of an aqueous solution, the aqueous solution is prepared in an inert atmosphere such as N 2 or argon. The gas adsorbent of this invention absorbs trace amounts from gas.
Useful for removing NO, CO or O2 , co-catalyst for catalytic reactions, etc. The gas adsorbent of the present invention will be described below with reference to Examples, but prior to that, a synthesis example of the complex represented by formula (A) will be described. Synthesis Example 1 Synthesis of N-(5-aminopentyl)-2-methylimidazole (A) Potassium phthalimide 60.0g (0.324 mol)
was suspended in 250 g (1.0 mol) of pentamethylene bromide, and heated and stirred in an oil bath at 190 to 200°C for 12 hours. After the reaction was completed, the mixture was allowed to cool and unreacted pentamethylene bromide was removed by steam distillation. Ether and water were added to the residue, and after shaking, the ether layer was separated. The remaining aqueous layer was extracted twice with ether, the ether extract was dried over Na 2 SO 4 , and the ether was distilled off under reduced pressure to obtain a brown oily residue. The obtained oily residue was dissolved in chloroform, and the filtered solution was concentrated under reduced pressure to obtain a brown solid residue (63.8 g). This was recrystallized from ethanol to obtain the desired N-(5-bromopentyl)phthalimide. Yield 48.0g (yield
50.1%). (B) Suspend 1.17 g of 50% oily sodium hydride in 50 ml of anhydrous toluene and add 2-methylimidazole.
2.0 g (24.4 mmol) was added and the mixture was refluxed at boiling point for 5 hours while passing N 2 gas through it. Add to this the N-(5-bromopentyl)phthalimide obtained in (A) above.
Add a toluene solution of 7.2 g) 24.4 mmol)
Boiling reflux was carried out for 15 hours. After cooling, the reaction mixture was filtered and the brown precipitate was washed with toluene.
The liquid and washing liquid were combined and the solvent was distilled off under reduced pressure to obtain a brown oily residue. This was applied to a silica gel column (φ3×
chloroform/methanol (20/
1) and purified by thin layer chromatography (R f =
0.42, chloroform/methanol (10/1);
R f =0.19 chloroform/methanol (20/
A fourth effluent was collected according to 1)). The solvent was distilled off under reduced pressure to obtain the target N-(5-phthalimidopentyl)-2-methylimidazole as a pale yellow powder. Yield 2.63g (yield 36.3%). (C) 17.7 g (59.5 mmol) of the product obtained in (B) above
was dissolved in 250 ml of methanol, 2.98 g (59.5 mmol) of 100% hydrazine hydrate was added, and the mixture was refluxed at boiling point for 1.5 hours. After adding 200 ml of water to this, methanol was distilled off under reduced pressure, 200 ml of concentrated hydrochloric acid was added, and the mixture was refluxed at the boiling point for 2 hours. The reaction mixture was cooled to 0°C, the resulting white precipitate was removed, and the liquid was concentrated under reduced pressure to obtain a pale yellow powdery residue. This was recrystallized from ethanol to obtain the desired N-(5-aminopentyl)-2-methylimidazole (APeMI).
was obtained as pale yellow crystals. Yield 12.1g (yield
84.7%). The structure of APeMI was confirmed by NMR, and the results shown in the table below were obtained.

