[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62134980A - Mother plate for solar battery substrate and manufacture thereof - Google Patents

Mother plate for solar battery substrate and manufacture thereof

Info

Publication number
JPS62134980A
JPS62134980A JP60276260A JP27626085A JPS62134980A JP S62134980 A JPS62134980 A JP S62134980A JP 60276260 A JP60276260 A JP 60276260A JP 27626085 A JP27626085 A JP 27626085A JP S62134980 A JPS62134980 A JP S62134980A
Authority
JP
Japan
Prior art keywords
fine particles
stainless steel
metal
solar cell
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276260A
Other languages
Japanese (ja)
Inventor
Sadao Hasuno
貞夫 蓮野
Satoru Narutani
成谷 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60276260A priority Critical patent/JPS62134980A/en
Publication of JPS62134980A publication Critical patent/JPS62134980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide sufficient insulation in case of depositing an amorphous silicon when a solar battery substrate is formed and to prevent the silicon from separating by forming a thin layer made of nonconductive fine particles and nonconductive filler at least on one side surface of a stainless steel thin plate having 0.5mm or less thick manufactured by cold rolling. CONSTITUTION:Nonconductive fine particles such as metal oxide, metal carbide or metal nitride such as Al2O3, SiO2, SiC, or AlN having 0.1-1mum of particle diameter and metal organic compound such as naphthene acid metal salt of zinc or titanium or alkoxide having preferable wettability with the fine particles are mixed so that the volumetric ratio of the fine particles in the final insulating film becomes 20-80%, sufficiently mixed and the surface of a stainless steel thin plate having 0.5mm or less thick having less fine surface scratches sufficiently managed at rolling time is coated with the mixture as powder state or as suspension solution by alcohol such as butyl alcohol. After drying, the stainless steel thin plate covered with the insulating film is baked at 400-900 deg.C to complete the manufacture of a mother plate for a solar battery substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽電池基板用母板およびその製造方法に係、
す、特に太陽電池の受光面に供されるアモルファス層に
対するすぐれた適合性を有する基板用母板およびその低
コストでの製造方法に関し、太陽電池製造分野で利用さ
れる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mother plate for a solar cell substrate and a method for manufacturing the same;
In particular, the present invention relates to a mother plate for a substrate having excellent compatibility with an amorphous layer provided on the light-receiving surface of a solar cell, and a method for producing the same at low cost, and is utilized in the field of solar cell manufacturing.

〔従来の技術〕[Conventional technology]

太陽電池は、その機械的支持の役割を果す基板上に01
〜1μm L’Jのアモルファスシリコン層が形成され
ている。このアモルファス層の膜厚が非常に薄いため、
電池製造の信頼性や電池特性としての太陽光の電気的エ
ネルギーへの変換効率の点において基板材料の影響を強
く受けるので、基板材料の選択は製造方式とも強い関連
性を有する経済性と共に極めて重要な問題である。
The solar cell has 01 on the substrate which serves as its mechanical support.
An amorphous silicon layer of ~1 μm L'J is formed. Since the thickness of this amorphous layer is very thin,
Since the reliability of battery manufacturing and the conversion efficiency of sunlight into electrical energy, which is a characteristic of the battery, are strongly influenced by the substrate material, the selection of the substrate material is extremely important as well as economical, which is strongly related to the manufacturing method. This is a serious problem.

従来基板材料として使用されて来たガラス系材料は、基
板自体が光透過性を持っほか電池表面の保護の役割を同
時に果すという利点があるものの、ガラスの宿命とも言
へる破損し易い欠点は遁れがない上に、特に無アルカリ
である石英ガラスは高価であり、太陽電池製造に際して
ロール・ツウ・ロールの量産性の高い方式を採用できな
いという問題点がある。
Glass-based materials, which have been conventionally used as substrate materials, have the advantage that the substrate itself is transparent and can also protect the battery surface, but the disadvantage is that it is easily damaged, which is the fate of glass. In addition to this, quartz glass, which is free from alkali, is expensive, and there is a problem in that it is not possible to use a roll-to-roll method that is highly mass-producible when manufacturing solar cells.

これに対しステンレス鋼は機械的強度が高く、しかも強
靭なため、0.8+m程度息下の薄い板を使うことがで
き、tた可撓性を有することからコイル状の材料を用い
た量産が可能であり、更にアモルファス層が薄いため基
板材に十分な可撓性があれば太陽電池としても曲面状に
配置することが可能であるなど材料としてすぐれた特性
を有している。
On the other hand, stainless steel has high mechanical strength and is strong, so it is possible to use a thin plate with a thickness of about 0.8+m, and its flexibility makes it possible to mass-produce it using coiled material. Furthermore, since the amorphous layer is thin, it has excellent properties as a material, such as being able to be arranged in a curved shape as a solar cell if the substrate material has sufficient flexibility.

しかし、通常圧延されたステンレス鋼板の表面には圧延
時に発生するオイルピットやスクラッチなどの欠陥が多
く、これをそのままの状態で太陽電池の基板材料として
用いるならば、アモルファス層の膜厚が薄いために、そ
の形成に不均一を生じ易く、またこの欠陥周辺で電気的
短絡を起こし、電池としての機能を果さなくなることさ
え予想される。そこで従来ステンレス鋼板を太陽電池の
基板材料として使用する場合には、一般に#1000〜
#1500程度まで数段階に分けて砥粒研磨し、その後
更に電解研磨を施すことにより、圧延等の工程中に生じ
た表面疵を除去し鏡面仕上げする方法を採っているのが
現状である。
However, the surface of normally rolled stainless steel sheets has many defects such as oil pits and scratches that occur during rolling. In addition, it is likely that the formation will be non-uniform, and electrical short circuits will occur around these defects, leading to the cell not functioning as a battery. Therefore, when using conventional stainless steel plates as substrate materials for solar cells, generally #1000~
Currently, the method is to perform abrasive polishing in several stages up to about #1500, and then further electrolytic polishing to remove surface flaws that occur during processes such as rolling and achieve a mirror finish.

