[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62138808A - Focus detecting device - Google Patents

Focus detecting device

Info

Publication number
JPS62138808A
JPS62138808A JP28059185A JP28059185A JPS62138808A JP S62138808 A JPS62138808 A JP S62138808A JP 28059185 A JP28059185 A JP 28059185A JP 28059185 A JP28059185 A JP 28059185A JP S62138808 A JPS62138808 A JP S62138808A
Authority
JP
Japan
Prior art keywords
image
lens
images
focus
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28059185A
Other languages
Japanese (ja)
Other versions
JPH07107575B2 (en
Inventor
Yasuo Suda
康夫 須田
Ichiro Onuki
一朗 大貫
Akira Akashi
明石 彰
Akira Ishizaki
明 石崎
Keiji Otaka
圭史 大高
Takashi Koyama
剛史 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60280591A priority Critical patent/JPH07107575B2/en
Priority to GB8625120A priority patent/GB2183419B/en
Priority to DE19863635790 priority patent/DE3635790A1/en
Priority to DE3645349A priority patent/DE3645349C2/en
Publication of JPS62138808A publication Critical patent/JPS62138808A/en
Priority to US07/313,343 priority patent/US4859842A/en
Publication of JPH07107575B2 publication Critical patent/JPH07107575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To put, for example, a sweater of lateral stripe pattern and a window blind which can not be detected by a conventional passive type focus detecting device in focus by performing focus detection based on object brightness distributions in plural directions. CONSTITUTION:A visual field mask 103 is arranged nearby the primary image forming surface of a photographic lens 106 and a field lens 102 is so arranged as to project an image of a multi-aperture stop 103 on the exit pupil of the photographic lens, so visual field mask images 109a-109d are formed with pieces of luminous flux passed through four mutually separated areas 108a-108d of the exit pupil 107. Namely, phase difference detection type focus detection optical systems are constituted for the respective pieces of luminous flux passed through the areas 108a and 108c, and 108b and 108d on the exit pupil. Therefore, the image illuminance distribution in a visual field mask image 109 shifts inward from the position in an in-focus state as shown by an arrow in an out-of-focus state.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は被写体の輝度分布に基づいて対物レンズの焦点
調節状態を検出する焦点検出装置に関し、特に複数方向
の輝度分布に基づいて焦点調節状態を検出する装置に関
する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a focus detection device that detects the focus adjustment state of an objective lens based on the brightness distribution of a subject, and particularly relates to a focus detection device that detects the focus adjustment state of an objective lens based on the brightness distribution of a subject. The present invention relates to a device for detecting.

〈従来の技術〉 従来、パッシブ方式の自動焦点検出装置は。<Conventional technology> Traditionally, passive automatic focus detection devices.

例えば特開昭58−150918等に示されるように、
被写体の特定の一方向のみの輝度分布から撮影レンズの
デフォーカス量を検出するよう構成されていた。したが
って、焦点検出装置が検出可能な方向に、輝度分布を持
たない被写体に対しては、全く焦点検出不能であった。
For example, as shown in Japanese Patent Application Laid-Open No. 58-150918,
It was configured to detect the amount of defocus of the photographic lens from the luminance distribution in only one specific direction of the subject. Therefore, the focus cannot be detected at all for an object that does not have a brightness distribution in a direction that can be detected by the focus detection device.

たとえば、カメラのパッシブ方式焦点検出装置は一般に
横方向の輝度分布に対してしか、検出能力を持たないた
め、横方向に均一な間隔の横縞柄のセータとか窓のブラ
インドの様な線条くり返し模様の被写体にはピントが合
い難いという欠点があった。
For example, a camera's passive focus detection device generally has the ability to detect only horizontal luminance distribution, so a sweater with horizontal stripes at even horizontal intervals or a repeating striped pattern like a window blind can be used. The drawback was that it was difficult to focus on the subject.

〈発明が解決しようとしている問題点〉本発明は、上記
欠点を除去し、被写体の外観や模様のいかんにかかわら
ず撮影レンズの焦点調節状態を検出することが可能で且
つ、像検出以降の信号処理が容易となる装置の提供を目
的としている。
<Problems to be Solved by the Invention> The present invention eliminates the above-mentioned drawbacks, makes it possible to detect the focus adjustment state of the photographing lens regardless of the appearance or pattern of the subject, and makes it possible to detect the focus adjustment state of the photographic lens regardless of the appearance or pattern of the subject. The purpose is to provide a device that facilitates processing.

そしてこの目的を達成するため、同一の対物レンズを通
った光束から視差を持った像を形成する光学系とこれら
像を受ける光電変換手段を具備し、像間隔に関する信号
に基づいて対物レンズの焦点調節状態を検出する装置で
あって、前記視差を持った像は、方向を異にして複数組
形成されるものとし、対物レンズのデフォーカスによる
各像間隔の変化量が一定となる様にしている。
In order to achieve this purpose, the optical system is equipped with an optical system that forms an image with parallax from the light flux passing through the same objective lens, and a photoelectric conversion means that receives these images. A device for detecting an accommodation state, in which a plurality of images with the parallax are formed in different directions, and the amount of change in the distance between each image due to defocusing of the objective lens is constant. There is.