【表】【table】

【表】 合成例 2 近位塩基型鉄ポルフイリン錯体の合成 (A)−1 プロトポルフイリンモノエチルエステ
ル(PP・OEt)3.0gおよびトリエチルア
ミン0.5gをCH2Cl250mlに溶解し、−10℃で
クロルギ酸エチル0.55gを加え、5分後に
APeMI0.84gを加えて反応させた。反応生成
物をシリカゲルカラム(φ4×20cm)により
クロロホルム/エタノール(15/1)で分離
精製した。収量290mg。 (A)−2 PP・OEt3.3gをCH2Cl280mlに溶解
し、0℃でN,N′−ジシクロヘキシルカル
ボジイミド1.16gを加え30分後、これに
APeMI0.94gを加えて室温で終夜反応させ
た。得られた反応生成物を(A)−1と同様に精
製した。収量320mg。 (B) 上記(A)−2で得た生成物300mgをDMFに溶解
し、N2気流下でFeCl2・nH2O180mgを加え1時
間還流させた。生成物を塩基性アルミナカラム
(φ3×15cm)を用いてクロロホルム/エタノ
ール(80/1)で2回精製して目的の生成物を
得た。収量172mg。この錯体の可視収吸極大
(λmax)の値は室温、クロロホルム中で、
387、511、540および640mmであつた。 (C) 上記Bで得た生成物100mgに1N水酸化カリウ
ム水溶液250mlを加え、室温で反応させた。し
かる後1N塩酸で中和しPH5に調製して加水分
解生成物を析出させた。これを集、水洗し、
加熱乾燥した。収量96.7mg。 合成例 3 N−(4−アミノブチル)−2−メチルイミダゾ
ールの合成 (A) カリウムフタルイミド60.0g(0.324モル)
をテトラメチレンブロミド223g(1.03モル)
に懸濁させ、190〜200℃の油浴中で12時間で加
熱撹拌した。反応終了後、放冷し、水蒸気蒸留
によつて未反応テトラメチレンブロミドを除去
した。残渣にエーテルと水を加え、振とう後、
エーテル層を分離した。残つた水層をエーテル
で2回抽出し、エーテル抽出液をNa2SO4で乾
燥し、エーテルを減圧留去して褐色油状残渣を
得た。得られた油状残渣をクロロホルムに溶解
し、過後液を減圧濃縮して褐色固体状残渣
(64.1g)を得た。これをエタノールから再結
晶させて目的とするN−(4−ブロモブチル)
フタルイミドを得た。収量48.1g(収率52.6
%) (B) 無水トルエン250mlに50%油性水素化ナトリ
ウム5.85gを懸濁させ、2−メチルイミダゾー
ル10.0g(0.122モル)を加えてN2ガスを通じ
ながら5時間沸点還流させた。これに上記(A)で
得たN−(4−ブロモブチル)フタルイミド
34.4g(0.122モル)のトルエン溶液を加え15
時間沸点還流させた。放冷後、反応混合物を
過し、褐色沈でん物をトルエンで洗浄し、液
と洗液を合せて溶媒を減圧留去して褐色油状残
渣を得た。これをシリカゲルカラム(φ3×45
cm)によりクロロホルム/メタノール(20/
1)で精製し薄層クロマトグラフ法(Rf
0.42、クロロホルム/メタノール(10/1);
=0.19、クロロホルム/メタノール(20/1)
により第4流出物を採取した。溶媒を減圧留去
して目的のN−(4−フタルイミドブチル)−2
−メチルイミダゾールを淡黄色粉末として得
た。収量19.4g(収率56.2%)。 (C) 上記(B)で得た生成物17.0g(60.0ミリモル)
をメタノール250mlに溶解し、100%抱水ヒドラ
ジン3.01g(60.0ミリモル)を加え1.5時間沸点
還流させた。これに水200mlを加えた後、メタ
ノールを減圧留去し、濃塩酸200mlを加え2時
間沸点還流させた。この反応混合物を0℃に冷
却し、生じる白色沈でんを去して液を減圧
濃縮し淡黄色粉末状残渣を得た。これをエタノ
ールから再結晶して目的のN−(4−アミノブ
チル)−2−メチルイミダゾール(ABuMI)を
淡黄色結晶として得た。収量12.0g(収率88.4
%)。 ABuMIの構造確認はNMRによりおこない、次
表に示す結果を得た。
[Table] Synthesis Example 2 Synthesis of proximal base-type iron porphyrin complex (A)-1 3.0 g of protoporphyrin monoethyl ester (PP・OEt) and 0.5 g of triethylamine were dissolved in 50 ml of CH 2 Cl 2 and heated at -10°C. Add 0.55g of ethyl chloroformate, and after 5 minutes
0.84 g of APeMI was added and reacted. The reaction product was separated and purified using a silica gel column (φ4×20 cm) using chloroform/ethanol (15/1). Yield 290mg. (A)-2 3.3 g of PP・OEt was dissolved in 80 ml of CH 2 Cl 2 , and 1.16 g of N,N'-dicyclohexylcarbodiimide was added at 0°C. After 30 minutes, the mixture was dissolved.
0.94 g of APeMI was added and reacted overnight at room temperature. The obtained reaction product was purified in the same manner as (A)-1. Yield 320mg. (B) 300 mg of the product obtained in (A)-2 above was dissolved in DMF, and 180 mg of FeCl 2 .nH 2 O was added under a N 2 stream, and the mixture was refluxed for 1 hour. The product was purified twice with chloroform/ethanol (80/1) using a basic alumina column (φ3×15 cm) to obtain the desired product. Yield 172mg. The value of the visible absorption maximum (λmax) of this complex in chloroform at room temperature is