しかし、上記の如きFif@方法では工程操作が複雑で
処理にも長時間を要するため加工コストが高価となり、
ステンレス鋼板の素材価格が割安でも最終的な価格がき
わめて高価となる。更に、このような研磨方法では大面
積の基板材製造が困難でeす、まして太陽電池の大量生
産方式として有利と考えられているロール・ツウ・ロー
ルの製造方式で必要となるコイル状基板材の製造は更に
困難となる。
However, in the Fif@ method as described above, the process operation is complicated and the processing takes a long time, resulting in high processing costs.
Even if the raw material price of stainless steel plate is relatively cheap, the final price is extremely high. Furthermore, with this polishing method, it is difficult to manufacture large-area substrate materials, especially the coiled substrate materials required for roll-to-roll manufacturing, which is considered to be advantageous as a mass production method for solar cells. production becomes even more difficult.

一方、近年のアモルファスシリコン太t1M 74 t
Lb 生産量の急激な増大により、より薄く、より可撓
性のある低コストステンレス鋼基板を要求しつつあり、
従来の如く研磨仕上げによる基板の製造ではコストの低
減は期待できない。太陽電池が既存の発電方法に伍して
電力発生手段として普及するためには、現状より大幅な
発電コストの低減が必要であり、そのためにも安価で材
質特性のすぐれた基板材料が要求されている。
On the other hand, in recent years amorphous silicon thick t1M 74t
Rapid increases in Lb production are demanding thinner, more flexible, and lower cost stainless steel substrates.
Cost reduction cannot be expected by conventionally manufacturing substrates by polishing. In order for solar cells to become popular as a means of generating electricity on par with existing power generation methods, it is necessary to significantly reduce power generation costs compared to the current situation, and for this purpose, substrate materials that are inexpensive and have excellent material properties are required. There is.

上記の如き事情に鑑み、最近に至りステンレス鋼板の表
面研磨について特開昭5.5mm71077により新し
い提案が開示されている。この方法は従来の砥粒擦過に
よる機械的研磨と、中性塩水溶液を電解液として用いた
電解作用による基板素地面の陽極溶解とを複合させて同
時に行うことにより基板表面を鏡面研磨する方法である
。しかし、この方法も操作時間を大幅に短縮できると称
されてはいるものの、その目的とするところは従来方法
の域を出るものではなく、ステンレス鋼自身の溶解によ
る歩留の低下と共に、加工コストは依然として高水準に
あり、コストの大幅低減の本質的な解決策にはほど遠い
ものである。
In view of the above circumstances, a new proposal for surface polishing of stainless steel plates has recently been disclosed in Japanese Patent Laid-Open No. 5.5mm71077. This method combines conventional mechanical polishing by abrasive grain abrasion and anodic dissolution of the base surface of the substrate by electrolytic action using a neutral salt aqueous solution as an electrolyte and simultaneously performs the mirror polishing of the substrate surface. be. However, although this method is said to be able to significantly shorten operation time, its purpose is not to go beyond the conventional method, and it does not only reduce the yield due to the melting of the stainless steel itself, but also increases processing costs. is still at a high level and is far from an essential solution to significantly reduce costs.

更に最近の傾向としてアモルファスシリコン太陽電池で
は数ボルトの電圧出力を必要とする民生用機器への利用
が大半を占める現状より、導電性を有しない表面を有す
る基板材が必要とされ、その結果可撓性のある太陽電池
ではステンレス鋼板上に耐熱性有機物皮膜を形成した基
板材が使用されている。
Furthermore, as a recent trend, most amorphous silicon solar cells are used in consumer devices that require a voltage output of several volts, and as a result, substrate materials with non-conductive surfaces are required. Flexible solar cells use a substrate material made of a stainless steel plate with a heat-resistant organic film formed thereon.

更に最近の刊行物によると、はうろう等のガラスコーテ
ィングをステンレス鋼板表面に施すことにより、平滑で
、かっ可撓性と絶縁性のある基板の製造も可能であるこ
とが報ぜられている。
Furthermore, recent publications have reported that it is possible to produce smooth, flexible, and insulating substrates by applying a glass coating such as a wax coating to the surface of a stainless steel plate. .

