[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62129640A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS62129640A
JPS62129640A JP60269941A JP26994185A JPS62129640A JP S62129640 A JPS62129640 A JP S62129640A JP 60269941 A JP60269941 A JP 60269941A JP 26994185 A JP26994185 A JP 26994185A JP S62129640 A JPS62129640 A JP S62129640A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
opening
control valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60269941A
Other languages
Japanese (ja)
Inventor
Kazuya Yoshikawa
一也 吉川
Satofumi Takahashi
諭史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60269941A priority Critical patent/JPS62129640A/en
Publication of JPS62129640A publication Critical patent/JPS62129640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to shorten the time to reach a most suitable overheating with a larger initially set opening if the temperature of sucked air in an evaporator is high and a smaller initially set opening if it is low by providing a control circuit which changes an initially set opening of a flow rate control valve according to the temperature of the sucked air in an evaporator. CONSTITUTION:Outputs from a temperature sensor C which are digitized by an A/D converter 7 are led to arithmetic means 12, where the temperature difference T between the temperature T1 of the sucked air in an evaporator 4 and a set temperature T0 is calculated, and at the same time the initial valve opening for flow rate control valve 3 corresponding to this temperature difference T is calculated. And the result of the calculation is outputted from an output converter 11 to a valve 3 through set signal generating means 13 to set an initial opening of the valve 3. After this outputs from temperature sensors A and B which are digitized by an A/D converter9 are led to the arithmetic means 12 to calculate the difference SH of temperatures of the inlet and outlet in an evaporator 4 and at the same time the difference between the temperature difference SH and the set temperature difference SHO is calculated. The result of this calculation is outputted to judgement means 13 and an air conditioner is controlled so as to bring the temperature different SH closer to the set value SHO.

Description

【発明の詳細な説明】 く技術分野〉 本発明は空気調和機に関するものである。[Detailed description of the invention] Technical fields> The present invention relates to an air conditioner.

〈従来技術〉 従来の空気調和機の熱媒圧縮サイクルは、第7図に示す
ような構成になっている。すなわち、第7図において、
1は圧縮機、2はこの圧縮機1の吐出側に接続された凝
縮器、3はこの凝縮器の吐出側に接続された流量制御弁
(膨張弁)、4はこの流量制御弁の吐出側に接続された
蒸発器であって、これらは、順次接続された循環回路を
形成している。6は制御回路であって、この制御回路6
は、前記蒸発器4の入口側aの熱媒温度と出口側すの熱
媒温度とから蒸発器4での過熱度を検知し、この過熱度
が設定された一定値になるように、流量制御弁3の開度
を調整している。
<Prior Art> The heat medium compression cycle of a conventional air conditioner has a configuration as shown in FIG. That is, in FIG. 7,
1 is a compressor, 2 is a condenser connected to the discharge side of this compressor 1, 3 is a flow rate control valve (expansion valve) connected to the discharge side of this condenser, and 4 is the discharge side of this flow rate control valve. evaporators connected to the evaporators, which form a sequentially connected circulation circuit. 6 is a control circuit, and this control circuit 6
detects the degree of superheating in the evaporator 4 from the heat medium temperature on the inlet side a and the heat medium temperature on the outlet side of the evaporator 4, and adjusts the flow rate so that this degree of superheat becomes a set constant value. The opening degree of the control valve 3 is adjusted.

ところで、このような従来の熱媒圧縮サイクルにおいて
、流量制御弁3の初期の弁開度の設定は、従来、蒸発器
側の吸込空気温度に関係なく一定であった。
By the way, in such a conventional heat medium compression cycle, the initial valve opening setting of the flow rate control valve 3 has conventionally been constant regardless of the intake air temperature on the evaporator side.