They were 387, 511, 540 and 640mm. (C) 250 ml of 1N aqueous potassium hydroxide solution was added to 100 mg of the product obtained in B above, and the mixture was reacted at room temperature. Thereafter, it was neutralized with 1N hydrochloric acid to adjust the pH to 5, and the hydrolysis product was precipitated. Collect this, wash it with water,
It was heated and dried. Yield 96.7mg. Synthesis Example 3 Synthesis of N-(4-aminobutyl)-2-methylimidazole (A) Potassium phthalimide 60.0g (0.324mol)
223g (1.03mol) of tetramethylene bromide
The mixture was suspended in water and heated and stirred in an oil bath at 190 to 200°C for 12 hours. After the reaction was completed, the mixture was allowed to cool and unreacted tetramethylene bromide was removed by steam distillation. Add ether and water to the residue and after shaking,
The ether layer was separated. The remaining aqueous layer was extracted twice with ether, the ether extract was dried over Na 2 SO 4 , and the ether was distilled off under reduced pressure to obtain a brown oily residue. The obtained oily residue was dissolved in chloroform, and the filtered solution was concentrated under reduced pressure to obtain a brown solid residue (64.1 g). This is recrystallized from ethanol to obtain the desired N-(4-bromobutyl).
Obtained phthalimide. Yield 48.1g (yield 52.6
%) (B) 5.85 g of 50% oily sodium hydride was suspended in 250 ml of anhydrous toluene, 10.0 g (0.122 mol) of 2-methylimidazole was added, and the mixture was refluxed at boiling point for 5 hours while passing N 2 gas. Add to this the N-(4-bromobutyl)phthalimide obtained in (A) above.
Add 34.4g (0.122mol) of toluene solution and add 15
Boil at reflux for an hour. After cooling, the reaction mixture was filtered, the brown precipitate was washed with toluene, the liquid and the washing liquid were combined, and the solvent was distilled off under reduced pressure to obtain a brown oily residue. Add this to a silica gel column (φ3×45
chloroform/methanol (20/cm)
1) and purified by thin layer chromatography (R f =
0.42, chloroform/methanol (10/1);
=0.19, chloroform/methanol (20/1)
A fourth effluent was collected. The solvent was distilled off under reduced pressure to obtain the desired N-(4-phthalimidobutyl)-2.
-Methylimidazole was obtained as a pale yellow powder. Yield: 19.4g (yield 56.2%). (C) 17.0 g (60.0 mmol) of the product obtained in (B) above
was dissolved in 250 ml of methanol, 3.01 g (60.0 mmol) of 100% hydrazine hydrate was added, and the mixture was refluxed at boiling point for 1.5 hours. After adding 200 ml of water to this, methanol was distilled off under reduced pressure, 200 ml of concentrated hydrochloric acid was added, and the mixture was refluxed at the boiling point for 2 hours. The reaction mixture was cooled to 0°C, the resulting white precipitate was removed, and the liquid was concentrated under reduced pressure to obtain a pale yellow powdery residue. This was recrystallized from ethanol to obtain the target N-(4-aminobutyl)-2-methylimidazole (ABuMI) as pale yellow crystals. Yield 12.0g (yield 88.4
%). The structure of ABuMI was confirmed by NMR, and the results shown in the table below were obtained.