しかしながら前者では絶縁膜が有機物であるため基板上
にアモルファスシリコンを蒸着する際の加熱により有機
質絶縁皮膜からガス放出が生じ易い欠点がある。一方後
者の場合はステンレス鋼板上のほうろうコーティングで
あるため、当然普通鋼の場合より高い900〜1100
℃の焼成温度が必要と考丸られ、従ってステンレス鋼自
体の焼鈍軟化が進行し、その結果0.2os以下のステ
ンレス薄鋼板を使用する基板材では著しく面折れを生じ
易くなり取扱いが困難となる。その結果、基板材として
は板厚0.2mm以上が必要となり軽量化の点で不利と
なる。また、はうろうはピンホールが生じ易いため一最
に数10μmの皮膜厚となり、薄いステンレス基板を使
用する場合、はうろう負部と基板材との!?AItl張
率の差による残留応力が発生し、その結果変形を生じる
欠点がある。
However, in the former method, since the insulating film is an organic material, there is a drawback that gas is easily released from the organic insulating film due to heating during vapor deposition of amorphous silicon on the substrate. On the other hand, in the case of the latter, since it is an enamel coating on a stainless steel plate, it is naturally higher than that of ordinary steel.
It is believed that a firing temperature of ℃ is required, and as a result, the stainless steel itself undergoes annealing and softening, and as a result, substrate materials using thin stainless steel sheets of 0.2 os or less are extremely prone to surface bending and are difficult to handle. . As a result, the substrate material needs to have a thickness of 0.2 mm or more, which is disadvantageous in terms of weight reduction. In addition, since pinholes are likely to occur in crawling wax, the film thickness will be several tens of micrometers at most, and when using a thin stainless steel substrate, the negative part of the crawling wax and the substrate material may be too thin. ? There is a drawback that residual stress is generated due to the difference in AItl elongation, resulting in deformation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、絶縁皮膜を有するステンレス鋼板によ
る太陽電池基板の上記従来技術の欠点を克服し、皮膜処
理による母板の軟化が少なく、かつ従来法よりも更に薄
い無機質絶縁皮膜を有し、更にステンレス表面の微小疵
を効果的に埋めた太陽電池基板用母板およびその製造方
法を提供するにある。
The object of the present invention is to overcome the drawbacks of the above-mentioned conventional technology of solar cell substrates made of stainless steel plates having an insulating film, to have a thinner inorganic insulating film than the conventional method, with less softening of the base plate due to film treatment, Another object of the present invention is to provide a mother plate for a solar cell substrate in which microscopic flaws on the surface of stainless steel are effectively filled, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の基板用母板およびその製造方法の要旨とすると
ころはそれぞれ次の如くである。
The main points of the motherboard for a substrate and the manufacturing method thereof of the present invention are as follows.

先ず基板用母板の第1発明の要旨は次の如くである。す
なわち、冷間圧延により製造された板厚0.5mm以下
のステンレス薄鋼板4板の少なくとも片面に非導電性微
粒子と該微粒子間および該微粒子と前記ステンレス薄鋼
板間を充填する非導電性充填物質とより成る薄層を有し
て成ることを特徴とする太陽電池基板用母板である。
First, the gist of the first invention of the motherboard for a substrate is as follows. That is, at least one side of four thin stainless steel plates having a thickness of 0.5 mm or less produced by cold rolling is filled with non-conductive fine particles and a non-conductive filler filling between the fine particles and between the fine particles and the thin stainless steel plate. This is a mother plate for a solar cell substrate, characterized in that it has a thin layer consisting of.

次に上記基板用母板の製造方法に関する第2発明の要旨
とするところは次の如くである。すなわち、冷間圧延に
より製造された板厚0.5nw以下のステンレス薄鋼板
A板の少なくとも片面に非導電性微粒子と前記微粒子と
濡れ性の良好な非導電性充填物質とより成る混合体を粉
末状もしくは溶液状にて塗布した後乾燥し、しかる後4
00〜900℃の温度範囲で焼成することを特徴とする
太陽電池基板用母板の製造方法である。
Next, the gist of the second invention regarding the method for manufacturing the motherboard for a substrate is as follows. That is, a mixture of non-conductive fine particles and a non-conductive filler material having good wettability is powdered on at least one side of a thin stainless steel plate A having a thickness of 0.5 NW or less produced by cold rolling. After applying in form or solution form and drying,
This is a method for manufacturing a mother plate for a solar cell substrate, which is characterized by firing at a temperature range of 00 to 900°C.

本発明の詳細ならびに限定理由について説明する。先ず
本発明の対象とする基板用素材としては、ステンレス鋼
板に限定する。これはステンレス鋼板が太陽電池基板用
材料として価格が比較的安く、かつ可撓性があり、大量
生産が可能な材料であって最も適した材料であるからで
ある。その鋼種は特に限定の要なく、太陽電池としての
耐用年1;jl(こ耐え得る耐食性を有するステンレス
鋼種すべてから任意に選定が可能である。
The details of the present invention and reasons for limitations will be explained. First, the substrate material to which the present invention is applied is limited to stainless steel plates. This is because stainless steel plates are the most suitable material for solar cell substrates because they are relatively inexpensive, flexible, and can be mass-produced. The steel type is not particularly limited and can be arbitrarily selected from all stainless steel types that have corrosion resistance that can withstand the service life of a solar cell.

次にステンレス鋼板の板厚は0.5+n+a以下に限定
する。これは太陽電池製造後の十分の可撓性を得るため
であって、05關を越すと剛性のため満足するべき可撓
性を得ることができないがらである。
Next, the thickness of the stainless steel plate is limited to 0.5+n+a or less. This is to obtain sufficient flexibility after manufacturing the solar cell, and if the thickness exceeds 0.5 mm, it will not be possible to obtain satisfactory flexibility due to rigidity.

これらの1JtR板は圧延のまま、あるいは必要により
応力除去焼鈍、高温焼鈍などの熱処理を施して用いるが
、特に軽量であり、可撓性があることが最も重要な要件
の一つである。特に板厚0.2m+a以下のステンレス
薄鋼板を用いる場合は、取扱いを容易にするため圧延の
ままで強度の高い素材であることが望ましい。これらの
ステンレス薄鋼板の表面に形成する本発明による絶縁皮
膜は非導電性微粒子と、この微粒子間およびこの微粒子
とステンレス薄鋼板表面間の微細空隙に充填する非導電
性物質より成ることが特徴である。本発明において非導
電性と称しているのは具体的には比抵抗が105Ω師以
上を意味する。しかして微粒子としては、粒径が0.1
〜1 pm程度のAIO,SiO。
These 1JtR plates are used as rolled or after being subjected to heat treatment such as stress relief annealing or high temperature annealing if necessary, but one of the most important requirements is that they are particularly lightweight and flexible. In particular, when using a thin stainless steel plate with a thickness of 0.2 m+a or less, it is desirable to use a material with high strength as rolled to facilitate handling. The insulating film formed on the surface of these thin stainless steel sheets according to the present invention is characterized by being composed of non-conductive fine particles and a non-conductive substance filling the fine voids between the fine particles and between the fine particles and the surface of the thin stainless steel sheet. be. In the present invention, the term "non-conductive" specifically means a resistivity of 10 5 Ω or more. However, as fine particles, the particle size is 0.1
~1 pm of AIO, SiO.

SiC,AIN等の金属酸化物、金属炭化物、金属窒化
物などの安定した無機物質が好ましく、有機物質もしく
は熱分解し易い無機物質は不適当である。
Stable inorganic substances such as metal oxides, metal carbides, and metal nitrides such as SiC and AIN are preferable, and organic substances or inorganic substances that are easily thermally decomposed are unsuitable.

一方、非導電性充填物質としては、上記微粒子との濡れ
性が良好なことが望ましくナフテン酸の金属塩もしくは
アルコキシドなどの金属有機化合物の熱分解生成物質で
ある酸化亜鉛、酸化チタン等の金属酸化物が望ましい。
On the other hand, as a non-conductive filler, it is desirable that it has good wettability with the above-mentioned fine particles, and metal oxides such as zinc oxide and titanium oxide, which are thermal decomposition products of metal organic compounds such as metal salts of naphthenic acid or alkoxides, are preferable. Things are preferable.

かくの如き非導電性の微粒子と、これらの微粒子間およ
び微粒子とステンレス薄鋼板間を充填する非導電性の充
填物質とより成る絶縁皮膜によってステンレス基板表面
の微細疵などの表面欠陥を効果的に埋めることが可能で
、微粒子の存在しない充填物質のみの場合よりも絶縁皮
膜をより薄くできろ効果がある。
Surface defects such as minute scratches on the surface of stainless steel substrates can be effectively removed by an insulating film made of such non-conductive fine particles and a non-conductive filling substance that fills between these fine particles and between the fine particles and the stainless steel thin steel plate. This has the effect of making the insulation film thinner than in the case of only a filling material without fine particles.

本発明によるステンレス薄鋼板表面に形成する絶縁皮膜
の厚さは好適には05〜20μmが好ましい。その理由
は、十分な管理下で製造された表面疵の少ないステンレ
ス薄鋼板を使用する場合、絶縁皮膜の厚みが0,5μm
あれば微細疵を埋めるに十分であり、この場合は極めて
良好な可撓性を得ることができ、また製造時の焼成等に
よっても反りなどの形状不良を引き起すことがない。し
かし厚みが20μmを越すと焼成時に均一厚みの絶縁皮
膜を形成することが困難であるばかりでなく、可撓性を
損なう欠点が生ずるからである。
The thickness of the insulating film formed on the surface of the stainless thin steel plate according to the present invention is preferably 05 to 20 μm. The reason for this is that when using thin stainless steel sheets that are manufactured under sufficient control and have few surface flaws, the thickness of the insulating film is 0.5 μm.
If there is, it is sufficient to fill in minute defects, and in this case, extremely good flexibility can be obtained, and shape defects such as warping will not occur even during firing during manufacturing. However, if the thickness exceeds 20 μm, it is not only difficult to form an insulating film with a uniform thickness during firing, but also there is a drawback that flexibility is impaired.

また良好な絶縁皮膜を得るためには、皮膜中の微粒子の
占める体積比が20〜80%であることが望ましい。こ
れは微粒子の体積比が20%未満てはステンレス81M
板の表面疵を埋める効果が少なく、また80%を越える
と非導電性の充填物質の体積比が20%未満となって充
填効果が減少し、その結果ピンホール等が発生して太陽
電池基板用母板上にアモルファスシリコンの蒸着が不能
となるからである。
Further, in order to obtain a good insulating film, it is desirable that the volume ratio occupied by fine particles in the film is 20 to 80%. This is stainless steel 81M when the volume ratio of fine particles is less than 20%.
It is less effective in filling surface defects on the board, and if it exceeds 80%, the volume ratio of the non-conductive filling material becomes less than 20%, reducing the filling effect, resulting in pinholes etc. This is because amorphous silicon cannot be deposited on the base plate.

次に本発明による太陽電池基板用母板の製造方法につい
て説明する。
Next, a method for manufacturing a mother plate for a solar cell substrate according to the present invention will be explained.

