[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62110924A - Production of high performance carbon fiber - Google Patents

Production of high performance carbon fiber

Info

Publication number
JPS62110924A
JPS62110924A JP25220285A JP25220285A JPS62110924A JP S62110924 A JPS62110924 A JP S62110924A JP 25220285 A JP25220285 A JP 25220285A JP 25220285 A JP25220285 A JP 25220285A JP S62110924 A JPS62110924 A JP S62110924A
Authority
JP
Japan
Prior art keywords
inert atmosphere
temperature
treatment
carbon fiber
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25220285A
Other languages
Japanese (ja)
Inventor
Susumu Sasaki
晋 佐々木
Yoshitaka Imai
今井 義隆
Soji Nakatani
中谷 宗嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP25220285A priority Critical patent/JPS62110924A/en
Priority to KR1019870700479A priority patent/KR890005273B1/en
Priority to US07/066,629 priority patent/US4780301A/en
Priority to EP86905935A priority patent/EP0242401B1/en
Priority to DE8686905935T priority patent/DE3686715T2/en
Priority to PCT/JP1986/000512 priority patent/WO1987002391A1/en
Publication of JPS62110924A publication Critical patent/JPS62110924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To provide a high performance carbon fiber having high strength and elastic modulus, by dividing a temperature region in a carbonization step and controlling the rate of temperature increase in a specific temperature range. CONSTITUTION:An acrylonitrile-based synthetic fiber is subjected to flame- retardant treatment in an oxidizing atmosphere and heat-treated in an inert atmosphere at 300-500 deg.C under tension while controlling the decomposition reaction by keeping the rate of temperature increase to 50-300 deg.C/min. The subsequent heat-treatment is carried out in an inert atmosphere at 400-800 deg.C under tension. The treatment time is adjusted to 0.1-1min to control the condensation cyclization reaction. The formation of fluffs, etc., in the treatment at >=800 deg.C can be suppressed without hindering the reaction at >=800 deg.C.

Description

【発明の詳細な説明】 し座業上の利用分野〕 本発明はアクリロニトリル系繊維プレカーサーを熱処理
することにより高性能炭素繊維を製造する方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing high performance carbon fibers by heat treating an acrylonitrile fiber precursor.

〔往来技術〕[Traffic technology]

炭素繊維は比強度、比弾性率が高く、航空宇宙関係、レ
ジャー用品及び工業用材料等への各種複合材料の強化材
として広く用いらnている。
Carbon fiber has high specific strength and specific modulus, and is widely used as a reinforcing material for various composite materials for aerospace, leisure goods, industrial materials, and the like.

しかし、その性能は未だ十分であるとは言い難く、さら
に強度9弾性軍の高い高性能炭素繊維の開発が望まnて
いる。
However, its performance is still not sufficient, and there is a desire to develop high-performance carbon fibers with even higher strength and elasticity.

このような高性能炭素繊維を製造するために、例えばア
クリロニトリル系合成繊維の耐炎化糸・を不活性雰囲気
中500〜500℃の緊張下で熱処理を行った後、50
0〜800℃の不活性雰囲気中で緊張を加え熱処理を行
い、さらにその後800℃以上の不活性雰囲気下で熱処
理を行う方法が提案さnている(特開昭59−1501
16号公報)。この方法は、各温度領域における温度プ
ロフィルを最適化することにより、より大きな性能同上
効果が期待出来る。
In order to produce such high-performance carbon fibers, for example, flame-resistant yarn made of acrylonitrile-based synthetic fibers is heat-treated under tension at 500 to 500°C in an inert atmosphere.
A method has been proposed in which heat treatment is performed by applying tension in an inert atmosphere at a temperature of 0 to 800°C, and then heat treatment is performed in an inert atmosphere at a temperature of 800°C or higher (JP-A-59-1501).
Publication No. 16). By optimizing the temperature profile in each temperature range, this method can be expected to have greater performance effects.

