[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62119511A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS62119511A
JPS62119511A JP26050785A JP26050785A JPS62119511A JP S62119511 A JPS62119511 A JP S62119511A JP 26050785 A JP26050785 A JP 26050785A JP 26050785 A JP26050785 A JP 26050785A JP S62119511 A JPS62119511 A JP S62119511A
Authority
JP
Japan
Prior art keywords
lens
image
light
focus
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26050785A
Other languages
Japanese (ja)
Inventor
Yoshiaki Horikawa
嘉明 堀川
Kazuo Kajitani
和男 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26050785A priority Critical patent/JPS62119511A/en
Priority to US06/932,145 priority patent/US4734570A/en
Priority to DE3639497A priority patent/DE3639497C3/en
Publication of JPS62119511A publication Critical patent/JPS62119511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To detect a focus with a high accuracy by providing a reduction optical system having a positive refracting power between an objective lens or a barrel lens and a projection lens, preferably, on the image surface side of the middle between them. CONSTITUTION:The light emitted from light emitting elements 16 and 17 alternately passes minute lenses 14 and 15 and is turned by a prism 13 and passes a beam splitter 29 and is projected on the image surface by a projection lens 12 and is projected on a sample through a reduction lens 11, a barrel lens 10, and an objective lens 9. The light reflected from the sample passes the objective lens 9, the barrel lens 10, the reduction lens 11, and the projection lens 12 and is reflected on the beam splitter 20 to form a spot on a light receiving element 19 by a detecting lens 18. A polarizing beam splitter may be used as the beam splitter 20, and a quarter-wave plate is arranged in a proper position between the beam splitter and the object if the polarizing beam splitter is used. Thus, the focus is detected accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カメラ、1頃微鏡、硬性鏡、眼底カメラ等の
光学機器や医療機器に適する焦点検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a focus detection device suitable for optical instruments and medical instruments such as cameras, microscopes, rigid endoscopes, and fundus cameras.

〔従来の技術〕[Conventional technology]

従来この種の焦点検出装置としては、応答性が良く高精
度の焦点検出装置を得るため光投射検出方法が採用され
てきたが、TTL方式の焦点検出装置では、投射光が観
察視野と重なるため赤外光が用いられてきた。面し可視
光と赤外光とでは色収差が大きく異なり何らかの補正機
構が必要とされ、特に色収差補正の異なる対物レンズを
交換して使用される顕微鏡では大きな問題となっていた
Conventionally, this type of focus detection device has adopted a light projection detection method in order to obtain a focus detection device with good responsiveness and high precision. Infrared light has been used. The chromatic aberration between facing visible light and infrared light is very different, and some kind of correction mechanism is required, which has been a big problem, especially in microscopes that are used by replacing objective lenses with different chromatic aberration corrections.

例えば、特開昭58−217909号においては、光軸
方向に一定距離移動可能なレンズ系を設けて赤外光の焦
点位置を調整することが必要であった。
For example, in Japanese Patent Application Laid-Open No. 58-217909, it was necessary to provide a lens system that can move a certain distance in the optical axis direction to adjust the focal position of the infrared light.

第12図(a)は成る対物レンズXによる結像の様子を
示す・もので、実線は可視光を示し点線し本赤外光を示
す。第12図fblは上記と異なる対物レンズYによる
結像の様子を示すものである。可視光による像は同位置
Mにできるが赤外光による像は異なった位置にできる(
NX、N、)。これは対物しンズが異なるごとに倍率や
色収差補正量が違うからである。その結果レーザダイオ
ード(LD)からの赤外光は検出器りにずれて入射する
ことになり非合焦状態と判定されることになる。そこで
第12図(C1に示すように補正レンズCを移動して調
整する必要があった。
FIG. 12(a) shows how an image is formed by the objective lens X, in which the solid line represents visible light and the dotted line represents infrared light. FIG. 12 fbl shows how an image is formed by an objective lens Y different from that described above. The visible light image can be created at the same position M, but the infrared light image can be created at a different position (
NX, N,). This is because the magnification and amount of chromatic aberration correction differ depending on the objective lens. As a result, the infrared light from the laser diode (LD) enters the detector with a deviation, and is determined to be in an out-of-focus state. Therefore, it was necessary to move and adjust the correction lens C as shown in FIG. 12 (C1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如く、従来例では赤外光の焦点位置ずれを補正レ
ンズを移動することにより調整してきたが、焦点位置ず
れは対物レンズごとに異なるから対物レンズの交換ごと
に赤外光の焦点調整用補正レンズを移動する必要があっ
た。上記問題点に鑑みて本願発明はレンズ調整を不要と
する焦点検出装置を提供することを目的とする。
As mentioned above, in the conventional example, the focal position shift of infrared light has been adjusted by moving the correction lens, but since the focal position shift differs for each objective lens, it is necessary to adjust the focus position of infrared light every time the objective lens is replaced. I had to move the correction lens. In view of the above problems, it is an object of the present invention to provide a focus detection device that does not require lens adjustment.