【表】 合成例 4 近位塩基型鉄ポルフイリン錯体の合成 (A) プロトポルフイリンモノエチルエステル59
gをジクロルメタン1に溶解し、Et3N10.1g
を加えた後、−10℃以下に冷却し、エチルクロ
ロホーメイト10.8gを加えた。10分後これに合
成例3で得たABuMI15.3g〔ABuMI・2HCl
22.6gのジクロルメタン懸濁液にEt3N20.2gを
加えて脱塩酸したもの〕を加え、室温で3時間
反応させた。得られた反応生成物をシリカゲル
カラム(φ6×20cm)により、クロロホルム/
エタノール(15/1)で分離精製した。収量
23.2g (B) 上記(A)で得た生成物20.0gをDMFに溶解
し、N2気流下でFeCl2・nH2O13.0gを加え、80
℃、2時間加熱撹拌した。 生成物を塩基性アルミナカラム(φ6×15
cm)を用いてクロロホルム/エタノール(80/
1)で2回精製して目的の精製物を得た。収量
12.4g。この錯体の可視吸収極大(λmax)の
値は室温、クロロホルム中で387、511、541お
よび640nmであつた。 (C) 上記(B)で得た生成物10gをメタノール100ml
に溶解し2N−水酸化カリウム水溶液25mlを加
え室温で反応させた。しかる後2N塩酸で中和
し、PH5に調節して加水分解生成物(ABuMI
−〓−COOH)を析出させた。これを集水
洗し、加熱乾燥した。収量9.5g 合成例 5 N−(6−アミノヘキシル)−2−メチルイミダ
ゾールの合成 (A) カリウムフタルイミド60.0g(0.324モル)
をヘキサメチレンブロミド268g(1.10モル)
に懸濁させ、190〜200℃の油浴中で12時間で加
熱撹拌した。反応終了後、放冷し、水蒸気蒸留
によつて未反応ヘキサメチレンブロミドを除去
した。残渣にエーテルと水を加え、振とう後、
エーテル層を分離した。残つた水層をエーテル
で2回抽出し、エーテル抽出液をNa2SO4で乾
燥し、エーテルを減圧留去して褐色油状残渣を
得た。得られた油状残渣をクロロホルムに溶解
し、過後液を減圧濃縮して褐色固体状残渣
(67.3g)を得た。これをエタノールから再結
晶させて目的とするN−(6−ブロモヘキシ
ル)フタルイミドを得た。収量51.2g(収率
50.9%)。 (B) 無水トルエン250mlに50%油性水素化ナトリ
ウム5.85gを懸濁させ、2−メチルイミダゾー
ル10.0g(0.122モル)を加えてN2ガスを通じ
ながら5時間沸点還流させた。これに上記(A)で
得たN−(6−ブロモヘキシル)フタルイミド
37.8g(0.122モル)のトルエン溶液を加え15
時間沸点還流させた。放冷後、反応混合物を
過し、褐色沈でん物をトルエンで洗浄し、液
と洗液を併せて溶媒を減圧留去して褐色油状残
渣を得た。これをシリカゲルカラム(φ3×45
cm)によりクロロホルム/メタノール(20/
1)で精製し薄層クロマトグラフ法(Rf
0.42、クロロホルム/メタノール(10/1);
f=0.19、クロロホルム/メタノール(20/
1)により第4流出物を採取した。溶媒を減圧
留去して目的のN−(6−フタルイミドヘキシ
ル)−2−メチルイミダゾールを淡黄色粉末と
して得た。収量20.8g(収率54.8%)。 (C) 上記(B)で得た生成物18.7g(60.0ミリモル)
をメタノール250mlに溶解し、100%抱水ヒドラ
ジン3.01g(60.0ミリモル)を加え1.5時間沸点
還流させた。これに水200mlを加えた後、メタ
ノールを減圧留去し、濃塩酸200mlを加え2時
間沸点還流させた。この反応混合物を0℃に冷
却し、生じる白色沈でんを去して液を減圧
濃縮し淡黄色粉末残渣を得た。これをエタノー
ルから再結晶して目的のN−(6−アミノヘキ
シル)−2−メチルイミダゾール(AHeMI)を
淡黄色結晶として得た。収量13.3g(収率87.0
%)。 AHeMIの構造確認はNMRによりおこない、次
表に示す結果を得た。
[Table] Synthesis Example 4 Synthesis of proximal base type iron porphyrin complex (A) Protoporphyrin monoethyl ester 59
Dissolve 1 g of Et 3 N in 1 dichloromethane and 10.1 g of Et 3 N.
After adding, the mixture was cooled to −10° C. or below, and 10.8 g of ethyl chloroformate was added. After 10 minutes, 15.3 g of ABuMI obtained in Synthesis Example 3 [ABuMI・2HCl
20.2 g of Et 3 N was added to 22.6 g of dichloromethane suspension to remove hydrochloric acid] and the mixture was reacted at room temperature for 3 hours. The obtained reaction product was filtered with chloroform/silica gel column (φ6 x 20 cm).
It was separated and purified with ethanol (15/1). yield
23.2g (B) 20.0g of the product obtained in (A) above was dissolved in DMF, and 13.0g of FeCl 2 .nH 2 O was added under a N 2 stream.
The mixture was heated and stirred at ℃ for 2 hours. The product was transferred to a basic alumina column (φ6×15
cm) using chloroform/ethanol (80/cm).
The desired purified product was obtained by purification twice in step 1). yield
12.4g. The visible absorption maximum (λmax) values of this complex were 387, 511, 541 and 640 nm in chloroform at room temperature. (C) Add 10g of the product obtained in (B) above to 100ml of methanol.