したがって、蒸発器側の吸込空気温度が低い場合は、蒸
発器4に流れる熱媒の量は少しでよいので、流量制御弁
はかなりの絞りが必要となり、最適な弁開度に達するま
でには時間がかがる。この間、流量制御弁は絞り不足と
なる。
Therefore, when the suction air temperature on the evaporator side is low, only a small amount of heat medium flows into the evaporator 4, so the flow rate control valve needs to be throttled considerably, and it takes until the optimum valve opening is reached. It takes time. During this time, the flow rate control valve becomes under-throttled.

また、蒸発器側の吸込空気温度の高い時は、蒸発器4に
は、多量の熱媒が必要となり、最適な弁開度に達するま
でには、流量制御弁はがなりの開動作を行なう。この間
、流量制御弁は、絞りすぎになっている。等から、蒸発
器側の吸込空気温度に関係なく初期の弁開度設定が一定
であると、熱媒圧縮サイクルが安定するまでには、時間
がかがっていた。
Furthermore, when the temperature of the suction air on the evaporator side is high, a large amount of heat medium is required in the evaporator 4, and the flow control valve performs a steep opening operation until the optimum valve opening is reached. . During this time, the flow control valve is being throttled too much. For this reason, if the initial valve opening setting is constant regardless of the temperature of the intake air on the evaporator side, it takes time for the heat medium compression cycle to stabilize.

〈  目  的  〉 本発明は、運転開始時に、蒸発器の吸込空気温度を検知
し、その温度が高ければ流量制御弁の初期設定開度を大
きくし、また、低ければ小さくすることにより、熱媒圧
縮サイクルが安定するまでの時間を短縮させることを目
的とする。
<Purpose> The present invention detects the intake air temperature of the evaporator at the start of operation, increases the initial setting opening of the flow control valve if the temperature is high, and decreases the opening if the temperature is low. The purpose is to shorten the time it takes for the compression cycle to stabilize.

〈実施例〉 以下、本発明の実施例を図面にしたがって説明する。な
お、従来と同一部分については、同符号を付する。
<Examples> Examples of the present invention will be described below with reference to the drawings. Note that parts that are the same as the conventional ones are given the same reference numerals.

第1図において、1は圧縮機、2は凝縮器、3は弁開度
調整可能な流量制御弁(膨張弁)、4は蒸発器であって
、これらは順次接続されて熱媒圧縮サイクルを構成して
いる。
In Fig. 1, 1 is a compressor, 2 is a condenser, 3 is a flow control valve (expansion valve) whose opening degree can be adjusted, and 4 is an evaporator, which are connected in sequence to perform a heat medium compression cycle. It consists of

6は、前記流量制御弁3の開度を電気的に制御する制御
回路であって、この制御回路6は、前記蒸発器4の吸込
空気温度検出器Cによって検出された温度によって制御
弁3の開度な制御すると共に、前記蒸発器4の入口側と
出口側に設けられた温度検出器A、Bによって検出され
た出入口熱媒温度の温度差に基く過熱度によって流量制
御弁3の開度を制御するものである。
Reference numeral 6 denotes a control circuit that electrically controls the opening degree of the flow rate control valve 3, and this control circuit 6 controls the opening degree of the control valve 3 based on the temperature detected by the intake air temperature sensor C of the evaporator 4. The opening degree of the flow control valve 3 is controlled based on the degree of superheating based on the temperature difference between the inlet and outlet heat medium temperatures detected by temperature detectors A and B provided on the inlet and outlet sides of the evaporator 4. It controls the

なお、前記蒸発器4は、冷房サイクル時には室内熱交換
器が、暖房サイクル時には室外熱交換器がそれぞれその
機能を果たす。冷暖房運転可能な空気調和機においては
、温度検出器A、B、Cは、実際には蒸発器となりうる
室内熱交換器および室外熱交換器の両方に付設されてい
る。
The evaporator 4 functions as an indoor heat exchanger during the cooling cycle and as an outdoor heat exchanger during the heating cycle. In an air conditioner capable of cooling/heating operation, temperature detectors A, B, and C are actually attached to both an indoor heat exchanger and an outdoor heat exchanger that can serve as evaporators.