〔問題点を解決するための手段及び作用〕この装置では
、対物レンズ或いは鏡筒レンズと該レンズによって結ば
れる像面の間に、より好ましくは中央より結像面側に正
の屈折力を有する縮小光学系を設け、夫々異なった対物
レンズにより異なった位置にできる赤外光による像の位
置のずれを縮小することにより、赤外光を用いた焦点検
出法においてレンズ調整をすることなく、該焦点検出装
置を構成する信号処理回路の電気系の調整だけで、種々
の異なる対物レンズの使用に対応して精度良く焦点を検
出する。
[Means and effects for solving the problem] This device has a positive refractive power between the objective lens or barrel lens and the image plane formed by the lens, preferably from the center to the image plane side. By providing a reduction optical system and reducing the positional shift of images caused by infrared light that are produced at different positions by different objective lenses, it is possible to eliminate the need for lens adjustment in the focus detection method using infrared light. By simply adjusting the electrical system of the signal processing circuit constituting the focus detection device, the focus can be detected with high accuracy in response to the use of various different objective lenses.

〔実施例〕〔Example〕

本願発明の詳細な説明に入るまえに、本願発明に適用さ
れる焦点位置検出方法及び縮小光学系の基本原理を説明
する。
Before entering into a detailed description of the present invention, the basic principles of the focal position detection method and reduction optical system applied to the present invention will be explained.

先づ、第1図及び第2図により本願発明に適用される焦
点位置検出装置の基本原理について説明(対物レンズ)
■の像面と共役な位置Pを通り、ビームスプリッタ−4
を経て撮像レンズ(対物レンズ)1から光束Aとなって
合焦位置にある物体2上に点像Qとして形成される。点
像Qは物体2が散乱体の場合は撮像レンズ1の開ロ一杯
の光束となって像面に配置された受光素子3上に点像Q
として結像される。又、物体2が鏡面の場合は光束Bと
なって受光素子3上に点像Q′として結像される。一方
、発光素子8による点像も微小レンズ6を経た後同様に
して受光素子3上に点像Q′として形成される(光束B
参照)。従って、合焦状態の場合は、発光素子7による
点像も発光素子8による点像も受光素子3上では全く同
一の点像となることがわかる。
First, the basic principle of the focal position detection device applied to the present invention will be explained with reference to FIGS. 1 and 2 (objective lens).
It passes through a position P that is conjugate to the image plane of ■, and beam splitter 4.
After passing through the imaging lens (objective lens) 1, the light flux A is formed as a point image Q on the object 2 at the focal position. If the object 2 is a scatterer, the point image Q becomes a light beam that fills the full aperture of the imaging lens 1 and forms a point image Q on the light receiving element 3 placed on the image plane.
imaged as. Further, when the object 2 is a mirror surface, the light beam becomes a beam B and is imaged on the light receiving element 3 as a point image Q'. On the other hand, the point image by the light emitting element 8 is similarly formed on the light receiving element 3 as a point image Q' after passing through the microlens 6 (luminous flux B
reference). Therefore, it can be seen that in the focused state, both the point image by the light emitting element 7 and the point image by the light emitting element 8 are exactly the same point image on the light receiving element 3.

一方、第2図は非合焦状態を示しており、発光素子7に
よる点像は微小レンズ5を経た後撮像レンズ1の像面と
共役な位置Pを通り、ビームスプリッタ−4を経て撮像
レンズ(対物レンズ)1から光束へとなって合焦位置に
ない物体2上にピントのずれた点像QA として形成さ
れる。尚、合焦位置は2゛で示されている。点像QAは
、物体2が散乱体の場合は撮像レンズ1の開口に等しい
光束となって受光素子3上にピントのずれた点像Q、′
として形成される。又、物体2が鏡面の場合は光束Cと
なって受光素子3上にピントのずれた点像QA ′とじ
て形成される。一方、発光素子8による点像も微小レン
ズ6を経た後同様に物体2上にピントのずれた点像QB
として形成された後受光素子3上にピントのずれた点像
QR′とじて形成される(光束T3.D参l1lO0こ
の様に非合焦時の場合は受光素子3−にの発光素7−7
及び発光素子8の点像QA ゛及びQ[l’は異なった
位置に形成され、又合焦時の場合は同じ位置に形成され
る。
On the other hand, FIG. 2 shows an out-of-focus state, in which the point image produced by the light emitting element 7 passes through the microlens 5, passes through a position P that is conjugate with the image plane of the imaging lens 1, passes through the beam splitter 4, and then passes through the imaging lens. (Objective lens) 1 becomes a light beam and is formed as an out-of-focus point image QA on an object 2 that is not at the in-focus position. Note that the in-focus position is indicated by 2°. When the object 2 is a scatterer, the point image QA becomes a luminous flux equal to the aperture of the imaging lens 1 and is an out-of-focus point image Q,' on the light receiving element 3.
is formed as. If the object 2 is a mirror surface, the light beam C becomes a light beam C and is formed on the light receiving element 3 as an out-of-focus point image QA'. On the other hand, after the point image by the light emitting element 8 passes through the microlens 6, it similarly appears on the object 2 as an out-of-focus point image QB.
After that, an out-of-focus point image QR' is formed on the light-receiving element 3. 7
The point images QA' and Q[l' of the light-emitting element 8 are formed at different positions, or at the same position when in focus.