〈実施例〉 以下、第1図乃至第8図に従って本発明の一実施例を説
明する。第1図は焦点検出光学系の部分を描いているが
、焦点検出光学系が一眼レフレックスカメラに組込まれ
ている場合には、この光学系の前方に撮影レンズが配置
されているものとする。
<Embodiment> An embodiment of the present invention will be described below with reference to FIGS. 1 to 8. Figure 1 depicts the focus detection optical system, but if the focus detection optical system is incorporated into a single-lens reflex camera, it is assumed that the photographing lens is placed in front of this optical system. .

図中、101は線型開口を十字状に備えた視野マスク、
102はフィールドレンズ、103は多孔絞り、104
は2次結像レンズ体、105は4つの画素列を有する光
電変換デバイスである。又、Xは撮影系の光軸である。
In the figure, 101 is a field mask equipped with linear apertures in the shape of a cross;
102 is a field lens, 103 is a porous aperture, 104
105 is a secondary imaging lens body, and 105 is a photoelectric conversion device having four pixel columns. Further, X is the optical axis of the photographing system.

視野マスクlotは不図示の撮影レンズの予定結像面近
傍(予定結像面の場合を含む)に位置し、撮影レンズに
よって結像した被写体の空中像は2次結像レンズ体10
4によって光電変換デバイス105の各画素列105a
−105d上に再結像される。ここで、多孔絞り103
は、撮影系の光軸を挟んで垂直に並んだ開口103a。
The field of view mask lot is located near the planned imaging plane (including the case of the planned imaging plane) of the photographing lens (not shown), and the aerial image of the subject formed by the photographing lens is formed by the secondary imaging lens body 10.
4, each pixel column 105a of the photoelectric conversion device 105
-105d. Here, the porous aperture 103
Apertures 103a are arranged vertically across the optical axis of the imaging system.

103c、水平ニ並んだ開口103b 、103dを有
しく第2図)、これに対応して2次結像レンズ体104
は、垂直に並んだ正レンズ部104a、104c、水平
に並んだ正レンズ部104b 、104dを有している
ため(第3図)、光電変換デバイス105上には、視野
マスク101の開口内の空中像が視差を持った4つの像
に分離されて再結像される。第3図の2次結像レンズ体
104は、垂直と水平方向に並んだ正レンズ部の対10
4aと104c。
103c, horizontally aligned apertures 103b and 103d (FIG. 2), and correspondingly a secondary imaging lens body 104.
has positive lens parts 104a and 104c arranged vertically and positive lens parts 104b and 104d arranged horizontally (FIG. 3). The aerial image is separated into four images with parallax and re-imaged. The secondary imaging lens body 104 in FIG. 3 includes a pair of positive lens parts 10 arranged vertically and horizontally.
4a and 104c.

104bと104dが、各正レンズ部の光軸間距離が直
径より小さくなる様に、恰かもレンズの縁を切除した後
に接合した様な形態になっており、有効光量の増大に役
立つ。
104b and 104d are shaped as if the edges of the lenses were cut off and then joined together so that the distance between the optical axes of each positive lens part is smaller than the diameter, which helps increase the effective amount of light.

視野マスク101.フィールドレンズ102を透過し、
絞り開口103aに入射した光束は、次に2次結像レン
ズ体104のレンズ部104aに入射し、第4図に示す
ように 光電変換デバイス105上に視野マスク像10
9 ’aを形成する。視野マスク像109aの内部には
画素列105aが位置する様になっており、ここで被写
体像の照度分布は電気信号として取出される。同様に絞
り開口103b、  レンズ部104bを透過した光束
は視野マスク像109bを形成し、103c、104c
を透過した光束は視野マスク像109cを形成し、10
3d。
Field of view mask 101. transmitted through the field lens 102,
The light flux that has entered the aperture aperture 103a then enters the lens portion 104a of the secondary imaging lens body 104, and as shown in FIG. 4, a field mask image 10 is formed on the photoelectric conversion device 105.
Form 9'a. A pixel column 105a is located inside the visual field mask image 109a, and the illuminance distribution of the subject image is extracted here as an electrical signal. Similarly, the light flux transmitted through the diaphragm aperture 103b and the lens portion 104b forms a field mask image 109b, and 103c, 104c
The light flux that has passed through the field forms a field mask image 109c, and 10
3d.

104dを透過した光束は視野マスク像109dをそれ
ぞれ形成するので、被写体像は画素列105b 、10
5c 、105dにて光電変換される。
The light beams transmitted through 104d each form a field mask image 109d, so the subject image is composed of pixel rows 105b and 10
Photoelectric conversion is performed at 5c and 105d.

第5図(a)、(b)はこの光学作用を示した断面図で
ある。図中、106は撮影レンズであり、視野マスク1
03が撮影レンズの1次結像面近傍に配置され、またフ
ィールドレンズ102は多孔絞り103を撮影レンズの
射出瞳上に投影するように配置されるので、第6図に示
すごとく、射出瞳107上の互いに分離された4領域1
08a、108b、108c。
FIGS. 5(a) and 5(b) are cross-sectional views showing this optical effect. In the figure, 106 is a photographing lens, and field mask 1
03 is placed near the primary imaging plane of the taking lens, and the field lens 102 is placed so as to project the multi-hole diaphragm 103 onto the exit pupil of the taking lens. 4 areas separated from each other on the top 1
08a, 108b, 108c.