一圧延時に十分管理された微細表面疵の少ない板厚0.
5+ma以下のステンレス薄鋼板の表面に、粒径0.1
〜1μnのAj O1SiO、SiC,AjN等の金属
酸化物、金属炭化物、金属窒化物等の非導電性の微粒子
と、これらの微粒子と濡れ性の良好な亜鉛、チタン等の
ナフテン酸金属塩もしくはアルコキシドなどの金属有機
化合物を最終絶縁皮膜中の微粒子の体積比が20〜80
%になるように配合し、十分混合した後そのまま粉末状
で、もしくはブチルアルコールなどのアルコールで懸濁
溶液として塗布する。塗布皮膜の厚みを十分均一になる
ように塗布した後約200℃の温度で乾燥する。乾燥後
、絶縁皮膜を被成したステンレス薄鋼板を400〜90
0℃の温度で焼成し膜厚05〜20μmの絶縁皮膜を生
成させる。
Plate thickness 0.0 with few fine surface defects that are well controlled during one rolling.
A grain size of 0.1 is applied to the surface of a thin stainless steel plate of 5+ma or less.
Non-conductive fine particles such as metal oxides, metal carbides, metal nitrides, etc. of ~1 μn AjO1SiO, SiC, AjN, etc., and naphthenic acid metal salts or alkoxides such as zinc and titanium that have good wettability with these fine particles. The volume ratio of fine particles in the final insulation film is 20 to 80.
%, and after thorough mixing, apply as is in powder form or as a suspension solution in alcohol such as butyl alcohol. After coating the film to a sufficiently uniform thickness, it is dried at a temperature of about 200°C. After drying, the stainless thin steel plate coated with an insulating film is
It is fired at a temperature of 0° C. to form an insulating film with a thickness of 05 to 20 μm.

焼成温度を400〜900℃範囲と限定した理由は次の
如くである。すなわち、太陽電池基板上にアモルファス
膜を成膜する際、基板材が一般に200〜400℃に加
熱されるため、この加熱時にガス放出すればアモルファ
スシリコンの蒸着が不可能となるので、少くとも400
℃以上に焼成して予め微量のガスをも放出せしめ、かつ
絶縁皮膜層を安定化する必要がある。しかし、焼成温度
が900℃を越して過度に高温となると、ステンレス材
が焼成軟化して取扱時に面折れを生じるおそれがあるか
らである。
The reason why the firing temperature was limited to a range of 400 to 900°C is as follows. That is, when forming an amorphous film on a solar cell substrate, the substrate material is generally heated to 200 to 400°C, and if gas is released during this heating, vapor deposition of amorphous silicon becomes impossible.
It is necessary to release even a small amount of gas in advance by firing at a temperature higher than 0.degree. C., and to stabilize the insulating film layer. However, if the firing temperature is excessively high, exceeding 900° C., the stainless steel material may become soft during firing and may cause surface breakage during handling.

この400〜900℃の焼成によって本発明の基板用母
板の製造が完了する。
By this firing at 400 to 900° C., the production of the substrate motherboard of the present invention is completed.

〔実施例〕〔Example〕

実施例1 冷間圧延のままの板厚015閣のSUS 304ステン
レス薄鋼板(以下母板と称する)を用い、その片表面に
第1表に示す如き粒径0.02〜02μmのアルミナ微
粉末と酸化亜鉛の充填材を微粒子の体積比を13%から
93%まで種々変え、更に最終絶縁皮膜の厚みを0.2
5〜1.0μmに変化した各種皮膜を被成した後、各供
試材の皮ゴ表面にカーボン電極を蒸着し、該カーボン電
極と各母板間で導電テストを行うと共に、皮膜の絶縁テ
ストとグロー放電によるアモルファスシリコンの蒸着テ
ストを実施した。
Example 1 A cold-rolled SUS 304 thin stainless steel plate (hereinafter referred to as the mother plate) with a thickness of 0.15 mm was used, and fine alumina powder with a particle size of 0.02 to 02 μm as shown in Table 1 was coated on one surface of the plate. and zinc oxide filler, the volume ratio of fine particles was varied from 13% to 93%, and the thickness of the final insulating film was 0.2%.
After forming various films varying in thickness from 5 to 1.0 μm, a carbon electrode was deposited on the skin surface of each sample material, and a conductivity test was conducted between the carbon electrode and each mother plate, as well as an insulation test of the film. We conducted a vapor deposition test of amorphous silicon using glow discharge.

第1表 上記各供試材の絶縁皮膜はいずれも次の工程で形成した
。すなわち、先ず粒径0.02〜02μmのアルミナ粉
末を所要量混合しtこナフテン酸亜鉛の20%ブタノー
ル溶液を上記ステンレス母板に塗布した後200℃で乾
燥し、次に600℃で焼成したものである。しかして皮
膜中のアルミナ粉末の体積比は塗布液中のアルミナ含有
量で変化させ、皮膜厚みの変化は全工程1回の皮膜処理
で得られる膜厚はほぼ025μmであったので、これを
複数回繰返すことにより0.25〜10μmに変化させ
た。
Table 1 The insulating coatings of each of the above sample materials were formed in the following steps. That is, first, a required amount of alumina powder with a particle size of 0.02 to 02 μm was mixed, and a 20% butanol solution of zinc naphthenate was applied to the stainless steel mother plate, dried at 200°C, and then fired at 600°C. It is something. Therefore, the volume ratio of alumina powder in the film was changed by changing the alumina content in the coating solution, and the film thickness obtained by one film treatment in the whole process was approximately 0.25μm, so this was done multiple times. By repeating the process several times, the thickness was varied from 0.25 to 10 μm.

第1表より明らかなとおり、アルミナ微粉末と酸化亜鉛
から成る絶縁皮膜中のアルミナ微粉末の占める体積比が
13%と小さいか、もしくは絶縁皮膜が0.25μmと
極めて薄い供試材No、1.2.3.4においては、母
板表面に存在する微細な疵を覆う効果小さいために鋭い
凹凸を有する疵の部分で絶縁不良を生じ、従ってアモル
ファスシリコン(a−3i)、蒸着膜の剥離を生ずる。
As is clear from Table 1, the volume ratio of fine alumina powder in the insulation film made of fine alumina powder and zinc oxide is as small as 13%, or the insulation film is extremely thin at 0.25 μm. In .2.3.4, since the effect of covering minute flaws existing on the mother plate surface is small, insulation failure occurs in the flaw area with sharp unevenness, and therefore amorphous silicon (a-3i) and vapor deposited film peel off. will occur.

しかしアルミナ粉末の体積比が21〜77%で、膜厚0
5〜10μmの供試材No、 5.6.7.8において
は、絶縁性が良好であl)、a−3i蒸着膜も良好であ
った。
However, when the volume ratio of alumina powder is 21 to 77%, the film thickness is 0.
In sample material No. 5.6.7.8 with a thickness of 5 to 10 μm, the insulation properties were good (l), and the a-3i vapor deposited film was also good.

しかし、アルミナ粉末の体積比が93%と過度に大なる
供試材No、 9.10においては、充填材の酸化亜鉛
が不足で膜厚05〜10μmであって絶縁性は良好であ
るが、酸化亜鉛でアルミナ粉末の間隙を充填することが
できずポーラスとなりa −S i蒸着が剥離する結果
となった。
However, in sample No. 9.10, in which the volume ratio of alumina powder is excessively large at 93%, the film thickness is 05 to 10 μm due to insufficient zinc oxide as a filler, and although the insulation properties are good, The gap between the alumina powder could not be filled with zinc oxide, and the a-Si vapor deposition became porous, resulting in peeling.

従って本発明では非導電性微粉末の配合体積比を最終絶
縁皮膜中で20〜80%と限定し、絶縁皮膜の膜厚を0
5μm以上と限定した。
Therefore, in the present invention, the volume ratio of the non-conductive fine powder is limited to 20 to 80% in the final insulating film, and the thickness of the insulating film is reduced to 0.
It was limited to 5 μm or more.

なお、供試材No、 5.6.7.8の本発明の限定要
件を満足する皮膜処理後の母板の硬さはHvで340で
あり、処理前のHv 350とほと八ど変化がないこと
が判明しtこ。これは従来法として知られているほうろ
うステンレス太陽電池基板では、はうろう処理による約
1000℃に及ぶ高温処理により母板が軟化してHvが
180程度であることと対比し、高い強度を有すること
を示し、面折れ等のおそれがないことを示している。
In addition, the hardness of the mother plate after the film treatment that satisfies the limiting requirements of the present invention for sample material No. 5.6.7.8 is 340 Hv, which is about the same as the Hv 350 before treatment. It turned out that there was no such thing. This is because the enameled stainless steel solar cell substrate, which is known as a conventional method, has a high strength of about 180 Hv due to the softening of the base plate due to the high temperature treatment of about 1000 degrees Celsius. This indicates that there is no risk of surface breakage, etc.

実施例2 冷間圧延のままの板厚0.1mのSUS 430ステン
レス薄鋼板を用い、その片表面に粒径005〜0.5μ
mの炭化けい素(SiC)ならびに窒化けい素(Si3
N4)の微粉末と、酸化タリウム(Ta、O。
Example 2 A cold-rolled SUS 430 stainless thin steel plate with a thickness of 0.1 m was used, and one surface of the plate was coated with a grain size of 005 to 0.5μ.
m silicon carbide (SiC) and silicon nitride (Si3
N4) fine powder and thallium oxide (Ta, O.

、酸化チタン(TiO3)もしくはチタン酸バリウム(
Ba2Tie、)から成る非導電性物質を混合し、実施
例1と同一方法によって絶縁皮膜を形成し、同様に絶縁
テストとグロー放電によるa −S i蒸着テストを実
施した。結果は第2表に示すとおりである。皮膜の形成
方法については、実施例1のナフテン酸亜鉛の代わりに
チタンテトラブトキシド(Ti (QC4H,) 4)
もしくはTa、Baのナフテン酸塩の熱分解生成物を使
用し、上記微粉末との懸濁溶液をステンレス母板に塗布
した後200℃で乾燥、600℃で焼成したものである
。皮膜厚みの調整は実施例1と同一手法によった。
, titanium oxide (TiO3) or barium titanate (
A non-conductive material consisting of Ba2Tie, ) was mixed, an insulating film was formed by the same method as in Example 1, and an insulation test and an a-Si vapor deposition test using glow discharge were similarly conducted. The results are shown in Table 2. Regarding the film formation method, titanium tetrabutoxide (Ti (QC4H,) 4) was used instead of zinc naphthenate in Example 1.
Alternatively, a thermal decomposition product of naphthenic acid salts of Ta and Ba is used, and a suspension solution of the above-mentioned fine powder is applied to a stainless steel base plate, and then dried at 200°C and fired at 600°C. The film thickness was adjusted using the same method as in Example 1.

第2表より明らかな如く、供試材NO41〜10はいず
れも本発明の要件を満足する製造方法によったので、得
られた太陽電池基板用母板はいずれも絶縁テストおよび
a −S i蒸着テストは良好な結果が得られた。
As is clear from Table 2, all of the sample materials No. 41 to 10 were manufactured using a manufacturing method that satisfies the requirements of the present invention. Good results were obtained in the vapor deposition test.

第2表 〔発明の効果〕 本発明による太陽電池基板用母板は上記実施例より明ら
かな如く、板厚0.5+nm以下のステンレス薄鋼板の
片面もしくは両面に非導電性微粒子と、該微粒子量およ
び該微粒子とステンレス薄鋼板間を充填する非導電性充
填物質より成る絶縁薄層を有するのが特徴であって、そ
の製造に際しては前記微粒子と充填物質より成る混合体
を粉末状もしくは溶液状としてステンレス薄鋼板表面に
塗布し、これを乾燥後400〜900℃の温度範囲で焼
成する方法をとったので次の如き効果を収めることがで
きた。
Table 2 [Effects of the Invention] As is clear from the above examples, the mother plate for a solar cell substrate according to the present invention has non-conductive fine particles on one or both sides of a thin stainless steel plate having a thickness of 0.5+nm or less, and the amount of the fine particles. It is characterized by having an insulating thin layer made of a non-conductive filler filling between the fine particles and the thin stainless steel plate, and when manufacturing the fine particles, a mixture of the fine particles and the filler is prepared in the form of a powder or a solution. By applying this to the surface of a thin stainless steel plate, drying it, and then firing it at a temperature in the range of 400 to 900°C, we were able to achieve the following effects.

(イ) 本発明によりステンレス薄鋼板表面に形成され
た絶R薄層は、ステンレス薄鋼板表面の微細疵を埋め、
かつ完全に密着しているので太陽電池基板の形成時のア
モルファスシリコン蒸着に際しても十分な絶縁性を有し
、かつ剥離する乙とはない。
(a) The absolute thin layer formed on the surface of the thin stainless steel plate according to the present invention fills minute defects on the surface of the thin stainless steel plate,
In addition, since it is completely adhered, it has sufficient insulation properties even during amorphous silicon deposition during the formation of a solar cell substrate, and there is no possibility of peeling.

(ロ) 本発明による絶縁皮膜処理後のステンレス母板
の硬さはHvにて340〜350にて処理前とほとんど
変化を来さない強度を有するので01〜0.15+n+
++のii4鋼板を使用しても面折れ等の欠陥を生じな
い。
(b) The hardness of the stainless steel base plate after the insulation coating treatment according to the present invention is 340 to 350 Hv, which is almost the same as before the treatment, so it is 01 to 0.15+n+
Even if ++ II4 steel plate is used, defects such as surface bending will not occur.

(ハ) 本発明による絶縁皮膜層は05〜20μmと掻
めて薄いので母板全体として極めて良好な可撓性を有し
ている。
(c) Since the insulating film layer according to the present invention is extremely thin at 05 to 20 μm, the base plate as a whole has extremely good flexibility.

(ニ) 本発明による太陽電池基板用母板の製造工程は
短く簡単であるので、従来のステンレス薄鋼板の研磨法
による鏡面加工材よりも著しく低コストで提供すること
ができる。
(d) Since the manufacturing process of the mother plate for solar cell substrates according to the present invention is short and simple, it can be provided at a significantly lower cost than mirror-finished materials made by conventional polishing methods of stainless thin steel plates.

本発明の説明および実施例においても、ステンレス薄鋼
板表面に形成する絶縁薄層は片面のみについて説明した
が、両面にも形成できることは自明のとおりである。
In the description and examples of the present invention, the thin insulating layer formed on the surface of the thin stainless steel plate has been described only on one side, but it is obvious that it can be formed on both sides as well.

am人中路武雄am Hitonakaji Takeo

Claims (5)

【特許請求の範囲】[Claims] (1)冷間圧延により製造された板厚0.5mm以下の
ステンレス薄鋼板の少なくとも片面に非導電性微粒子と
、該微粒子間および該微粒子と前記ステンレス薄鋼板間
を充填する非導電性充填物質とより成る薄層を有して成
ることを特徴とする太陽電池基板用母板。
(1) Non-conductive fine particles on at least one side of a stainless thin steel plate having a thickness of 0.5 mm or less manufactured by cold rolling, and a non-conductive filler filling between the fine particles and between the fine particles and the stainless thin steel plate. A mother plate for a solar cell substrate, characterized in that it has a thin layer consisting of.
(2)冷間圧延により製造された板厚0.5mm以下の
ステンレス薄鋼板の少なくとも片面に非導電性微粒子と
、前記微粒子と濡れ性の良好な非導電性充填物質とより
成る混合体を粉末状もしくは溶液状にて塗布した後乾燥
し、しかる後400〜900℃の温度範囲で焼成するこ
とを特徴とする太陽電池基板用母板の製造方法。
(2) Powder a mixture of non-conductive fine particles and a non-conductive filler material having good wettability with the fine particles on at least one side of a thin stainless steel plate with a thickness of 0.5 mm or less manufactured by cold rolling. 1. A method for producing a mother plate for a solar cell substrate, which comprises coating the base plate in a form or a solution, drying it, and then baking it in a temperature range of 400 to 900°C.
(3)前記非導電性微粒子と充填物質とより成る絶縁皮
膜中における該微粒子の占める体積比は20〜80%で
あり、かつ膜厚は0.5〜20μmである特許請求の範
囲第1項に記載の太陽電池基板用母板。
(3) The volume ratio of the non-conductive fine particles and the filler material in the insulating film is 20 to 80%, and the film thickness is 0.5 to 20 μm. A mother plate for a solar cell substrate as described in .
(4)前記非導電性微粒子は酸化アルミニウム、酸化け
い素、炭化けい素、窒化アルミニウム等の金属酸化物、
金属炭化物、金属窒化物である特許請求の範囲第2項に
記載の太陽電池基板用母板の製造方法。
(4) The non-conductive fine particles are metal oxides such as aluminum oxide, silicon oxide, silicon carbide, aluminum nitride,
The method for manufacturing a mother plate for a solar cell substrate according to claim 2, wherein the mother plate is a metal carbide or a metal nitride.
(5)前記非導電充填物質はナフテン酸の金属塩または
金属有機化合物の熱分解生成物である酸化亜鉛、酸化チ
タン等の金属酸化物である特許請求の範囲第2項に記載
の太陽電池基板用母板の製造方法。
(5) The solar cell substrate according to claim 2, wherein the non-conductive filling material is a metal oxide such as zinc oxide or titanium oxide, which is a metal salt of naphthenic acid or a thermal decomposition product of a metal organic compound. Method of manufacturing motherboard for use.
JP60276260A 1985-12-09 1985-12-09 Mother plate for solar battery substrate and manufacture thereof Pending JPS62134980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276260A JPS62134980A (en) 1985-12-09 1985-12-09 Mother plate for solar battery substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276260A JPS62134980A (en) 1985-12-09 1985-12-09 Mother plate for solar battery substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62134980A true JPS62134980A (en) 1987-06-18

Family

ID=17566948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276260A Pending JPS62134980A (en) 1985-12-09 1985-12-09 Mother plate for solar battery substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62134980A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357281A (en) * 1999-12-16 2001-06-20 Univ Cranfield Fabrication of ceramic films
WO2014148035A1 (en) * 2013-03-21 2014-09-25 Jfeスチール株式会社 Ferritic stainless steel foil for solar cell substrates
WO2014148034A1 (en) * 2013-03-21 2014-09-25 Jfeスチール株式会社 Ferritic stainless steel foil for solar cell substrates
JP5652568B1 (en) * 2014-07-23 2015-01-14 Jfeスチール株式会社 Manufacturing method of ferritic stainless steel foil for solar cell substrate
JP5652567B1 (en) * 2014-07-23 2015-01-14 Jfeスチール株式会社 Manufacturing method of ferritic stainless steel foil for solar cell substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357281A (en) * 1999-12-16 2001-06-20 Univ Cranfield Fabrication of ceramic films
GB2357281B (en) * 1999-12-16 2004-02-04 Univ Cranfield Fabrication of ceramic films
WO2014148035A1 (en) * 2013-03-21 2014-09-25 Jfeスチール株式会社 Ferritic stainless steel foil for solar cell substrates
WO2014148034A1 (en) * 2013-03-21 2014-09-25 Jfeスチール株式会社 Ferritic stainless steel foil for solar cell substrates
JP2014183254A (en) * 2013-03-21 2014-09-29 Jfe Steel Corp Ferrite-based stainless foil for solar battery substrate use
JP2014183255A (en) * 2013-03-21 2014-09-29 Jfe Steel Corp Ferrite-based stainless foil for solar battery substrate use
CN105051915A (en) * 2013-03-21 2015-11-11 杰富意钢铁株式会社 Ferritic stainless steel foil for solar cell substrates
CN105190912A (en) * 2013-03-21 2015-12-23 杰富意钢铁株式会社 Ferritic stainless steel foil for solar cell substrates
JP5652568B1 (en) * 2014-07-23 2015-01-14 Jfeスチール株式会社 Manufacturing method of ferritic stainless steel foil for solar cell substrate
JP5652567B1 (en) * 2014-07-23 2015-01-14 Jfeスチール株式会社 Manufacturing method of ferritic stainless steel foil for solar cell substrate

Similar Documents

Publication Publication Date Title
JPH11502262A (en) Method for producing ceramic thick film by sol-gel coating method
JP2009267335A (en) Substrate for solar cell and solar cell
US3770499A (en) Liquid phase deposition of thin insulating and refractory film on a substrate
JPS6293884A (en) Panel heater
US20120017963A1 (en) Thermoelectric module with insulated substrate
JPH02247393A (en) Electrolytic electrode with durability and its production
JPS62134980A (en) Mother plate for solar battery substrate and manufacture thereof
JP2002121605A (en) Method for forming coating on refractory structural member and use of the coating
CN1759008A (en) Stainless-steel foils with inorganic/organic hybrid film coating
JPH08111342A (en) Zinc deposited base material for metallized capacitor and production thereof
CN111763924B (en) Silicon carbide-silicon dioxide/diamond multilayer composite self-supporting film and preparation method thereof
JPH0320457A (en) Production of alumina-coated al or al-alloy member
CN110662314B (en) Heater and preparation method thereof
TWI282597B (en) Yttrium-containing ceramic coated material and method of manufacturing the same
JP2008504672A5 (en)
JPH1068072A (en) Ito cylindrical target and its production
JPH0995772A (en) Window material for vacuum device
JPS63155681A (en) Manufacture of base board for solar cell substrate
JP5358842B2 (en) Ceramic products joined with metal foil and manufacturing method thereof
JP2008007343A (en) Alumina coated material and method of manufacturing the same
JP2003303979A (en) Insulating substrate for thin-film polycrystalline silicon solar battery, and method for manufacturing the same
JP2005112678A (en) Highly adhesive oxide coating film and method of manufacturing the same
CN107004786A (en) Electric storage system, discrete component, its manufacture method and its application with tabular discrete component
JP6037278B2 (en) Method for producing crystalline film forming body
JPH1180585A (en) Fine pieces of metal having emboss pattern and its production