ここで発光素子7及び発光素子8を交互に点滅させると
、合焦点には受光素子3上の点像の位置は変化しないが
、非合焦時には受光素子3上の点像は交互にQA ’、
QB ’となって位置変化を生じる。従って、合焦を行
なう場合には受光素子3上の点像の移動が生じないよう
に撮像レンズ1(顕微鏡の場合は物体2)を移動すれば
良い。
Here, when the light emitting element 7 and the light emitting element 8 are blinked alternately, the position of the point image on the light receiving element 3 does not change at the in-focus point, but when the point image is out of focus, the point image on the light receiving element 3 alternates between QA' ,
QB' and a change in position occurs. Therefore, when focusing, it is sufficient to move the imaging lens 1 (object 2 in the case of a microscope) so that the point image on the light receiving element 3 does not move.

又、点像の移動方向及び移動量から前ピン、後ピンの判
定及びデフォーカス■の測定が可能である。特にデフォ
ーカス量が小さい場合には、発光素子7及び発光素子8
による光束のなす角をθ。
Furthermore, it is possible to determine front focus and rear focus and to measure defocus (2) from the moving direction and amount of movement of the point image. Especially when the amount of defocus is small, the light emitting element 7 and the light emitting element 8
The angle formed by the luminous flux is θ.

点像の移動量をδとすれば、像側のデフォーカス量dは
、次式 d  =−□                +11
2  tan− より求めることができる。尚、以上は点像として話を進
めたが、必ずしも点像である必要はない。
If the moving amount of the point image is δ, the defocus amount d on the image side is calculated by the following formula d = −□ +11
It can be determined from 2 tan-. Note that although the discussion has been made above as a point image, it does not necessarily have to be a point image.

次に本願発明に適用される縮小光学系の基本原理につい
て説明する。第3図+alは焦点距離fTの鏡筒レンズ
Oによる結像の様子を示し、実線は可視光で鏡筒レンズ
Oからf7の位置Mに可視光像ができている。点線は対
物レンズXの場合の赤外光で、可視光像Mより0.2f
□だけずれて結像しくNつ)、一点鎖線は対物レンズY
による場合の赤外光でさらに0.4f、ずれて結像する
(N、)。
Next, the basic principle of the reduction optical system applied to the present invention will be explained. FIG. 3 +al shows how an image is formed by the barrel lens O having a focal length fT, and the solid line is visible light, and a visible light image is formed at a position M at f7 from the barrel lens O. The dotted line is infrared light for objective lens X, which is 0.2 f from visible light image M.
The image is formed with a shift of □ (N), and the dashed line is the objective lens Y.
In the case of infrared light, the image is formed with a further shift of 0.4 f (N,).

このとき可視光の像の倍率をβとすると、対物レンズX
による赤外光像は1.2β倍、対物レンズYによる赤外
光像は1.6β倍の大きさになる。
At this time, if the magnification of the visible light image is β, then the objective lens
The infrared light image obtained by the objective lens Y is 1.2β times larger, and the infrared light image obtained by the objective lens Y is 1.6β times larger.

第3図tb+は、焦点距離2f、の凸レンズCを可視光
像Mから0.2f、前方の位置に設けた場合を示し、こ
の場合対物レンズXによる赤外光像NXはMから0.1
3fT後方の位置に、対物レンズYによる赤外光像N、
は更番こ0.13 f を後方の位置に結ばれ像倍率は
夫々βと1.22βになる。この様に鏡筒レンズOと可
視光像Mの間に凸レンズを配設すれば、対物レンズXと
Yによる赤外光像の位置ずれを、凸レンズCを配設しな
いときの0.4f丁から0.13fTに縮小でき、又像
倍率の変化も小さくなる。
Fig. 3 tb+ shows a case where a convex lens C with a focal length of 2f is provided at a position 0.2f ahead of the visible light image M, and in this case, the infrared light image NX by the objective lens X is 0.1f from M.
At a position behind 3fT, an infrared light image N by the objective lens Y,
0.13 f is focused at the rear position, and the image magnification becomes β and 1.22 β, respectively. By arranging a convex lens between the barrel lens O and the visible light image M in this way, the positional shift of the infrared light image due to the objective lenses X and Y can be reduced from 0.4f when the convex lens C is not arranged. It can be reduced to 0.13 fT, and the change in image magnification is also small.

第3図(C1は焦点距離0.2fTの凸レンズC′を可
視光像Mから0.2fT前方の位置に配設した場合を示
し、対物レンズXによる赤外光像NXはMより0.07
f、前方に、対物レンズYによる赤外光像N、はMより
0.05fT前方の位置に結ばれる。像倍率は可視光像
が0.5β、対物レンズXとYによる赤外光像が夫々0
.33βとo、25βとなる。結局鏡筒レンズOと可視
光像M間に凸レンズ系より成る縮小光学系を配設すれば
、対物レンズの違いによる赤外光像の位;ηずれを0.
02f、と小さくでき、又像倍率の変化も小さく非常に
好都合である。
Figure 3 (C1 shows the case where a convex lens C' with a focal length of 0.2 fT is placed 0.2 fT ahead of the visible light image M, and the infrared light image NX by the objective lens X is 0.07
In front of f, an infrared light image N by objective lens Y is focused at a position 0.05 fT ahead of M. The image magnification is 0.5β for the visible light image and 0 for the infrared light image by objective lenses X and Y.
.. 33β and o, 25β. After all, if a reduction optical system consisting of a convex lens system is disposed between the barrel lens O and the visible light image M, the position of the infrared light image due to the difference in objective lenses; η deviation can be reduced to 0.
02 f, and the change in image magnification is also small, which is very convenient.

ここで第4図(alに示すように、焦点距離fの縮小レ
ンズCでレンズ面よりaの距離の虚像をbの位置に投影
する場合、 式が成立する。この場合のaとbの関係を第4図(bl
に示すが、本グラフ中上述の第3図(b)、第3図(C
lO両図を用いて説明した条件を満足するのは、点線で
示される範囲である。即ちaが大きく変化してもbの変
化は小さい。
Here, as shown in Figure 4 (al), when a reduction lens C with a focal length f projects a virtual image at a distance a from the lens surface to a position b, the formula holds true.The relationship between a and b in this case Figure 4 (bl
3(b) and 3(C) mentioned above in this graph.
The range indicated by the dotted line satisfies the conditions explained using the IO diagrams. In other words, even if a changes significantly, b changes little.

特にbが縮小レンズの焦点距離に近い場合にその傾向が
顕著である。尚、実用上は縮小レンズの後側焦点を結像
面に大略一致させたとき後側主点が鏡筒レンズと結像面
の中央より後側寄りとなる、即ち、鏡筒レンズの2程度
以下の焦点距離のレンズ系をその後側焦点が結像面から
あまり大きく離れないような配置で使用することが望ま
しい。
This tendency is particularly noticeable when b is close to the focal length of the reduction lens. In practice, when the rear focal point of the reduction lens is made to approximately coincide with the imaging plane, the rear principal point will be closer to the rear than the center of the barrel lens and the imaging plane, that is, about 2 points from the center of the barrel lens. It is desirable to use a lens system with the following focal length in such a way that the rear focal point is not too far away from the image plane.

」二連の如く、対物レンズ或いは鏡筒レンズとその結像
面間に縮小光学系を設けることにより、赤外光像の位置
ずれを縮小することができることがら、該焦点検出装置
を構成する回路の電気系を調整するだけで、種々の異な
る対物レンズの使用に対応できる焦点検出装置を提供で
きる。
By providing a reduction optical system between the objective lens or barrel lens and its image forming surface, as in the case of a double series, the positional deviation of the infrared light image can be reduced. By simply adjusting the electrical system, it is possible to provide a focus detection device that can be used with a variety of different objective lenses.

第5図は上記の原理の合焦装置を用いて顕微鏡光学系に
本発明を適用した場合の第一の実施例を示しているが、
図中9は対物レンズ、1oは鏡筒レンズ、11は縮小レ
ンズ、12は赤外光スポットを投射するレンズ、13は
プリズム、14.15は微小レンズ、16.17は例え
ばレーザーダイオードの如き発光素子、18は検出用レ
ンズ、19は受光素子、20ばビームスプリッタ−であ
る。
FIG. 5 shows a first embodiment in which the present invention is applied to a microscope optical system using a focusing device based on the above principle.
In the figure, 9 is an objective lens, 1o is a barrel lens, 11 is a reduction lens, 12 is a lens that projects an infrared light spot, 13 is a prism, 14.15 is a microlens, and 16.17 is a light emitting device such as a laser diode. 18 is a detection lens, 19 is a light receiving element, and 20 is a beam splitter.

発光素子16.17から交互に発光される光は微小レン
ズ14.15を′1mリプリズム13で方向を変えられ
てビームスプリッタ−20を通り投射レンズ12により
像面上に投射され、更に縮小レンズ11.鏡筒レンズ1
0.対物レンズ9を通り試料上に投射される。試料から
反射された光は再び対物レンズ9.鏡筒レンズ10.縮
小レンズ11、投射レンズ12を通り、ビームスプリン
ター20で反射されて検出用レンズ18により受光素子
19上にスポットを生じる。ビームスプリッタ−20は
偏光ビームスプリッタ−を用いても良いがその場合には
ビームスプリンターと物体の間の適当な位置にA波長板
が配設される。
The light emitted alternately from the light emitting elements 16 and 17 passes through microlenses 14 and 15, is redirected by a 1m reprism 13, passes through a beam splitter 20, is projected onto an image plane by a projection lens 12, and is further passed through a reduction lens 11. .. Barrel lens 1
0. It passes through the objective lens 9 and is projected onto the sample. The light reflected from the sample passes through the objective lens 9 again. Barrel lens 10. The light passes through the reduction lens 11 and the projection lens 12, is reflected by the beam splinter 20, and is generated by the detection lens 18 to form a spot on the light receiving element 19. A polarizing beam splitter may be used as the beam splitter 20, but in that case, an A wavelength plate is disposed at an appropriate position between the beam splitter and the object.

第6図は上記第一の実施例の信号処理回路を示している
が、先づ、第7図により受光素子19の詳細な構造につ
いて説明すれば、30は高抵抗S。
FIG. 6 shows the signal processing circuit of the first embodiment. First, the detailed structure of the light receiving element 19 will be explained with reference to FIG. 7. Reference numeral 30 denotes a high resistance S.

基板、31ばp型抵抗層、32はn+層、33は共通電
極、34.35は電極であって、表面層はp−n接合に
より光電効果を発揮するようになっている。従って、図
示の如く光がp型抵抗層3Iに入射すると、その入射位
置に応じて電極34゜35から各々出力電流■ヶ、■6
が得られる。ここで電極34及び35の間の距離を1.
抵抗をReとし、更に電極34から光の入射位置までの
距離をX、その部分抵抗をRX、入射光により発生した
光電流をI。とすれば、 Rff          Re となり、抵抗層が均一であれば、次式が得られるj2 
− x β                   l従って、
電極3135の出力電流IA、1.から l  A  −I−I Il       #なる演算
を行なうごとにより、人躬エネルギー即ち入射光量に無
関係に光の人躬位置即ら距1ii1f xが求められる
。尚、入射光量は、次式 1式%(51 より求められる。
A substrate, 31 a p-type resistance layer, 32 an n+ layer, 33 a common electrode, 34 and 35 electrodes, and the surface layer exhibits a photoelectric effect due to a pn junction. Therefore, when light enters the p-type resistance layer 3I as shown in the figure, the output currents from the electrodes 34 and 35 are 1 and 6, respectively, depending on the position of incidence.
is obtained. Here, the distance between the electrodes 34 and 35 is set to 1.
The resistance is Re, the distance from the electrode 34 to the light incident position is X, its partial resistance is RX, and the photocurrent generated by the incident light is I. Then, Rff Re becomes, and if the resistance layer is uniform, the following equation can be obtained j2
− x β l Therefore,
Output current IA of electrode 3135, 1. By performing the calculation from lA-I-IIl#, the human position of the light, that is, the distance 1ii1fx, is determined regardless of the human energy, that is, the amount of incident light. Incidentally, the amount of incident light is obtained from the following equation 1% (51).

再び第6図において、21.21’は受光素子19の二
つの電極34.35からの出力電流IA、Inを増幅す
る為の電流増幅器であって、出力はVA、V、となる。
Again in FIG. 6, 21.21' is a current amplifier for amplifying the output currents IA and In from the two electrodes 34 and 35 of the light receiving element 19, and the outputs are VA and V.

22は(VA  VR)を演算する減算器、23は(V
A →−V、)を演算する加算器、24は(VA −V
* )/ (vヶ→−VB >(式(4)に相当する)
の演算を行なう除算器である。
22 is a subtracter that calculates (VA VR), 23 is (V
An adder 24 calculates (VA -V, ).
* ) / (v → -VB > (corresponds to formula (4))
This is a divider that performs the calculation.

25は除算器24の出力信号から直流バイアス成分を除
去した後その出力信号に応じてステージを移動させる駆
動回路26を制御する制御回路であって、その回路構成
は例えば第8図に示すようになっている。即ち、3Gは
整流回路、37は微分回路、38はコンパレーター、3
9はゼロレベル検出回路であり、除算器24から交流出
力信号は整流回路36により直流信号に変換され、微分
回路37を介してコンパレーター38により正負の判定
が行われ、前記信号が減少しつつあるのか増加しつつあ
るのかを判別して増加しつつある場合はステージの駆動
の方向を反転させ、該信号が「ゼロ」になったことをゼ
ロレベル検出回路39が検出することにより合焦が検出
され、ステージの駆動が停止されるようになっている。
Reference numeral 25 denotes a control circuit for controlling a drive circuit 26 that removes the DC bias component from the output signal of the divider 24 and then moves the stage according to the output signal.The circuit configuration is, for example, as shown in FIG. It has become. That is, 3G is a rectifier circuit, 37 is a differentiation circuit, 38 is a comparator, 3
Reference numeral 9 denotes a zero level detection circuit, in which the AC output signal from the divider 24 is converted into a DC signal by a rectifier circuit 36, and a positive/negative determination is made by a comparator 38 via a differentiation circuit 37, so that the signal decreases while If the signal is increasing, the stage driving direction is reversed, and the zero level detection circuit 39 detects that the signal has become "zero", and the focus is established. This is detected and the drive of the stage is stopped.

尚、27は発光素子16及び17を交互に点滅させるド
ライブ回路である。
Note that 27 is a drive circuit that causes the light emitting elements 16 and 17 to blink alternately.

本発明による焦点検出装置は上述の如く構成されている
から、ステージを一定の位置において、先づ、光源16
.17を交互に発光させると、非合焦状態では例えば第
9図(a)に示した如き一定振幅の信号が除算器24か
ら出力される。ここで、この信号の振幅ば合焦点からの
外れの目安となり、モジ振幅−〇であれば合焦状態であ
ることを意味している。そこで、ステージを僅かずつ光
軸に沿って移動させると、除算器24の出力信号は第9
図fbl又は第9図(C1に示した如き信号に変化する
Since the focus detection device according to the present invention is configured as described above, first, the light source 16 is
.. 17, the divider 24 outputs a signal with a constant amplitude as shown in FIG. 9(a), for example, in the out-of-focus state. Here, the amplitude of this signal is a measure of deviation from the in-focus point, and a modulus amplitude of -0 means that the object is in focus. Therefore, when the stage is moved little by little along the optical axis, the output signal of the divider 24 becomes
The signal changes to the one shown in Figure fbl or Figure 9 (C1).

そして、この信号を整流回路36により整流して平滑化
すれば、第9図+d)又は第9図(elに示した如き信
号に変化する。従って、これを微分回路37により微分
すれば信号変化の包絡線の傾きが得られる。そして、こ
の傾きが負であれば合焦点に近づきつつあり、正であれ
ば合焦点から離れつつあることになる。そこで、この正
負をコンパレータ38で判定し、負の場合には駆動回1
1826がそのまま作動するようにし、正の場合には反
転信号をレンズ駆動回路26に加わるようにすれば、ス
テージは合焦点に向って移動せしめられる。そして、振
幅−〇となった時にステージの移動を停止すれば合焦状
態となる。
If this signal is rectified and smoothed by the rectifier circuit 36, it will change to a signal as shown in Figure 9+d) or Figure 9 (el).Therefore, if this signal is differentiated by the differentiator circuit 37, the signal will change. The slope of the envelope of If negative, drive times 1
1826 is allowed to operate as it is, and if it is positive, an inverted signal is applied to the lens drive circuit 26, thereby moving the stage toward the focal point. Then, if the movement of the stage is stopped when the amplitude becomes -0, the in-focus state is achieved.

かくして、本発明’JWによる焦点検出が行われるが、
本発明装置は、瞳分割手段を必要としないので光学系が
簡単となり、而も受光素子は簡単な構造のもの一個で済
むので信号処理系が簡単になると共に調整も容易となる
。そして、光学系も信号処理系も簡単となることから全
体の構成が簡単となり、その結果光学機器や医療機器に
無理なく組み込むことが出来る。又、受光素子として半
導体装置検出器を用いているので、実時間で信号が入力
されるようになりその結果合焦速度が向上する。また対
物レンズを含めた系の倍率をβとすると、ステージの移
動量d′は(1)式からδ d ’ −(61 θ 2β2tan − より求めることが出来る。
In this way, focus detection is performed by the JW of the present invention.
Since the apparatus of the present invention does not require a pupil dividing means, the optical system is simple, and since only one light-receiving element is required, the signal processing system is simple and adjustment is easy. Since the optical system and the signal processing system are both simple, the overall configuration is simple, and as a result, it can be easily incorporated into optical equipment and medical equipment. Furthermore, since a semiconductor device detector is used as the light receiving element, signals can be input in real time, resulting in improved focusing speed. Further, if the magnification of the system including the objective lens is β, the moving amount d' of the stage can be determined from equation (1) as follows: δ d ' - (61 θ 2 β2 tan -).

第10図は上記制御回路25として簡単なマイクロプロ
セッサを用いた場合のフローチャートを示しており、ま
ず発光素子16をONしてその時の点像位置QA ′を
入力し、次に発光素子17をONしてその時の点像位置
QB ′を入力する。次にその差(像のずれ)δ−QA
 ’  QB  ′を求める。δの符号がデフォーカス
の方向(前ピン、後ピン)を示し、δの絶対値がデフォ
ーカス量に対応していることになる。次に(1)式の計
算を行い、像のずれδをデフォーカスldに換算し、ス
テージを駆動することにより合焦を得ることが出来る。
FIG. 10 shows a flowchart when a simple microprocessor is used as the control circuit 25. First, the light emitting element 16 is turned on and the point image position QA' at that time is input, and then the light emitting element 17 is turned on. Then, input the point image position QB' at that time. Next, the difference (image shift) δ−QA
Find 'QB'. The sign of δ indicates the direction of defocus (front focus, rear focus), and the absolute value of δ corresponds to the amount of defocus. Next, equation (1) is calculated, the image shift δ is converted to defocus ld, and focusing can be obtained by driving the stage.