108dを通過した光束によって視野マスク像109a
、109b、109c、109dは形成される。つまり
、射出瞳上の領域108a。
A visual field mask image 109a is formed by the light beam passing through 108d.
, 109b, 109c, and 109d are formed. That is, the area 108a on the exit pupil.

108cおよび1osb、1oadを通る光束について
、それぞれ位相差検出方式の焦点検出光学系が構成され
ている。
For the light beams passing through 108c, 1osb, and 1oad, a phase difference detection type focus detection optical system is configured.

したがって被写体より前方の物体が予定結像面上に結像
している前ピン状態においては、第7図(a)に示すご
とく、視野マスク像109内の像の照度分布は合焦状態
より矢印方向に移動し、逆に被写体より後方の物体が予
定結像面上に結像している後ピン状態においては、第7
図(b)に示す矢印方向に移動する。
Therefore, in the front focus state where an object in front of the subject is imaged on the planned imaging plane, the illuminance distribution of the image within the field mask image 109 is smaller than the arrow in the focused state, as shown in FIG. 7(a). On the other hand, in the rear focus state where the object behind the subject is imaged on the expected imaging plane, the 7th
Move in the direction of the arrow shown in Figure (b).

第8図は前ピン、後ピン状態の光電変検出力を示すもの
で、撮影レンズによって視野マスクlotの中央に点像
が形成された場合の画素列105a、105cおよび画
素列105b。
FIG. 8 shows the photoelectric change detection power in the front focus and rear focus states, and shows pixel rows 105a, 105c and pixel row 105b when a point image is formed at the center of the visual field mask lot by the photographing lens.

105dの光電変換出力である0画素列105aおよび
105bの光電変換出力がA系列に対応し、画素列10
5cおよび105dの光電変換出力がB系列に対応して
いる。第8図(a)は撮影レンズが合焦位置にある場合
の光電変検出力であり、図(b)は前ピン状態、図(c
)は後ピン状態である。2像の間隔は前ピンで狭く・後
ピンで広くなっている。この2像の相対間隔を検出する
ことによって、撮影レンズのデフォーカス量を演算する
ことが可能となる。演算法の概要は後で触れるが、詳細
な説明は本発明の範囲を外れるので省略する。
The photoelectric conversion outputs of the 0 pixel rows 105a and 105b, which are the photoelectric conversion outputs of the pixel row 105d, correspond to the A series.
The photoelectric conversion outputs of 5c and 105d correspond to the B series. Figure 8 (a) shows the photoelectric change detection power when the photographic lens is in the focusing position, Figure 8 (b) shows the front focus state, and Figure (c
) is in the rear pin state. The distance between the two images is narrower at the front focus and wider at the rear focus. By detecting the relative interval between these two images, it becomes possible to calculate the amount of defocus of the photographic lens. An outline of the calculation method will be discussed later, but a detailed explanation will be omitted since it is outside the scope of the present invention.

第9図〜第12図は、本発明による他の実施例を示して
いる。第9図中、11Bは、対角線が、垂直、水平方向
に一致した正方形開口を持つ視野マスク、102はフィ
ールドレンズ、117は多孔絞り、118は2次結像レ
ンズ体、119は垂直、水平方向に並んだ画素列を持つ
光電変換デバイスである。この列でも前方に撮影レンズ
が配置されているものとする。絞り117はそれぞれが
点対称形状の4つの開口117a、117b、117c
、117dを有しく第1O図)、これに対応した位置に
2次結像レンズ体118は4つのレンズ部118a 。
9 to 12 show other embodiments according to the invention. In FIG. 9, 11B is a field mask having a square aperture whose diagonals coincide in the vertical and horizontal directions, 102 is a field lens, 117 is a multi-hole diaphragm, 118 is a secondary imaging lens body, and 119 is a vertical and horizontal direction. It is a photoelectric conversion device that has pixel rows arranged in rows. It is assumed that the photographing lens is placed in front of this row as well. The aperture 117 has four apertures 117a, 117b, and 117c each having a point-symmetrical shape.
, 117d (FIG. 1O), and the secondary imaging lens body 118 has four lens portions 118a at corresponding positions.

118b、118c、118dさらに収差補正用プリズ
ム部118e、118f、118g、118hを有して
いる。つまり、絞り開口118aに入射した光束は次に
レンズ部118aに入射しプリズム部118eから射出
して光電変換デバイス119上に視野マスク116の象
を形成する。視野マスク像125aの内部には画素列1
19a、視野マスク像125bの内部には画素列119
b、視野マスク像125cの内部には画素列119C1
視野マスク像125dの内部には画素列119dがそれ
ぞれ位置し、被写体像の照度分布は電気信号として取出
される。
118b, 118c, and 118d, and further include aberration correction prism sections 118e, 118f, 118g, and 118h. That is, the light flux that has entered the aperture aperture 118a then enters the lens section 118a and exits from the prism section 118e, forming an image of the field mask 116 on the photoelectric conversion device 119. There is a pixel column 1 inside the visual field mask image 125a.
19a, a pixel column 119 is inside the visual field mask image 125b.
b. Inside the visual field mask image 125c, there is a pixel column 119C1.
Pixel rows 119d are located inside the visual field mask image 125d, and the illuminance distribution of the subject image is extracted as an electrical signal.