一方、熱処理工程における一定温度領域の昇温速度を制
御する方法が検討されており、例えば特開昭58−21
4529号、特開昭59−106522号、特開昭60
−110925号各公報で改良方法が提案さnているが
、十分な効果全土げているとは言えない。
On the other hand, methods for controlling the temperature increase rate in a constant temperature range in the heat treatment process have been studied, for example,
No. 4529, JP-A-59-106522, JP-A-60
Although improved methods have been proposed in various publications, it cannot be said that they are fully effective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

発明者等は、アクリロニトリル糸合成繊維金熱処理する
ことにより炭素繊維を製造するに際し、前記特開昭59
−150116号公報に提案されているような炭素化工
程における温度領域を分割する方法、特開昭60−11
0925号公報等に提案さnているような特定温度領域
べおける昇温速度を制御する方法において十分な効果を
得ることを目的として検討し九結果、本発明に至った。
In manufacturing carbon fiber by heat-treating acrylonitrile yarn synthetic fiber gold, the inventors disclosed
- A method of dividing the temperature range in the carbonization process as proposed in JP-A-150116, JP-A-60-11
The inventors conducted studies aimed at obtaining sufficient effects in the method of controlling the temperature increase rate in a specific temperature range, as proposed in Japanese Patent No. 0925, etc., and as a result, the present invention was achieved.

〔問題点を解決するtめの手段〕[The tth way to solve the problem]

本発明の要旨は、アクリロニトリル系合成繊維を酸化性
雰囲気中で耐炎化処理し、次いで不活性雰囲気中500
〜500℃で緊張下に熱処理を行った後、400〜80
0℃の不活性雰囲気中で緊張を加えながら熱処理を行い
、さらに800℃以上の不活性雰囲気下で熱処理を行う
に際し、300〜500℃の温度領域における昇温速度
tl−50〜300℃/分、400〜800℃の温度領
域における処理時間をα1〜1分とすることを特徴とす
る高性能炭素繊維の製造法である。
The gist of the present invention is to subject acrylonitrile synthetic fibers to flame resistance treatment in an oxidizing atmosphere, and then to
After heat treatment under tension at ~500℃, 400~80℃
When heat treatment is performed while applying tension in an inert atmosphere at 0°C, and further heat treatment is performed in an inert atmosphere at 800°C or higher, the temperature increase rate tl-50 to 300°C/min in the temperature range of 300 to 500°C. This is a method for producing high-performance carbon fiber, characterized in that the processing time in the temperature range of 400 to 800° C. is set to α1 to 1 minute.

以下、第1図によって本発明を説明する。The present invention will be explained below with reference to FIG.

第1図は実施例で用いた耐炎化処理系を定荷重下、不活
性ガス中で熱処理した場合の糸の伸縮挙動の昇温速度依
存性を示したものである。
FIG. 1 shows the dependence of the expansion and contraction behavior of the yarn on the temperature increase rate when the flame-retardant treatment system used in the example was heat-treated in an inert gas under a constant load.

縦軸は糸長の変化を、横軸は熱処理温度を示している。The vertical axis shows the change in yarn length, and the horizontal axis shows the heat treatment temperature.

300〜500℃の領域では分解反応に伴う伸びか観測
され、400〜800℃の領域では組合環化反応に伴う
収量が観測さnる。
In the range of 300 to 500°C, elongation due to decomposition reaction is observed, and in the range of 400 to 800°C, yield due to combinatorial cyclization reaction is observed.

又、昇温速度を小さくすると、300〜500℃の領域
における分解反応に伴う伸びか小さくなっている。30
0〜500℃の温度領域は第1図に示した様に分解反応
が支配的な領域であり、その分解反応は昇温速度を低く
することによって抑制することが出来る。Cの温度領域
における分解反応は繊維表面に微小なボイド、クラック
等の欠陥を発生させ、又配向の緩和を引き起すことによ
って炭素繊維性能低下の原因となる。従って高性能炭素
繊維製造のためには、昇温速度を制御することによって
分解反応を制御することか必要となる。しかし、実際に
は、実施例に示すごとく50℃/分未満ではその効果が
頭打ちとなり、300℃/分を超えた昇温速度では大き
な性能低下が始する。
Furthermore, when the temperature increase rate is reduced, the elongation accompanying the decomposition reaction in the 300 to 500°C region becomes smaller. 30
As shown in FIG. 1, the temperature range of 0 to 500° C. is a region where decomposition reactions are dominant, and the decomposition reactions can be suppressed by lowering the rate of temperature rise. The decomposition reaction in the temperature range of C generates defects such as minute voids and cracks on the fiber surface, and also causes relaxation of orientation, thereby causing deterioration in carbon fiber performance. Therefore, in order to produce high-performance carbon fibers, it is necessary to control the decomposition reaction by controlling the heating rate. However, in reality, as shown in the examples, the effect reaches a plateau at a heating rate of less than 50° C./min, and a significant decline in performance begins at a heating rate exceeding 300° C./min.