25 ml of a 2N aqueous potassium hydroxide solution was added to the mixture, and the mixture was reacted at room temperature. After that, it was neutralized with 2N hydrochloric acid, adjusted to pH5, and the hydrolysis product (ABuMI
−〓−COOH) was precipitated. This was washed with water and dried by heating. Yield 9.5g Synthesis Example 5 Synthesis of N-(6-aminohexyl)-2-methylimidazole (A) Potassium phthalimide 60.0g (0.324 mol)
268g (1.10mol) of hexamethylene bromide
The mixture was suspended in water and heated and stirred in an oil bath at 190 to 200°C for 12 hours. After the reaction was completed, the mixture was allowed to cool and unreacted hexamethylene bromide was removed by steam distillation. Add ether and water to the residue and after shaking,
The ether layer was separated. The remaining aqueous layer was extracted twice with ether, the ether extract was dried over Na 2 SO 4 , and the ether was distilled off under reduced pressure to obtain a brown oily residue. The obtained oily residue was dissolved in chloroform, and the filtered solution was concentrated under reduced pressure to obtain a brown solid residue (67.3 g). This was recrystallized from ethanol to obtain the desired N-(6-bromohexyl)phthalimide. Yield 51.2g (yield
50.9%). (B) 5.85 g of 50% oily sodium hydride was suspended in 250 ml of anhydrous toluene, 10.0 g (0.122 mol) of 2-methylimidazole was added, and the mixture was refluxed at boiling point for 5 hours while passing N 2 gas. Add to this the N-(6-bromohexyl)phthalimide obtained in (A) above.
Add 37.8g (0.122mol) of toluene solution and add 15
Boil at reflux for an hour. After cooling, the reaction mixture was filtered, the brown precipitate was washed with toluene, the liquid and the washing liquid were combined, and the solvent was distilled off under reduced pressure to obtain a brown oily residue. Add this to a silica gel column (φ3×45
chloroform/methanol (20/cm)
1) and purified by thin layer chromatography (R f =
0.42, chloroform/methanol (10/1);
R f =0.19, chloroform/methanol (20/
A fourth effluent was collected according to 1). The solvent was distilled off under reduced pressure to obtain the target N-(6-phthalimidohexyl)-2-methylimidazole as a pale yellow powder. Yield: 20.8g (yield 54.8%). (C) 18.7 g (60.0 mmol) of the product obtained in (B) above
was dissolved in 250 ml of methanol, 3.01 g (60.0 mmol) of 100% hydrazine hydrate was added, and the mixture was refluxed at boiling point for 1.5 hours. After adding 200 ml of water to this, methanol was distilled off under reduced pressure, 200 ml of concentrated hydrochloric acid was added, and the mixture was refluxed at the boiling point for 2 hours. The reaction mixture was cooled to 0°C, the resulting white precipitate was removed, and the liquid was concentrated under reduced pressure to obtain a pale yellow powder residue. This was recrystallized from ethanol to obtain the target N-(6-aminohexyl)-2-methylimidazole (AHeMI) as pale yellow crystals. Yield 13.3g (yield 87.0
%). The structure of AHeMI was confirmed by NMR, and the results shown in the table below were obtained.

【表】【table】

【表】 合成例 6 近位塩基型鉄ポルフイリン錯体の合成 (A) プロトポルフイリンモノエチルエステル59
gをジクロルメタン1に溶解し、Et3N10.1g
を加えた後、−10℃以下に冷却し、エチルクロ
ロホーメイト10.8gを加えた。10分後これに合
成例5で得たAHeMI 18.1g〔AHeMI・2HCl
25.4gのジクロルメタン懸濁液にEt3N20.2gを
加えて脱塩酸したもの〕を加え室温で3時間反
応させた。得られた反応生成物をシリカゲルカ
ラム(φ6×20cm)により、クロロホルム/エ
タノール(15/1)で分離精製した。収量24.0
g。 (B) 上記(A)で得た生成物20.0gをDMFに溶解
し、N2気流下でFeCl・nH2O13.0gを加え、80
℃、2時間加熱撹拌した。 生成物を塩基性アルミナカラム(φ6×15
cm)を用いてクロロホルム/エタノール(80/
1)で2回精製して目的の精製物を得た。 収量11.7g。この錯体の可視吸収極大(λ
max)の値は室温、クロロホルム中で387、
511、541およびび640nmであつた。 (C) 上記(B)で得た生成物10.0gをメタノール100
mlに溶解し2N−水酸化カリウム水溶液25mlを
加え室温で反応させた。しかる後2N塩酸で中
和し、PH5に調整して加水分解生成物
(AHeMI−1H−COOH)を析出させた。これ
を集、水洗し、加熱乾燥した。収量9.4g 実施例 1 合成例2で得た錯体を1×10-4モル/となる
ように水に溶解し、これにNa2S2O4(還元剤)を
5×10-4モル/の割合で加えた。N2ガスを充分
に吹き込んでから1時間放置すると、中心鉄が
Fe()からFe()となり、それに伴なつて
水溶液が赤色となつた。これに室温でO2(酸
素)またはCOを吹き込んで、可視吸収スペクト
ルを記録した。また、真空脱気後(またはN2
アルゴンガスを吹き込んだ後)の可視吸収スペク
トルも記録した。結果をミオグロビンの場合と比
較して下記表Aに示す。
[Table] Synthesis Example 6 Synthesis of proximal base type iron porphyrin complex (A) Protoporphyrin monoethyl ester 59
Dissolve 1 g of Et 3 N in 1 dichloromethane and 10.1 g of Et 3 N.
After adding, the mixture was cooled to −10° C. or below, and 10.8 g of ethyl chloroformate was added. After 10 minutes, 18.1 g of AHeMI obtained in Synthesis Example 5 [AHeMI・2HCl
20.2 g of Et 3 N was added to 25.4 g of dichloromethane suspension to remove hydrochloric acid] and the mixture was reacted at room temperature for 3 hours. The obtained reaction product was separated and purified using a silica gel column (φ6×20 cm) using chloroform/ethanol (15/1). Yield 24.0
g. (B) Dissolve 20.0 g of the product obtained in (A) above in DMF, add 13.0 g of FeCl・nH 2 O under a N 2 stream, and
The mixture was heated and stirred at ℃ for 2 hours. The product was transferred to a basic alumina column (φ6×15
cm) using chloroform/ethanol (80/cm).
The desired purified product was obtained by purification twice in step 1). Yield: 11.7g. The visible absorption maximum (λ
max) value is 387 in chloroform at room temperature,
They were 511, 541 and 640nm. (C) Add 10.0 g of the product obtained in (B) above to 100 g of methanol.
ml, 25 ml of 2N aqueous potassium hydroxide solution was added, and the mixture was reacted at room temperature. Thereafter, the mixture was neutralized with 2N hydrochloric acid and the pH was adjusted to 5 to precipitate a hydrolysis product (AHeMI-1H-COOH). This was collected, washed with water, and dried by heating. Yield: 9.4g Example 1 The complex obtained in Synthesis Example 2 was dissolved in water at a concentration of 1 x 10 -4 mol/, and Na 2 S 2 O 4 (reducing agent) was added at 5 x 10 -4 mol/. added at the rate of If you blow enough N2 gas and leave it for 1 hour, the central iron will be
Fe() changed to Fe(), and the aqueous solution turned red accordingly. This was bubbled with O 2 (oxygen) or CO at room temperature and the visible absorption spectra were recorded. We also recorded visible absorption spectra after vacuum degassing (or after blowing N 2 or argon gas). The results are shown in Table A below in comparison with those for myoglobin.

【表】 この結果からわかるように、この発明のガス吸
着剤は酸素または一酸化炭素の吸脱着に対しミオ
グロビンと同様の挙動を示しO2錯体またはCO錯
体が生成していることがわかる。また、これらガ
スの吸脱着は10回以上繰返しても同様の結果が得
られた。 なお、添付の図に、上記実施例について、酸素
を吸脱着させた場合のこの発明のガス吸着剤の可
視吸収スペクトルを示す。図中、曲線aは酸素吸
着後のもの、曲線bは酸素脱気後のものである。 比較例 上記と同様の実験を式()で示される従来の
化合物に対しておこなつた。 還元剤を加え、N2ガスを充分に吹き込んで放
置すると中心鉄がFe()からFe()になる
が、その可視スペクトルを測定すると432、
557nmの吸収を示すものの幅広でありイミダゾー
ル基が充分に配位していない4配位構造との混合
であつた。これに室温で酸素を吹き込むと速やか
に酸化劣化した。 実施例 2 合成例2で得た錯体を1×10-4モル/となる
ように水に溶解し、これに分子量6000のデキスト
ランを5重量/容量%の割合で添加し、N2ガス
を充分に吹き込んだ後、室温で1日放置した。こ
の水溶液に酸素を吹き込んだところ、得られた酸
素錯体は2〜3日間も安定であつた。また、酸素
吸脱着も実施例1の場合よりも、多くおこなえ
た。 なお、デキストランの代りに寒天を2重量/容
量%の割合で加えると、得られた酸素錯体は1週
間安定であつた。 実施例 3および4 合成例2で得た錯体の代りに合成例4および合
成例6で得た錯体を用いて実施例1と全く同じ操
作をおこなつた。結果を表Bに示す。
[Table] As can be seen from the results, the gas adsorbent of the present invention behaves similarly to myoglobin with respect to adsorption and desorption of oxygen or carbon monoxide, indicating that an O 2 complex or a CO complex is generated. Furthermore, similar results were obtained even after repeating the adsorption and desorption of these gases more than 10 times. The attached figure shows the visible absorption spectrum of the gas adsorbent of the present invention when adsorbing and desorbing oxygen in the above example. In the figure, curve a is after oxygen adsorption, and curve b is after oxygen degassing. Comparative Example An experiment similar to the above was conducted on a conventional compound represented by formula (). When a reducing agent is added and N2 gas is blown in sufficiently and left, the central iron changes from Fe() to Fe(), but when the visible spectrum is measured, 432
Although it showed absorption at 557 nm, it was broad and was mixed with a four-coordinate structure in which the imidazole group was not sufficiently coordinated. When oxygen was blown into this at room temperature, it rapidly deteriorated due to oxidation. Example 2 The complex obtained in Synthesis Example 2 was dissolved in water at a concentration of 1 x 10 -4 mole, and dextran with a molecular weight of 6000 was added thereto at a ratio of 5% by weight/volume, and N 2 gas was sufficiently supplied. After blowing into the solution, it was left at room temperature for one day. When oxygen was blown into this aqueous solution, the resulting oxygen complex remained stable for 2 to 3 days. Furthermore, more oxygen adsorption and desorption was achieved than in Example 1. Note that when agar was added in place of dextran at a ratio of 2% by weight/volume, the obtained oxygen complex remained stable for one week. Examples 3 and 4 The same operations as in Example 1 were carried out using the complexes obtained in Synthesis Examples 4 and 6 instead of the complex obtained in Synthesis Example 2. The results are shown in Table B.