第10図は2次結像レンズ体118の詳細を描いている
。凸のレンズ部118aと118Cの対、118bと1
18dの対は光軸間隔が各レンズの直、径より小さくな
る様に集合されているが、更に柱状体の射出端に、水平
、垂直方向に対称で、画素列の方向に傾いた補正プリズ
ム118eと118gc7)対、118fと118hの
対が形成されている。補正プリズムは、例えばレンズ部
118aが被写体を見込む位置とレンズ部118Cが被
写体を見込む位置が相違することに起因して分離像に発
生する歪等の収差を除去しようとするもので、各レンズ
部の光軸位置を中心に射出面を傾けることにより目的を
達成している。従って、焦点検出視野内のどこに被写体
像が入射しても同一の合焦位置が保たれている。
FIG. 10 depicts details of the secondary imaging lens body 118. A pair of convex lens portions 118a and 118C, 118b and 1
The pairs 18d are assembled so that the distance between optical axes is smaller than the diameter and diameter of each lens, and there is also a correction prism at the exit end of the columnar body that is symmetrical in the horizontal and vertical directions and tilted in the direction of the pixel row. A pair of 118e and 118gc7) and a pair of 118f and 118h are formed. The correction prism is intended to remove aberrations such as distortion that occur in separated images due to, for example, a difference between the position where the lens section 118a looks at the subject and the position where the lens section 118C looks at the subject. This objective is achieved by tilting the exit surface around the optical axis position. Therefore, the same in-focus position is maintained no matter where in the focus detection field of view the subject image is incident.

第11図は絞りの詳細図である。絞りの開口部形状は、
ボケ像の対称性および焦点系の基線長を最大するように
設定されている。すなわち、第2図に示したような絞り
によるボケ像は第8図(b)、(C)のようになり2像
が非合同なボケ状態になる。このようにボケ像が非合同
になる原因は絞り開口部103aと103Cが、一方を
平行移動しても他方に重ならないような形状であるため
であり、これは103b。
FIG. 11 is a detailed view of the aperture. The shape of the aperture opening is
It is set to maximize the symmetry of the blurred image and the baseline length of the focal system. That is, the blurred image caused by the aperture as shown in FIG. 2 becomes as shown in FIGS. 8(b) and 8(C), resulting in a blurred state in which the two images are non-congruent. The reason why the blurred images become non-congruent is that the aperture openings 103a and 103C are shaped so that even if one is moved in parallel, it does not overlap with the other, which is the case with 103b.

103dについても同様である。つまり、第2図に示し
た形状の場合には2組の開口部がそれぞれ鏡像の関係に
なっているため、そのボケ像も第8図に示したように鏡
像の関係になり平行移動によって重ならないという結果
となる。これに対し、第11図に示した絞り形状は11
7aを平行移動させれば117cに重なり、117bを
平行移動させれば117dに重なるようになっている。
The same applies to 103d. In other words, in the case of the shape shown in Figure 2, the two sets of apertures are in a mirror image relationship, so their blurred images also become mirror images as shown in Figure 8, and are overlapped by parallel movement. The result is that it does not. On the other hand, the aperture shape shown in FIG.
If 7a is translated in parallel, it will overlap with 117c, and if 117b is translated in parallel, it will overlap with 117d.

しかたって、ボケ像は第13図に示すように合同形状と
なり一方の平行移動によって他方に重ねることが可能で
あり、2像の位相差検出は高°精度で行い得る。
Accordingly, the blurred images have congruent shapes as shown in FIG. 13, and by moving one in parallel, it is possible to superimpose it on the other, and the phase difference between the two images can be detected with high accuracy.

さらに、このような条件を満たしたうえで、焦点検出系
の基線長を最大にするため、4つの開口部の最大径を撮
影レンズの射出瞳形状に合わせた円形としている。
Furthermore, in order to maximize the baseline length of the focus detection system while satisfying such conditions, the maximum diameter of the four openings is made circular to match the exit pupil shape of the photographing lens.

また、光量を有効に利用するために、第14図に示した
ような正方形開口にしてもよい。
Furthermore, in order to effectively utilize the amount of light, a square aperture as shown in FIG. 14 may be used.

なお、ここに示した絞り形状は、それぞれの焦点検出光
学系の基線長を等しくするために、絞り開口対の開口重
心間隔を同一に設定している。つまり、第2図の103
. a −103cと103b−103d、Ml 1図
の117a−117cと117b−117dおよび第1
4図の136a−136cと136b−136dの開口
重心間隔はそれぞれ等しい、こうすることによって1例
えば第7図に示す視野マスク像内の照度分布の対物レン
ズのデフォーカスに対する相対的移動量は109a−1
09cと109b−109clで等しい。
Note that in the aperture shape shown here, the aperture centroid spacing of the aperture aperture pair is set to be the same in order to equalize the base line lengths of the respective focus detection optical systems. In other words, 103 in Figure 2
.. a-103c and 103b-103d, Ml 117a-117c and 117b-117d and the first
The aperture center spacings 136a-136c and 136b-136d in FIG. 1
09c and 109b-109cl are equal.