この制御回路6について、第2図を用いて、更に詳細に
説明する。第2図において、制御回路6は、前記蒸発器
4の吸込空気温度検出器Cの検知出力をデジタル量に変
換するA/D変換器7と、このA/D変換器7の出力を
受けて、流量制御弁3の初期開度設定を行なう信号を発
生する制御部8と、前記蒸発器4の入口側と出口側との
それぞれに設けられた温度検出器A、Hの検知出力をデ
ジタル量に変換するA/D変換器9と、このA/D変換
器9からの出力を受けて入口温度と出口温度との温度差
SH(過熱度)を演算し、このSHを設定した一定の目
標値5HO(設定過熱度)に保つように演算し過熱度S
Hに応じて流量制御弁3の開度制御を行なう信号を発生
する制御部8と、この制御部8の発生した信号を流量制
御弁3の駆動部に伝達すべく信号を変換して出力する出
力変換器11とから構成されている。
This control circuit 6 will be explained in more detail using FIG. 2. In FIG. 2, the control circuit 6 includes an A/D converter 7 that converts the detection output of the intake air temperature detector C of the evaporator 4 into a digital quantity, and an A/D converter 7 that receives the output of the A/D converter 7. , a control unit 8 that generates a signal for setting the initial opening degree of the flow rate control valve 3, and the detection outputs of temperature detectors A and H provided on the inlet side and the outlet side of the evaporator 4, respectively, are converted into digital quantities. An A/D converter 9 that converts the temperature into a 100% A/D converter 9, and a temperature difference SH (degree of superheat) between the inlet temperature and the outlet temperature is calculated based on the output from this A/D converter 9, and this SH is set to a certain target. The superheat degree S is calculated to maintain the value 5HO (set superheat degree).
A control unit 8 generates a signal for controlling the opening of the flow rate control valve 3 according to H, and a signal generated by the control unit 8 is converted and outputted in order to be transmitted to the drive unit of the flow rate control valve 3. It is composed of an output converter 11.

前記制御部8は、たとえば、マイクロコンピュータ−を
含む電気回路で構成されているものであって、この制御
部8は第3図に示すような構成になっている。第3図に
おいて、12は演算手段であって、この演算手段12は
、A/D変換器7からの検知出力である蒸発器4の吸込
空気温度T1と設定温度TQ(20℃)との差を演算す
ることによって流量制御弁3の初期開度を演算する。1
3は、上記演算の結果に応じて前記流量制御弁3の開度
設定を行なうための信号を発生する設定信号発生手段で
ある。なお、流量制御弁3の初期弁開度設定の具体的手
法としては、蒸発器4の吸込空気温度T1と設定温度T
Oの温度差Tを演算しT1 >Toならば初期の弁開度
は、基本開度十Tとする。また、TI<Toならば初期
の弁開度は基本開度−丁とする。言い換えればT1が大
きい程、初期の弁開度は天外く、T1が小さい程、初期
の弁開度は小さくする比例制御(比例設定)をする。
The control section 8 is composed of an electric circuit including, for example, a microcomputer, and has a configuration as shown in FIG. 3. In FIG. 3, 12 is a calculation means, and this calculation means 12 calculates the difference between the intake air temperature T1 of the evaporator 4, which is the detection output from the A/D converter 7, and the set temperature TQ (20°C). By calculating , the initial opening degree of the flow control valve 3 is calculated. 1
Reference numeral 3 denotes a setting signal generating means for generating a signal for setting the opening degree of the flow rate control valve 3 in accordance with the result of the above calculation. In addition, as a specific method for setting the initial valve opening degree of the flow control valve 3, the suction air temperature T1 of the evaporator 4 and the set temperature T
The temperature difference T between O and O is calculated, and if T1 >To, the initial valve opening is set to the basic opening 10T. Further, if TI<To, the initial valve opening is set to the basic opening - 1. In other words, the larger T1 is, the greater the initial valve opening degree is, and the smaller T1 is, the smaller the initial valve opening degree is proportional control (proportional setting).