この時、デフォーカスidが大きい場合は、物体から反
射して戻ってくる発光素子16.17からの光束がレン
ズ枠等でけられて光量が少なくなる。
At this time, if the defocus ID is large, the light flux from the light emitting elements 16, 17 that is reflected back from the object is eclipsed by the lens frame, etc., and the amount of light decreases.

そこで、デフォーカス量dが大きい場合には受光素子1
9が得る光@ (Vn  +VB )を検出して、この
値が大きくなる様にステージを駆動せしめて受光素子1
9が点像Qll′とQll′の位置を検出できるように
すれば合焦速度を速くすることができる。なお、発光素
T−16,I7は一1’f 1fflのランプ。
Therefore, when the defocus amount d is large, the light receiving element 1
9 detects the light @(Vn +VB), and drives the stage so that this value increases, and the light receiving element 1
9 can detect the positions of point images Qll' and Qll', the focusing speed can be increased. Note that the light emitting elements T-16 and I7 are 1'f 1ffl lamps.

LED、  レーザー、半導体レーザー等何を用いても
良いが、実用的には赤り1.1. ED 、赤り(半導
体レーザーが適している。又、受光素子1つは半導体装
置検出器でなくとも、いわゆるCCD型、 MOS型等
のイメージセン→)°−を用いても良い。
Any LED, laser, semiconductor laser, etc. may be used, but for practical purposes, red 1.1. ED, red (a semiconductor laser is suitable. Also, one light receiving element need not be a semiconductor device detector, but an image sensor such as a so-called CCD type or MOS type) may be used.

次に、第二の実施例として1−記原理を一眼レフカメラ
に応用した場合について説明する。
Next, as a second embodiment, a case where the principle described in 1-1 is applied to a single-lens reflex camera will be described.

第11図はその光学系を示しており、40は撮像レンズ
、41はクイックリターンミラー中に設けられたビーム
スプリッタ、42はミラー、43は縮小レンズ、44は
ビームスプリンタ、45は受光素子、46.47は微小
レンズ、48.49は発光素子である。以上のように第
5図と同様な光学系が一眼レフカメラの中に設置されて
いる。
FIG. 11 shows the optical system, 40 is an imaging lens, 41 is a beam splitter provided in a quick return mirror, 42 is a mirror, 43 is a reduction lens, 44 is a beam splinter, 45 is a light receiving element, 46 .47 is a microlens, and 48.49 is a light emitting element. As described above, an optical system similar to that shown in FIG. 5 is installed in a single-lens reflex camera.

この場合、信号処理系は第一実施例で示したもののうち
ステージを駆動する部分をレンズを駆動する構成で置き
かえてそのまま利用できるので、その構成及び作用の詳
細説明は省略する。
In this case, the signal processing system shown in the first embodiment can be used as is by replacing the part that drives the stage with a structure that drives the lens, so a detailed explanation of its structure and operation will be omitted.