第12図は、第9図に示した焦点検出光学系における光
電変換素子上の視野マスク像の様子を示したものである
。視野マスクは4つのレンズ部をもつ2次結像レンズ体
118によって4つの像に分離されて投影される。第9
図に示した視野マスク開口部内の点a、b、c、dはそ
れぞれ第12図中のa: 、 b’ 、 c′、 d 
’に対応する。
FIG. 12 shows a field mask image on the photoelectric conversion element in the focus detection optical system shown in FIG. 9. The field mask is separated into four images and projected by a secondary imaging lens body 118 having four lens parts. 9th
Points a, b, c, and d within the field mask aperture shown in the figure are a:, b', c', and d in Figure 12, respectively.
'corresponds to '.

第9図に於いて、被写体の像は不図示の撮影レンズによ
って視野マスク116の近傍に結像され、開口を通過し
た光束は更に多孔絞り117を通過して2次結像レンズ
体118により光電変換デバイス119上に視差を持っ
た2対の像として結像される。その際、第5図(a)と
同様に、多孔絞り、117の開口117aを通過した光
束は正レンズ部118aで結像作用を受け、プリズム部
118eで収差補正作用を受けた後、画素列119aに
像を形成する。
In FIG. 9, the image of the subject is formed in the vicinity of the field mask 116 by a photographing lens (not shown), and the light flux that has passed through the aperture further passes through a multi-hole diaphragm 117 and is photoelectronized by a secondary imaging lens body 118. The images are formed on the conversion device 119 as two pairs of images with parallax. At this time, similarly to FIG. 5(a), the light beam that has passed through the aperture 117a of the multi-hole diaphragm 117 is subjected to an imaging action in the positive lens part 118a, and after being subjected to an aberration correction action in the prism part 118e, the light beam is An image is formed at 119a.

又、開口117cを通過した光束は正レンズ部118c
で結像作用、プリズム部118gで収差補正作用を受け
た後、画素列119cに像を形成する。これら画素列1
19a、119c上の分離像は不図示の撮影レンズの焦
点調節に応じて垂直方向に対称的に移動するaは第7図
で説明したのと同様である。又、多孔絞り117bと1
17dを通過した光束はそれぞれ画素列119bと11
9d上に像を形成し、不図示の撮影レンズの焦点2g1
節に応じて水平方向に対称的に移動する。
Further, the light beam passing through the aperture 117c is directed to the positive lens portion 118c.
After receiving an imaging action at , and an aberration correction action at the prism section 118g, an image is formed at the pixel row 119c. These pixel rows 1
The separated images on 19a and 119c move symmetrically in the vertical direction in response to focus adjustment of a photographing lens (not shown).A is the same as that described in FIG. 7. Also, the porous apertures 117b and 1
The light beams passing through 17d are pixel columns 119b and 11, respectively.
An image is formed on 9d, and the focal point 2g1 of a photographing lens (not shown) is
Move horizontally symmetrically depending on the node.

光電変換デバイスの画素列上に投影された像の位相差か
ら撮影レンズのデフォーカス量を次のようにして演算す
ることができる。
The defocus amount of the photographing lens can be calculated as follows from the phase difference of the image projected onto the pixel row of the photoelectric conversion device.

dを撮影レンズのデフォーカス量、Zを2像の相対的ズ
レ量、Mを2次結像系の結像倍率、FOを瞳分割された
瞳の部分債域の中心を通過する光線が撮影レンズの光軸
となす角をFナンバーで表わした数値、gをフィルム面
と撮影レンズ射出瞳面との距離として、 a= (Fo/M) Z/ (1+FoZ/ (Mg)
 1−−−−一−(L)なる演算式が成り立つ。これに
よって、2像の相対的ズレ量Zから撮影レンズのデフォ
ーカス量を演算することができる。2像の相対的ズレ量
2は例えば特開昭58−142306号に開示されてい
る方法によって求めることができる。
d is the defocus amount of the photographing lens, Z is the relative shift amount of the two images, M is the imaging magnification of the secondary imaging system, and FO is the ray passing through the center of the partial coverage area of the divided pupil. The angle made with the optical axis of the lens is expressed by the F number, and g is the distance between the film surface and the exit pupil plane of the photographing lens, a= (Fo/M) Z/ (1+FoZ/ (Mg)
The arithmetic expression 1-----1-(L) holds true. Thereby, the defocus amount of the photographing lens can be calculated from the relative shift amount Z of the two images. The relative shift amount 2 between the two images can be determined, for example, by the method disclosed in Japanese Patent Laid-Open No. 142306/1983.

また、垂直、水平2組の画素列の出力を足し合わせた後
、上記のズレ量Zを求めてもよい。
Alternatively, the above deviation amount Z may be determined after adding up the outputs of two sets of vertical and horizontal pixel columns.

第15図はこの像ズレ量検出方法の説明図で、図中13
0〜135は画素列の出力を表わし、(a)−Cが画素
列105a、(a) −りが105c。
FIG. 15 is an explanatory diagram of this method of detecting the amount of image shift.
0 to 135 represent the outputs of the pixel columns, (a)-C is the pixel column 105a, and (a)-I is the pixel column 105c.