【表】 なお、実施例3および4においてガスの吸脱着
はそれぞれ10回および5回繰返しても同様の結果
が得られた。 実施例 5 合成例4で得た錯体を1×10-4モル/となる
ように水に溶解し、これに分子量6000のデキスト
ランを5重量/容量%の割合で添加し、N2ガス
を充分に吹き込んだ後、室温で1日放置した。こ
の水溶液に酸素を吹き込んだところ、得られた酸
素錯体は2日間も安定であつた。 また、酸素吸脱着も実施例3の場合よりも、多
くおこなえた。 実施例 6 合成例6で得た錯本を1×10-4モル/となる
ように水に溶解し、これに分子量40000のポリエ
チレングリコールを5重量/容量%の割合で添加
し、N2ガスを充分に吹き込んだ後、室温で1日
放置した。この水溶液に酸素を吹き込んだとこ
ろ、得られた酸素錯体は2日間も安定であつた。 また、酸素吸脱着も実施例4の場合よりも、多
くおこなえた。
[Table] In Examples 3 and 4, similar results were obtained even when the gas adsorption and desorption was repeated 10 times and 5 times, respectively. Example 5 The complex obtained in Synthesis Example 4 was dissolved in water at a concentration of 1 x 10 -4 mole, and dextran with a molecular weight of 6,000 was added thereto at a ratio of 5% by weight/volume, and N 2 gas was sufficiently supplied. After blowing into the solution, it was left at room temperature for one day. When oxygen was blown into this aqueous solution, the resulting oxygen complex remained stable for two days. Furthermore, more oxygen adsorption and desorption was achieved than in Example 3. Example 6 The complex obtained in Synthesis Example 6 was dissolved in water at a concentration of 1×10 -4 mol/polyethylene glycol with a molecular weight of 40,000 was added thereto at a ratio of 5% by weight/volume, and N 2 gas was added. After sufficiently blowing, the mixture was left at room temperature for one day. When oxygen was blown into this aqueous solution, the resulting oxygen complex remained stable for two days. Furthermore, more oxygen adsorption and desorption was achieved than in Example 4.

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図はこの発明のガス吸着剤に酸素の吸脱
着をおこなわせた際の可視吸収スペクトル図であ
る。
The attached figure is a visible absorption spectrum diagram when the gas adsorbent of the present invention adsorbs and desorbs oxygen.

Claims (1)

【特許請求の範囲】 1 一般式 (ここで、〓は式 で示されるポルフイリン環を有し、中心に鉄
()が配位した鉄ポルフイリン錯体、Xは水素
原子、C1〜C20アルキル基またはアルカリ金属、
Rはメチル基またはエチル基およびnは4、5ま
たは6)で示される近位塩基型鉄ポルフイリン錯
体を有効成分としてなるガス吸着剤。 2 Rがメチル基であり、nが5である特許請求
の範囲第1項記載のガス吸着剤。 (1) 一般式 (ここで、〓は式 で示されるポルフイリン環を有し、中心に鉄
()が配位した鉄ポルフイリン錯体、Xは水
素原子、C1〜C20アルキル基またはアルカリ金
属、Rはメチル基またはエチル基およびnは
4、5または6)で示される近位塩基型鉄ポル
フイリン錯体と非イオン性高分子を含んでなる
ガス吸着剤。 4 非イオン性高分子が多糖類である特許請求の
範囲第1項記載のガス吸着剤。 5 Rがメチル基であり、nが5である特許請求
の範囲第3項または第4項記載のガス吸着剤。
[Claims] 1. General formula (Here, 〓 is the expression An iron porphyrin complex having a porphyrin ring shown in
A gas adsorbent comprising, as an active ingredient, a proximal base type iron porphyrin complex, in which R is a methyl group or an ethyl group and n is 4, 5 or 6). 2. The gas adsorbent according to claim 1, wherein R is a methyl group and n is 5. (1) General formula (Here, 〓 is the expression An iron porphyrin complex having a porphyrin ring shown in A gas adsorbent comprising a proximal base type iron porphyrin complex represented by 5 or 6) and a nonionic polymer. 4. The gas adsorbent according to claim 1, wherein the nonionic polymer is a polysaccharide. 5. The gas adsorbent according to claim 3 or 4, wherein R is a methyl group and n is 5.
JP12563079A 1979-09-29 1979-09-29 Gas adsorbent Granted JPS5648244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12563079A JPS5648244A (en) 1979-09-29 1979-09-29 Gas adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12563079A JPS5648244A (en) 1979-09-29 1979-09-29 Gas adsorbent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP55162081A Division JPS5810388B2 (en) 1980-11-19 1980-11-19 Proximal base type iron porphyrin complex

Publications (2)

Publication Number Publication Date
JPS5648244A JPS5648244A (en) 1981-05-01
JPS6213051B2 true JPS6213051B2 (en) 1987-03-24

Family

ID=14914795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12563079A Granted JPS5648244A (en) 1979-09-29 1979-09-29 Gas adsorbent

Country Status (1)

Country Link
JP (1) JPS5648244A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542010A (en) * 1982-06-30 1985-09-17 Bend Research, Inc. Method and apparatus for producing oxygen and nitrogen and membrane therefor
US4451270A (en) * 1982-06-30 1984-05-29 Bend Research, Inc. Absorption process for producing oxygen and nitrogen and solution therefor
US5871565A (en) * 1997-01-15 1999-02-16 Praxair Technology, Inc. Vacuum/pressure swing adsorption (VPSA) for production of an oxygen enriched gas

Also Published As

Publication number Publication date
JPS5648244A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
EP0118913B1 (en) Porphyrin derivatives
JPS6213051B2 (en)
EP0371875B1 (en) Process for preparing 4-acetoxyazetidinones
JPS5810388B2 (en) Proximal base type iron porphyrin complex
Tsuchida et al. The preparation of protoheme mono-N-(5-(2-methyl-1-imidazolyl) pentyl) amide and its oxygenation.
JP2004502695A (en) Method for producing manganese complex of salen compound
JPH0112768B2 (en)
JPS635032B2 (en)
CN104093718B (en) Be used for the method for the preparation of 2-phenyl-[1,2,4] triazols [1,5-a] pyridine derivate
JP3455174B2 (en) Substituted tetraphenylporphyrin compounds having a basic axial ligand
JPS5856521B2 (en) Sterically hindered proximal base type polymeric iron porphyrin complex
JPS5925766B2 (en) Surfactant micelles containing iron (2) porphyrin complexes and oxygen adsorbing/desorbing agents
CN114933570B (en) Synthesis method of copper-catalyzed 1,2, 4-triazole derivative
JP5659191B2 (en) Heterocyclic compounds, oxidation catalysts and uses thereof
JPS63190838A (en) Production of ethylene glycol
JPS646197B2 (en)
JPS609037B2 (en) Crown-shaped iron tetraphenylporphyrin and gas adsorbent
JPH0789964A (en) Metal complex of substituted gableporphyrin as oxidation catalyst
JPH0526791B2 (en)
JPH0379356B2 (en)
JPH0262292B2 (en)
NL8503213A (en) PROSTAGLANDINE ANALOGUES, METHODS FOR PREPARING THE SAME AND PHARMACEUTICAL PREPARATIONS CONTAINING THE PROSTAGLANDINE ANALOGS.
CN112110820A (en) Method for producing higher-valent iodine compound
JP2006008622A (en) PORPHYRIN COMPOUND OR ITS METAL COMPLEX HAVING alpha3beta SUBSTITUTION STRUCTURE AND OXYGEN INFUSION CONTAINING THE SAME
JPS6130660B2 (en)