一方、400〜800℃の温度領域は第1図に示し友様
に縮合環化反応か支配的な領域であり、その縮合環化反
応は昇温速度の杉#を受けない・この温度領域において
処理時間を長くすると縮合環化反応か進みすぎ、最終的
に炭素繊維の性能を決足する800℃以上の温度での反
応を妨げると考えられる。実際には実施例に示すごとく
処理時間1分を超えた範囲で急激な性能低下が観測さn
る。但し、この400〜8o。
On the other hand, the temperature range of 400 to 800°C, as shown in Figure 1, is the region in which condensation and cyclization reactions are dominant, and the condensation and cyclization reactions are not affected by the temperature increase rate in this temperature range. It is thought that if the treatment time is prolonged, the condensation and cyclization reaction will proceed too much, thereby hindering the reaction at a temperature of 800° C. or higher, which ultimately determines the performance of the carbon fiber. In fact, as shown in the example, a sudden drop in performance was observed when the processing time exceeded 1 minute.
Ru. However, this 400~8o.

℃の温度領域の処理時間をあまり短くすると。If the processing time in the temperature range of ℃ is too short.

800℃以上の温度で処理した際に、残余分解生底物が
発生することとなり、毛羽発生等の工程通過性の面から
好ましくない。アクリロニトリル系合成繊維の耐炎化糸
を不活性雰囲気中300〜SOO℃で一度処理し友もの
をさらに不活性雰囲気中800℃で処理した場合、処理
待間約(11分でN量減9率が飽和する傾向を示した。
When treated at a temperature of 800° C. or higher, residual decomposed bottom matter will be generated, which is unfavorable from the viewpoint of process passability such as generation of fuzz. When a flame-resistant acrylonitrile synthetic fiber yarn is treated once at 300 to SOO℃ in an inert atmosphere, and then treated again at 800℃ in an inert atmosphere, the N amount decreases by 9% in approximately 11 minutes. It showed a tendency to saturate.

このことから400〜800℃の温度領域における処理
時間は0.1分易−ヒが好ましいと考えらnる。
From this, it is considered that the preferable treatment time in the temperature range of 400 to 800°C is 0.1 minute.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。尚、ス
トランド強度及び弾性率はJISR−7601−198
0により測定した。
Hereinafter, the present invention will be specifically explained with reference to Examples. In addition, the strand strength and elastic modulus are JISR-7601-198.
Measured by 0.

実施例1 アクリロニトリル/メタクリル酸(98/2)共重合体
を半乾式湿式法により繊維化してフィラメント数120
00本、単糸デニール1.5dのマルチフィラメントを
得之。この繊維束ヲ230〜270℃の温度勾配を持つ
空気中でトータル20係の伸長を加えながら約45分間
耐炎化処理を行い、密度1.35〜1.36 t/cc
の耐炎化糸を得友。
Example 1 Acrylonitrile/methacrylic acid (98/2) copolymer was made into fibers using a semi-dry wet process to produce 120 filaments.
Obtained 00 pieces of multifilament with a single yarn denier of 1.5d. This fiber bundle was subjected to flame-retardant treatment for about 45 minutes while being stretched by a total of 20 degrees in air with a temperature gradient of 230 to 270°C, resulting in a density of 1.35 to 1.36 t/cc.
You can get flame-retardant yarn from.

上記耐炎化糸を300〜500℃の直線的に上昇する温
度プロフィルを有する不活性雰囲気中で8チの伸長を加
えながら処理し、次いで最高温度が80D℃である温度
プロフィル′fr有−jる不活性雰囲気中、4チ伸張下
で処理した後、最高温度が1600℃である温度プロフ
ィルを有する不活性雰囲気中で処理することにより得た
炭素繊維の性能を実験条件と共に第1表に示すO 第  1  表 墓1,6は′500〜500℃の温度領域の昇温速度か
興なる比較例、49,10.11は、400〜800℃
の処理時間が異なる比較例である。
The above flame-retardant yarn was treated in an inert atmosphere with a linearly increasing temperature profile of 300-500°C, with 8 inches of elongation, and then subjected to a temperature profile with a maximum temperature of 80°C. The performance of the carbon fibers obtained by processing in an inert atmosphere under 4 inch stretching and then processing in an inert atmosphere with a temperature profile with a maximum temperature of 1600 °C is shown in Table 1 together with the experimental conditions. 1st table graves 1 and 6 are comparative examples in which the temperature rise rate in the temperature range of 500 to 500 °C is high;
This is a comparative example with different processing times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いた耐炎化処理系を熱処理した場合
の糸の伸縮挙動と昇温速度との関係を示し友ものである
FIG. 1 shows the relationship between the expansion/contraction behavior of yarn and the rate of temperature increase when the flame-retardant treatment system used in the examples was heat-treated.