(b)−Eが105b、(b)−Fが105dにそれぞ
れ対応する。さらに第14図(C)は(a)。
(b)-E corresponds to 105b, and (b)-F corresponds to 105d, respectively. Furthermore, FIG. 14(C) is (a).

(b)に示した出力をたし合わせたもので、(c)−G
はセンサー出力130と132を(c)−Hはセンサー
出力131と133をそれぞれ加えている。このように
して得られた合成センサー出力134,135から前記
の方法によって相対的像ズレ量を求めれば撮影レンズの
デフォーカス量を算出することができる。このような処
理を行えば第15図(b)のように画素列上の像のコン
トラストが低く、この画素列出力だけでは高精度で像ズ
レ量の検出ができない場合でも、他方の画素列上にコン
トラストの高い像が形成されていれば1画素列の合成出
力は第15図(C)のように高コントラストとなり、高
精度で像レズ量を検出し得、また、像ズレ量検出の演算
も1回で済むことになる。この効果は特に、一方の組の
画素列上に全くコントラストのない像が投影されたとき
、例えば縦縞の被写体のとき有効である。
The sum of the outputs shown in (b), (c) - G
(c)-H adds sensor outputs 131 and 133, respectively. The defocus amount of the photographic lens can be calculated by calculating the relative image shift amount using the method described above from the combined sensor outputs 134 and 135 obtained in this way. If such processing is performed, even if the contrast of the image on a pixel column is low and the amount of image shift cannot be detected with high accuracy using only the output of this pixel column, as shown in Figure 15(b), the image on the other pixel column will be If a high-contrast image is formed at It will only be done once. This effect is particularly effective when an image with no contrast is projected onto one set of pixel columns, for example, when the subject has vertical stripes.

第16図はカメラのファインダー視野内における測距視
野の位置を示した図である0図中、126はファインダ
ー視野、127,128は測距視野、129は測距部指
示マークである。
FIG. 16 is a diagram showing the position of the distance measurement field within the viewfinder field of the camera. In FIG.

測距部指示マークは不図示のカメラのピント板上に書込
まれている。また、測距視野127に入射した被写体像
は光電変換画素列105b。
The distance measuring unit indicator mark is written on the focus plate of the camera (not shown). Further, the subject image incident on the distance measurement field of view 127 is the photoelectric conversion pixel row 105b.

105dあるいは119b、119d上に再結像し、測
距視野128に入射した被写体像は、光電変換画素列1
05a、105cあるいは119a、119c上に再結
像する。
The object image re-imaged on 105d or 119b, 119d and incident on the distance measurement field of view 128 is the photoelectric conversion pixel row 1
05a, 105c or 119a, 119c.

〈発明の効果〉 以上説明したように、複数方向の被写体輝度分布に基づ
いて焦点検出を可能とすることにより、従来のパッシブ
式焦点検出装置では検出し得なかった1例えば、横縞柄
のセーターとか、窓のブラインドとかにもピントを合わ
せることが可能になり、苦手被写体を無くすことが可能
となった。そして特に被写体の被度分布の方向によらず
、焦点検出精度が一定となる効果がある。
<Effects of the Invention> As explained above, by making it possible to detect focus based on the object brightness distribution in multiple directions, it is possible to detect objects that could not be detected with conventional passive focus detection devices, such as a sweater with horizontal stripes. It is now possible to focus on things like window blinds, making it possible to eliminate subjects that are difficult to photograph. In particular, there is an effect that the focus detection accuracy remains constant regardless of the direction of the coverage distribution of the subject.

また上述した、撮影レンズのデフォーカス量の演算式の
中で、Foを定数として取扱うことができるため演算処
理を容易にし得る利点もある。
Furthermore, in the above-mentioned calculation formula for the defocus amount of the photographic lens, Fo can be treated as a constant, which has the advantage of facilitating calculation processing.

他方、センサ一対間で出方加算を行った後、例えば第1
5図の信号130と132、信号131と133を加え
て信号134.135を作った後、像ズレ量演算を行う
ことで、対物レンズのデフォーカス量を検知できる。こ
れによれば、像ズレ量演算は1回で済む。
On the other hand, after performing output addition between a pair of sensors, for example, the first
The defocus amount of the objective lens can be detected by adding the signals 130 and 132 and the signals 131 and 133 in FIG. 5 to create signals 134 and 135, and then calculating the amount of image shift. According to this, the image shift amount calculation only needs to be performed once.