〔発明の効果〕〔Effect of the invention〕

」−述の如く本発明によれば、例えば顕微鏡に利用した
場合、極低倍から高倍の倍率の対物レンズ(例えば1χ
から150Xまで)に対して非常に高速に応答する焦点
検出装置を提供することができ、特に検出装置の光学系
を対物レンズを取り換えるごとに調整する必要はなく、
回路の電気的調整のみで常に正値な焦点検出を行い得る
と云う利点がある。
” - As mentioned above, according to the present invention, when used in a microscope, for example, an objective lens with a magnification ranging from very low to high magnification (for example, 1χ
It is possible to provide a focus detection device that responds very quickly to objects (from 150X to 150
There is an advantage that focus detection can always be performed with a positive value only by electrical adjustment of the circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は焦点検出装置の基本原理を示す図、
第3図及び第4図は縮小レンズ系を配設した場合の結像
の様子の説明図とその関係グラフ、第5図は本願発明に
よる縮小光学系を備えた第一の実施例を示す図、第6図
は−に記第−の実施例の信号処理回路を示す図、第7図
は上記光学系中の受光素子の構造を示す図、第8図はI
−配信υ処理回路中の制御回路の構成を示す図、第9図
は上記制御回路による信号処理過程を示す図、第10図
は上記制御回路としてマイク11プ1]七ソ勺を用いた
場合のフローチャーI・を示ず図、第11図は第二の実
施例の光学系を示す図、第12図は従来例の結像の様子
の説明図。 9・・・・対物レンズ、10・・・・鏡筒レンズ、11
゜43・・・・縮小レンズ、12・・・・投射レンズ、
13・・・・プリズム、Im  15,46.47・・
・・微小レンズ、16.1.7.48.49・・・・発
光素子、18・・・・検出用レンズ、19.45・・・
・受光素子、20.41.44・・・・ビームスプリン
タ、21゜21’・・・・電流増幅器、22・・・・減
算器、23・・、・加算器、24・・・・除算器、25
・・・・制御回路、26・・、・レンズ駆動回路、27
・・・・ドライブ回路、40、・0.撮像レンズ、42
・・・・ミラー。 オ1図 & 0 枯オ 17図 4′ i 凶 オlO図
Figures 1 and 2 are diagrams showing the basic principle of the focus detection device;
3 and 4 are explanatory diagrams of the state of image formation when a reduction lens system is provided and their relationship graphs, and FIG. 5 is a diagram showing a first embodiment equipped with a reduction optical system according to the present invention. , FIG. 6 is a diagram showing the signal processing circuit of the embodiment described in -, FIG. 7 is a diagram showing the structure of the light receiving element in the optical system, and FIG.
- A diagram showing the configuration of the control circuit in the distribution υ processing circuit, Figure 9 is a diagram showing the signal processing process by the above control circuit, and Figure 10 is the case where microphone 11 is used as the control circuit. FIG. 11 is a diagram showing the optical system of the second embodiment, and FIG. 12 is an explanatory diagram of the state of image formation in the conventional example. 9... Objective lens, 10... Lens barrel lens, 11
゜43...reducing lens, 12...projection lens,
13...prism, Im 15,46.47...
...Minute lens, 16.1.7.48.49...Light emitting element, 18...Detection lens, 19.45...
・Photodetector, 20.41.44...Beam splinter, 21゜21'...Current amplifier, 22...Subtractor, 23...Adder, 24...Divider , 25
...control circuit, 26..., lens drive circuit, 27
...Drive circuit, 40, 0. Imaging lens, 42
····mirror. Figure 1 & 0 Figure 17 Figure 4' i Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)光学系中の異なる経路を通過する光束を用いて像
の位置ずれを生じさせ焦点位置を検出するようにして成
る焦点位置検出装置において、対物レンズ或いは鏡筒レ
ンズと該レンズによる結像面との間に正の屈折力を有す
る縮小光学系を設け、夫々異なる対物レンズにより異な
る位置に結像される赤外光像の位置のずれを縮小するこ
とにより、赤外光を用いて焦点検出を行うようにしたこ
とを特徴とする焦点検出装置。
(1) In a focus position detection device that detects the focal position by causing an image position shift using light beams passing through different paths in an optical system, the image formation by the objective lens or barrel lens and the lens By providing a reduction optical system with positive refractive power between the surface and the surface, and reducing the positional deviation of the infrared light images that are focused at different positions by different objective lenses, it is possible to focus using infrared light. A focus detection device characterized by performing detection.
(2)上記縮小光学系の後側主点位置が対物レンズ或い
は鏡筒レンズと該レンズによる結像面の中間位置より結
像面側にある特許請求の範囲(1)に記載の焦点検出装
置。
(2) The focus detection device according to claim (1), wherein the rear principal point position of the reduction optical system is closer to the imaging plane than the intermediate position between the objective lens or barrel lens and the imaging plane formed by the lens. .
JP26050785A 1985-11-20 1985-11-20 Focus detector Pending JPS62119511A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26050785A JPS62119511A (en) 1985-11-20 1985-11-20 Focus detector
US06/932,145 US4734570A (en) 1985-11-20 1986-11-18 Active focus detecting device with infrared source
DE3639497A DE3639497C3 (en) 1985-11-20 1986-11-20 Device for determining the focus state of an optical imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26050785A JPS62119511A (en) 1985-11-20 1985-11-20 Focus detector

Publications (1)

Publication Number Publication Date
JPS62119511A true JPS62119511A (en) 1987-05-30

Family

ID=17348919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26050785A Pending JPS62119511A (en) 1985-11-20 1985-11-20 Focus detector

Country Status (1)

Country Link
JP (1) JPS62119511A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036614B2 (en) * 1980-05-16 1985-08-21 日本電気株式会社 information processing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036614B2 (en) * 1980-05-16 1985-08-21 日本電気株式会社 information processing equipment

Similar Documents

Publication Publication Date Title
JP2950546B2 (en) Eye gaze detecting device and camera having eye gaze detecting device
TWI406025B (en) Automatic focusing apparatus and method
JPH01216306A (en) Focus detecting device having image pickup means
JP2643326B2 (en) Single-lens reflex camera with focus detection device
US4734570A (en) Active focus detecting device with infrared source
US4733062A (en) Focus detecting device
JPH07120253A (en) Active autofocus device
JP3091243B2 (en) Multi-point distance measuring device
JPS62119511A (en) Focus detector
JPS5926708A (en) Focusing method of zoom lens
JP2004109864A (en) Imaging apparatus and imaging system provided with it
JPH0545573A (en) Focus detecting device
JPS63259521A (en) Composite type focusing detection device
JPS62143010A (en) Focus detecting device
JP2757541B2 (en) Focus detection device and observation device having the same
JP3174128B2 (en) camera
JPH10103915A (en) Apparatus for detecting position of face
JPS63229439A (en) Automatic focusing device
JP2951361B2 (en) Automatic focusing device
JPH0460602A (en) Focus detector and observation device equipped with the same
JPH05223565A (en) Distance measuring device
JP2758625B2 (en) camera
JPS61295523A (en) Focus detector
JPS6283612A (en) Displacement transducer
JPH06100711B2 (en) Automatic focusing device