また、演算手段12は、A/D変換器9からの検知出力
である蒸発器4の入口温度SHIと出口温度SH2との
差を演算することによって過熱度SHを演算すると共に
、設定された最適過熱度SHOとの差を演算する。
Further, the calculating means 12 calculates the degree of superheating SH by calculating the difference between the inlet temperature SHI and the outlet temperature SH2 of the evaporator 4, which are the detection outputs from the A/D converter 9, and also Calculate the difference from the superheat degree SHO.

また13は、この演算手段12からの結果を受けて上記
過熱度SHが設定値S HOに達したかどうかを判定す
る手段であって、前記設定値SHOと過熱度5l−1と
の差がO以下になったら設定値SHOに過熱度SHが達
したとして、S HO到達信号を発生する。
Further, 13 is a means for determining whether or not the degree of superheating SH has reached the set value SHO based on the result from the calculation means 12, and the difference between the set value SHO and the degree of superheat 5l-1 is When the superheat degree SH reaches the set value SHO, a SHO reaching signal is generated.

14は、この判定手段13の結果や設定信号発生手段に
応して、」1記流量制御弁3の開度制御を行なうための
信号を発生する制御信号発生手段であって、この制御信
号発生手段14は、前記過熱度SHを設定値S HOに
近づけるための制御信号を発生する。
14 is a control signal generating means for generating a signal for controlling the opening of the flow rate control valve 3 according to the result of the determination means 13 and the setting signal generating means; Means 14 generate a control signal for bringing the degree of superheating SH closer to a set value S HO.

なお、過熱度SHを設定値S HOに近づけるための具
体的手法としては、温度差SHの変化に対応してSHが
増大するときには、弁揚程を増加させ、逆にSHが低下
すると外には、弁揚程を減少させる様にする比例(P)
制御と、温度差SHと目標設定値S HOとの偏差を計
算し、一定時間ごとに偏差を補正する方向に弁揚程を変
化させる積分(I)制御とを組み合わせて流量制御弁の
開度制御を行ない(P・■制御)、温度差SHがS I
−10に近づくように制御する。
A specific method for bringing the degree of superheating SH closer to the set value SHO is to increase the valve lift when SH increases in response to a change in the temperature difference SH, and conversely to increase the valve lift when SH decreases. , the proportionality (P) that causes the valve lift to decrease
The opening of the flow rate control valve is controlled by combining control and integral (I) control, which calculates the deviation between the temperature difference SH and the target set value S HO, and changes the valve lift in a direction that corrects the deviation at regular intervals. (P・■ control), the temperature difference SH becomes S I
-10.

第2図に戻って、このように制御部8で発生した信号は
、出力変換器11から出力されてたとえば流量制御弁の
弁揚程を調整する駆動モーターの駆動制御部等の開度調
整手段に信号が伝達される。
Returning to FIG. 2, the signal generated by the control unit 8 is outputted from the output converter 11 and sent to an opening adjustment means such as a drive control unit of a drive motor that adjusts the valve lift of the flow rate control valve. A signal is transmitted.

さて、この制御回路6の動作について、第4図の70−
チャートを参考にして説明すると、まずA/D変換器7
によってデジタル化された温度検出器Cの出力が演算手
段12に導入されることで、蒸発器4の吸込空気温度T
1と設定温度TOの温度差Tが計W、されると共に、こ
の温度差Tに応じた流量制御弁3の初期の弁開度が計算
される。そして、」1記の演算の結果は、流量制御弁3
の開度設定を行なうための信号を発生する設定信号発生
手段13を通じ、出力変換器11から流量制御弁3へ出
力されて、流量制御弁3の初期開度が設定される。その
後、A/D変換器9によってデジタル化された温度検出
器A、Bの出力が演算手段12に導入されることで、蒸
発器4における出入口温度差(過熱度)SHが計ji、
されると共に、この温度差SHと設定温度差(設定過熱
度)SHOとの差が計算される。この演算結果は、判定
手段13へ出力されて温度差5I−1が設定値S l−
10に達したか=7− どうかが判定されて達していない場合には温度差SHを
設定値SHOに近づけるべく上記P−I制御が行なわれ
る。
Now, regarding the operation of this control circuit 6, 70-- in FIG.
To explain with reference to the chart, first, A/D converter 7
The output of the temperature detector C digitized by
The temperature difference T between 1 and the set temperature TO is measured, and the initial valve opening degree of the flow rate control valve 3 according to this temperature difference T is calculated. Then, the result of the calculation in item 1 is the flow rate control valve 3.
The signal is outputted from the output converter 11 to the flow control valve 3 through the setting signal generating means 13 which generates a signal for setting the opening of the flow control valve 3, and the initial opening of the flow control valve 3 is set. Thereafter, the outputs of the temperature detectors A and B digitized by the A/D converter 9 are introduced into the calculation means 12, so that the temperature difference (superheat degree) SH at the entrance and exit of the evaporator 4 is calculated as
At the same time, the difference between this temperature difference SH and the set temperature difference (set superheat degree) SHO is calculated. This calculation result is output to the determination means 13, and the temperature difference 5I-1 becomes the set value S l-
Whether the temperature difference SH has reached 10=7- is determined, and if the temperature difference SH has not reached the set value SHO, the above-mentioned P-I control is performed.

したがって、このように運転開始時に蒸発器4の吸込空
気温度により流量制御弁3の初期開度設定がされるので
、最適弁開度に達するまでの時間のロスがほとんどなく
、その分早く熱媒圧縮サイクルが安定する。
Therefore, since the initial opening of the flow rate control valve 3 is set according to the suction air temperature of the evaporator 4 at the start of operation, there is almost no time loss until the optimum valve opening is reached, and the heating medium is The compression cycle becomes stable.

このことを第5図、第6図を参照に説明する。This will be explained with reference to FIGS. 5 and 6.

第5図は蒸発器4の吸込空気温度の高い場合で、実線が
本発明、破線が従来である。従来は、初期設定開度であ
るD点から最適過熱度になるようP・I制御を行なって
いた。このため、最適過熱度となるまでにはE分かかり
、また、その間流量制御弁は絞りすぎとなっていた。本
発明はD点に温度差Tを加えたF点を初期設定開度とし
たため、最適過熱度へは、すぐに到達することができた
FIG. 5 shows a case where the temperature of the intake air of the evaporator 4 is high, where the solid line is the present invention and the broken line is the conventional one. Conventionally, P/I control was performed to reach the optimum superheat degree from point D, which is the initial setting opening degree. For this reason, it took E minutes to reach the optimum degree of superheating, and during that time the flow rate control valve was throttled too much. In the present invention, since point F, which is the sum of temperature difference T to point D, is the initial setting opening degree, the optimum degree of superheating can be reached immediately.

また、第6図は、蒸発器4の吸込温度の低い場合で第6
図と同じく実線が本発明破線が従来である。
Moreover, FIG. 6 shows the sixth case when the suction temperature of the evaporator 4 is low.
As in the figure, the solid line is the conventional one, and the broken line is the conventional one.

従来は初期設定開度であるD点からP・■制御を行なっ
ていたため、E分かかり、また、その間、流量制御弁3
は絞り不足となっていた。本発明はD点から温度差Tを
引いたF点を初期設定開度としたため、最適過熱度へは
すぐに到達することができた。
Conventionally, P・■ control was performed from point D, which is the initial setting opening, so it took E minutes, and during that time, the flow rate control valve 3
The aperture was insufficient. In the present invention, since point F, which is obtained by subtracting the temperature difference T from point D, is the initial setting opening degree, the optimum degree of superheating can be quickly reached.

〈効果〉 以」二の説明から明らかな通り、本発明は、熱媒を圧縮
吐出する圧縮機と、該圧縮機に接続された凝縮器と、該
凝縮器lこ流量制御弁を介して一側が接続され他側が前
記圧縮機に接続された蒸発器とから熱媒圧縮サイクルが
構成された空気調和機において、前記蒸発器の吸込空気
温度を検出する温度検出器が設けられ、該温度検出器の
出力信号により前記流量制御弁の弁開度を制御する制御
回路が設けられ、該制御回路は、運転開始時の流量制御
弁の弁開度を蒸発器の吸込空気温度が高い時は大きく、
低い時は小さく設定制御する機能を有せしめられたこと
を特徴とする空気調和機に関するものである。
<Effects> As is clear from the explanation in section 2 below, the present invention includes a compressor that compresses and discharges a heat medium, a condenser connected to the compressor, and a flow rate control valve that connects the condenser to the compressor. In an air conditioner in which a heat medium compression cycle is configured with an evaporator connected on one side and connected to the compressor on the other side, a temperature detector is provided for detecting the temperature of the intake air of the evaporator, and the temperature detector A control circuit is provided for controlling the valve opening of the flow control valve based on an output signal of the flow control valve, and the control circuit increases the valve opening of the flow control valve at the start of operation when the intake air temperature of the evaporator is high;
The present invention relates to an air conditioner characterized by having a function of controlling the setting to be small when the temperature is low.

したがって、本発明によれば、蒸発器の吸込空気温度に
より、流量制御弁の初期設定開度を変える制御回路を設
けたので、蒸発器の吸込空気温度が高ければ初期設定開
度を大きく、また低ければ小さくすることにより、最適
過熱度への到達時間を短縮させ、早く熱媒圧縮サイクル
が安定することができるといった優れた効果がある。
Therefore, according to the present invention, a control circuit is provided that changes the initial setting opening degree of the flow control valve depending on the evaporator suction air temperature. By making it as small as possible, there is an excellent effect that the time required to reach the optimum superheat degree can be shortened and the heat medium compression cycle can be stabilized quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例に用いられる熱媒圧縮サイクル図
、第2図は同制御回路のブロック図、第3図は同制御部
のブロック図、第4図は同フローチャート、第5図、第
6図は、本発明実施例における過熱度および弁開度と時
間との関係を示す線図、第7図は従来の熱媒圧縮サイク
ル図である。 1:圧縮機、2:凝縮器、3:流量制御弁、4:蒸発器
、6:制御回路、7 、9 :A/D変換器、8:制御
部、11:出力変換器、12:演算手段、13:判定手
段、14:制御信号発生手段。
Fig. 1 is a diagram of the heat medium compression cycle used in the embodiment of the present invention, Fig. 2 is a block diagram of the control circuit, Fig. 3 is a block diagram of the control section, Fig. 4 is the flowchart, Fig. 5, FIG. 6 is a diagram showing the relationship between the degree of superheating, the degree of valve opening, and time in the embodiment of the present invention, and FIG. 7 is a diagram of a conventional heat medium compression cycle. 1: Compressor, 2: Condenser, 3: Flow rate control valve, 4: Evaporator, 6: Control circuit, 7, 9: A/D converter, 8: Control section, 11: Output converter, 12: Calculation means, 13: determination means, 14: control signal generation means.

Claims (1)

【特許請求の範囲】[Claims] 熱媒を圧縮吐出する圧縮機と、該圧縮機に接続された凝
縮器と、該凝縮器に流量制御弁を介して一側が接続され
他側が前記圧縮機に接続された蒸発器とから熱媒圧縮サ
イクルが構成された空気調和機において、前記蒸発器の
吸込空気温度を検出する温度検出器が設けられ、該温度
検出器の出力信号により前記流量制御弁の弁開度を制御
する制御回路が設けられ、該制御回路は、運転開始時の
流量制御弁の弁開度を蒸発器の吸込空気温度が高い時は
大きく、低い時は小さく設定制御する機能を有せしめら
れたことを特徴とする空気調和機。
A heat medium is supplied from a compressor that compresses and discharges a heat medium, a condenser connected to the compressor, and an evaporator whose one side is connected to the condenser via a flow control valve and the other side is connected to the compressor. The air conditioner configured with a compression cycle is provided with a temperature detector that detects the temperature of the intake air of the evaporator, and a control circuit that controls the valve opening of the flow rate control valve based on the output signal of the temperature detector. The control circuit is characterized in that it has a function of controlling the valve opening of the flow rate control valve at the start of operation by setting it large when the intake air temperature of the evaporator is high and small when it is low. Air conditioner.
JP60269941A 1985-11-30 1985-11-30 Air conditioner Pending JPS62129640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60269941A JPS62129640A (en) 1985-11-30 1985-11-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60269941A JPS62129640A (en) 1985-11-30 1985-11-30 Air conditioner

Publications (1)

Publication Number Publication Date
JPS62129640A true JPS62129640A (en) 1987-06-11

Family

ID=17479334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60269941A Pending JPS62129640A (en) 1985-11-30 1985-11-30 Air conditioner

Country Status (1)

Country Link
JP (1) JPS62129640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388422A (en) * 1991-01-10 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
CN106556099A (en) * 2015-09-25 2017-04-05 约克广州空调冷冻设备有限公司 The control method of the electric expansion valve of the indoor set of multi-online air-conditioning system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482832A (en) * 1977-12-15 1979-07-02 Daikin Ind Ltd Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482832A (en) * 1977-12-15 1979-07-02 Daikin Ind Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388422A (en) * 1991-01-10 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
CN106556099A (en) * 2015-09-25 2017-04-05 约克广州空调冷冻设备有限公司 The control method of the electric expansion valve of the indoor set of multi-online air-conditioning system
CN106556099B (en) * 2015-09-25 2019-05-17 日立江森自控空调有限公司 The control method of the electric expansion valve of the indoor unit of multi-online air-conditioning system

Similar Documents

Publication Publication Date Title
KR950003787B1 (en) Method of controlling an air conditioning apparatus and air conditioning apparatus using the method
JPS61175458A (en) Controller for flow rate of refrigerant
JPS6364698B2 (en)
JPH10153353A (en) Air conditioner
JPS62129640A (en) Air conditioner
JPH0575938B2 (en)
JP3213662B2 (en) Air conditioner
JP2001272114A (en) Control for refrigerant of multi-chamber type air conditioner
JPS61250438A (en) Defrosting operation control device for air conditioner
JPS6196376A (en) Flow controller for refrigerant of air conditioner
JPS6162770A (en) Method of controlling refrigerating air conditioner
JP2002286301A (en) Refrigerating cycle
JP2600713B2 (en) Expansion valve control device for air conditioner
JPH02195155A (en) Air conditioner
JPS602578B2 (en) Refrigeration equipment
JP2607684B2 (en) Refrigeration cycle
JPS6356465B2 (en)
JPS62158952A (en) Controller for refrigeration cycle
JPH0387578A (en) Heat pump type air conditioner
JPH0232545B2 (en) KUKICHOWAKINOREIBAIRYURYOSEIGYOSOCHI
JP2615999B2 (en) Air conditioner
JPS611942A (en) Capacity control system of air conditioner
KR960007981B1 (en) Controlling apparatus and method for dividing cooling material of airconditioners
JPS60251349A (en) Refrigerator
JPH0663668B2 (en) Refrigerant flow controller