この場合、たとえある画素列方向にフラットな物体像が
入射しても、他の画素列方向にはコントラストを有する
ため、焦点検出不能となることはない。
In this case, even if a flat object image is incident in the direction of a certain pixel column, since there is contrast in the direction of other pixel columns, focus detection will not become impossible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例である焦点検出装置の斜視
図、第2図は絞りの平面図、第3図は2次結像レンズ体
の詳細図、第4図は光電変換デバイス上の視野マスク像
を示す説明図。第5図は焦点検出装置の断面図、第6図
は対物レンズの瞳分割状態を示す説明図、第7図は視野
マスク像内の照度分布移動方向を示す説明図、第8図は
対物レンズの合焦状態に応じたセンサー出力を示す説明
図、第9図は焦点検出装置の別の実施例を示す斜視図、
第10図は2次結像レンズ体の詳細図、第11図は絞り
の平面図、第12図は光電変換デバイス上の視野マスク
像を示す説明図、第13図は対物レンズの合焦状態に応
じた画素列の出力を示す説明図、第14図は絞りの変形
例を示す平面図、第15図は画素列出力の加算例を示す
説明図、第16図は本焦点検出装置をカメラに応用した
場合のファインダー視野および測距部を示す説明図。 図中、 101.116−−−−視野マスク、 102−一−−−−−−−−−−フィールドレンズ、1
03.117−−−−多孔絞り。 103a−103d、117a−117d−一一一開口
、 104.118−−−−2次結像レンズ体、104a−
104d、118a−118d−一一一正レンズ部、 105.119−−−一光電変換デバイス、105a−
105d、119a−119d−一一一画素列(光電変
換手段) である。
Fig. 1 is a perspective view of a focus detection device which is a first embodiment of the present invention, Fig. 2 is a plan view of an aperture, Fig. 3 is a detailed view of a secondary imaging lens body, and Fig. 4 is a photoelectric conversion device. Explanatory diagram showing the upper visual field mask image. Fig. 5 is a cross-sectional view of the focus detection device, Fig. 6 is an explanatory drawing showing the pupil division state of the objective lens, Fig. 7 is an explanatory drawing showing the moving direction of illuminance distribution in the field mask image, and Fig. 8 is an explanatory drawing showing the objective lens. FIG. 9 is a perspective view showing another embodiment of the focus detection device;
Figure 10 is a detailed view of the secondary imaging lens body, Figure 11 is a plan view of the aperture, Figure 12 is an explanatory diagram showing the field mask image on the photoelectric conversion device, and Figure 13 is the focused state of the objective lens. FIG. 14 is a plan view showing a modified example of the aperture, FIG. 15 is an explanatory diagram showing an example of addition of pixel row outputs, and FIG. 16 is an explanatory diagram showing an example of addition of pixel row outputs. FIG. 2 is an explanatory diagram showing a finder field of view and a distance measuring unit when applied to the device. In the figure, 101.116---Field mask, 102-1---Field lens, 1
03.117---Porous aperture. 103a-103d, 117a-117d-111 aperture, 104.118--Secondary imaging lens body, 104a-
104d, 118a-118d-111 Positive lens section, 105.119--1 Photoelectric conversion device, 105a-
105d, 119a-119d-111 pixel row (photoelectric conversion means).

Claims (3)

【特許請求の範囲】[Claims] (1)同一の対物レンズを通った光束から視差を持った
像を形成する光学系と、これら像を受ける光電変換手段
を具備し、像間隔に関する信号に基づいて対物レンズの
焦点調節状態を検出する装置であって、前記視差を持っ
た像は、方向を異にして複数組形成されるものとし、対
物レンズのデフォーカスによる各像間隔の変化量が一定
となる様にしたことを特徴とする焦点検出装置。
(1) Equipped with an optical system that forms images with parallax from light beams passing through the same objective lens, and photoelectric conversion means that receives these images, and detects the focusing state of the objective lens based on a signal related to the image interval. The apparatus is characterized in that a plurality of sets of images with the parallax are formed in different directions, and the amount of change in the distance between each image due to defocusing of the objective lens is constant. Focus detection device.
(2)前記光学系は、光軸の平行な結像レンズ対の複数
組から成り、各組の結像レンズのパワーは同一である特
許請求の範囲第1項記載の焦点検出装置。
(2) The focus detection device according to claim 1, wherein the optical system includes a plurality of pairs of imaging lenses whose optical axes are parallel to each other, and each pair of imaging lenses has the same power.
(3)同一の対物レンズを通った光束から視差を持った
像を形成する光学系とこれら像を受ける光電変換手段を
具備し、像間隔に関する信号に基づいて対物レンズの焦
点調節状態を検出する装置であって、前記視差を持った
像は、方向を異にして複数組形成されるものとし、対物
レンズのデフォーカスによる各像間隔の変化量が一定と
なる様にすると共に、各像を形成する光束を規制する絞
りの開口対の開口重心間隔は各組とも一定としたことを
特徴とする焦点検出装置。
(3) Equipped with an optical system that forms images with parallax from light beams passing through the same objective lens and photoelectric conversion means that receives these images, and detects the focusing state of the objective lens based on a signal related to the image interval. In the apparatus, a plurality of sets of images with parallax are formed in different directions, and the amount of change in the distance between each image due to defocusing of the objective lens is constant, and each image is 1. A focus detection device characterized in that the distance between the aperture centers of a pair of apertures of an aperture that regulates the formed light flux is constant for each pair.
JP60280591A 1985-10-22 1985-12-12 Focus detection device Expired - Fee Related JPH07107575B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60280591A JPH07107575B2 (en) 1985-12-12 1985-12-12 Focus detection device
GB8625120A GB2183419B (en) 1985-10-22 1986-10-20 Focusing state detection apparatus for objective lens
DE19863635790 DE3635790A1 (en) 1985-10-22 1986-10-21 FOCUSING STATE DETECTION DEVICE FOR LENS LENS
DE3645349A DE3645349C2 (en) 1985-10-22 1986-10-21 Focus detector for camera lens
US07/313,343 US4859842A (en) 1985-10-22 1989-02-21 Multi-directional focus state detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280591A JPH07107575B2 (en) 1985-12-12 1985-12-12 Focus detection device