Claims (1)

【特許請求の範囲】[Claims] アクリロニトリル系合成繊維を酸化性雰囲気中で耐炎化
処理し、次いで不活性雰囲気中300〜500℃で緊張
下に熱処理を行つた後、400〜800℃の不活性雰囲
気中で緊張を加えながら熱処理を行い、さらに800℃
以上の不活性雰囲気下で熱処理を行うに際し、300〜
500℃の温度領域における昇温速度を50〜300℃
/分、400〜800℃の温度領域における処理時間を
0.1〜1分とすることを特徴とする高性能炭素繊維の
製造法。
Acrylonitrile synthetic fibers are flame-resistant treated in an oxidizing atmosphere, then heat treated under tension at 300-500°C in an inert atmosphere, and then heat-treated under tension at 400-800°C in an inert atmosphere. and further heated to 800℃
When performing heat treatment under the above inert atmosphere, 300~
Temperature increase rate in the temperature range of 500℃ to 50 to 300℃
1. A method for producing high-performance carbon fiber, characterized in that the processing time is 0.1 to 1 minute in a temperature range of 400 to 800°C.
JP25220285A 1985-10-09 1985-11-11 Production of high performance carbon fiber Pending JPS62110924A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25220285A JPS62110924A (en) 1985-11-11 1985-11-11 Production of high performance carbon fiber
KR1019870700479A KR890005273B1 (en) 1985-10-09 1986-10-08 Process for producing carbon fibers
US07/066,629 US4780301A (en) 1985-10-09 1986-10-08 Process for producing carbon fiber
EP86905935A EP0242401B1 (en) 1985-10-09 1986-10-08 Process for producing carbon fibers
DE8686905935T DE3686715T2 (en) 1985-10-09 1986-10-08 METHOD FOR THE PRODUCTION OF CARBON FIBERS.
PCT/JP1986/000512 WO1987002391A1 (en) 1985-10-09 1986-10-08 Process for producing carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25220285A JPS62110924A (en) 1985-11-11 1985-11-11 Production of high performance carbon fiber

Publications (1)

Publication Number Publication Date
JPS62110924A true JPS62110924A (en) 1987-05-22

Family

ID=17233920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25220285A Pending JPS62110924A (en) 1985-10-09 1985-11-11 Production of high performance carbon fiber

Country Status (1)

Country Link
JP (1) JPS62110924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685069A (en) * 2019-10-28 2020-01-14 江苏米格新材料有限公司 Method for continuously preparing pre-oxidized felt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716921A (en) * 1980-07-02 1982-01-28 Mitsubishi Rayon Co Ltd Preparation of carbon fiber
JPS59106522A (en) * 1982-12-08 1984-06-20 Toray Ind Inc Production of acrylic carbon fiber bundle having improved properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716921A (en) * 1980-07-02 1982-01-28 Mitsubishi Rayon Co Ltd Preparation of carbon fiber
JPS59106522A (en) * 1982-12-08 1984-06-20 Toray Ind Inc Production of acrylic carbon fiber bundle having improved properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685069A (en) * 2019-10-28 2020-01-14 江苏米格新材料有限公司 Method for continuously preparing pre-oxidized felt

Similar Documents

Publication Publication Date Title
EP2233616B1 (en) Processes for producing flameproof fiber and carbon fiber
JPS6211089B2 (en)
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
JPS6238444B2 (en)
JPS62110924A (en) Production of high performance carbon fiber
JPS62257422A (en) Production of carbon fiber
JP4088500B2 (en) Carbon fiber manufacturing method
JPS58214525A (en) Production of carbon fiber
JP2000160435A (en) Continuous thermal treatment of acrylic fiber bundle
KR890005273B1 (en) Process for producing carbon fibers
JPS62215018A (en) Production of carbon fiber
JPH04222229A (en) Production of graphite fiber
JPS6127487B2 (en)
GB2170491A (en) Method of producing graphite fiber and product thereof
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
JPS60110925A (en) Manufacture of high-performance carbon fiber
JPH0551686B2 (en)
JPS6250574B2 (en)
JPS6254889B2 (en)
JPS62257423A (en) Production of high-performance carbon fiber
JP2000336529A (en) Production of carbon fiber
JP2004107836A (en) Method for producing carbon fiber
JPS62231026A (en) Production of carbon fiber
JP2001192937A (en) Method of producing carbon fiber
JPS61119712A (en) Production of carbon fiber having high strength