Publications (2)

Publication Number Publication Date
JPS62138808A true JPS62138808A (en) 1987-06-22
JPH07107575B2 JPH07107575B2 (en) 1995-11-15

Family

ID=17627161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280591A Expired - Fee Related JPH07107575B2 (en) 1985-10-22 1985-12-12 Focus detection device

Country Status (1)

Country Link
JP (1) JPH07107575B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857718A (en) * 1987-05-15 1989-08-15 Minolta Camera Kabushiki Kaisha Focus detecting device
US4905032A (en) * 1987-11-06 1990-02-27 Minolta Camera Kabushiki Kaisha Automatic focus detecting device
US4904854A (en) * 1987-01-12 1990-02-27 Minolta Camera Kabushiki Kaisha Automatic focus detecting device having deviation compensation
US4992819A (en) * 1989-10-31 1991-02-12 Canon Kabushiki Kaisha Focus detecting device having a plurality of detecting areas and camera provided with the same
US5053801A (en) * 1987-05-21 1991-10-01 Minolta Camera Kabushiki Kaisha Device for automatically adjusting focus or detecting object distance or camera having such function
US5097282A (en) * 1987-02-06 1992-03-17 Minolta Camera Kabushiki Kaisha Automatic focusing apparatus
US5144357A (en) * 1987-11-06 1992-09-01 Minolta Camera Kabushiki Kaisha Automatic focus detecting means
US5243375A (en) * 1987-05-21 1993-09-07 Minolta Camera Kabushiki Kaisha Automatic focus adjusting device for adjusting the focus of the main object to be photographed
CN114070967A (en) * 2020-08-06 2022-02-18 深圳市万普拉斯科技有限公司 A lens module and its phase focusing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827110A (en) * 1981-08-10 1983-02-17 Nippon Kogaku Kk <Nikon> Focus detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827110A (en) * 1981-08-10 1983-02-17 Nippon Kogaku Kk <Nikon> Focus detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904854A (en) * 1987-01-12 1990-02-27 Minolta Camera Kabushiki Kaisha Automatic focus detecting device having deviation compensation
US5097282A (en) * 1987-02-06 1992-03-17 Minolta Camera Kabushiki Kaisha Automatic focusing apparatus
US4857718A (en) * 1987-05-15 1989-08-15 Minolta Camera Kabushiki Kaisha Focus detecting device
US5053801A (en) * 1987-05-21 1991-10-01 Minolta Camera Kabushiki Kaisha Device for automatically adjusting focus or detecting object distance or camera having such function
US5243375A (en) * 1987-05-21 1993-09-07 Minolta Camera Kabushiki Kaisha Automatic focus adjusting device for adjusting the focus of the main object to be photographed
US4905032A (en) * 1987-11-06 1990-02-27 Minolta Camera Kabushiki Kaisha Automatic focus detecting device
US4994841A (en) * 1987-11-06 1991-02-19 Minolta Camera Kabushiki Kaisha Automatic focus detecting means
US5144357A (en) * 1987-11-06 1992-09-01 Minolta Camera Kabushiki Kaisha Automatic focus detecting means
US4992819A (en) * 1989-10-31 1991-02-12 Canon Kabushiki Kaisha Focus detecting device having a plurality of detecting areas and camera provided with the same
CN114070967A (en) * 2020-08-06 2022-02-18 深圳市万普拉斯科技有限公司 A lens module and its phase focusing method
CN114070967B (en) * 2020-08-06 2024-02-02 深圳市万普拉斯科技有限公司 A lens module and phase focusing method thereof

Also Published As

Publication number Publication date
JPH07107575B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPH04348307A (en) Focus detector
JPH0250115A (en) Optical device for focus detection
JPS6295511A (en) Focus adjustment state detecting device
JPS62138808A (en) Focus detecting device
JP2643326B2 (en) Single-lens reflex camera with focus detection device
JPS63284513A (en) Optical device for focus detection
JPS62204247A (en) Finder device camera or the like
JPS62173413A (en) Focus detecting device
JP3199774B2 (en) Focus detection device
JP3061067B2 (en) Focus detection device
JP3912891B2 (en) Focus detection device and optical instrument using the same
JPH0667088A (en) Focus detecting device
JP3134429B2 (en) Focus detection device
JPH01266503A (en) Focus detecting device
JP4289707B2 (en) Focus detection device
JP2600823B2 (en) Focus detection device
JP2757373B2 (en) Focus detection device
JP3238489B2 (en) Focus detection device
JPH01216309A (en) Focus detection use optical system
JPS59195607A (en) Focusing detector
JPH0772380A (en) Focus detector
JPH02253222A (en) Focus detector
JPH05100159A (en) Focus detecting device for camera
JPH02272411A (en) Focus detector
JP2001021797A (en) Focus detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees