[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62115737A - Inspection device for external appearance of semiconductor substrate - Google Patents

Inspection device for external appearance of semiconductor substrate

Info

Publication number
JPS62115737A
JPS62115737A JP25554685A JP25554685A JPS62115737A JP S62115737 A JPS62115737 A JP S62115737A JP 25554685 A JP25554685 A JP 25554685A JP 25554685 A JP25554685 A JP 25554685A JP S62115737 A JPS62115737 A JP S62115737A
Authority
JP
Japan
Prior art keywords
positioning
post
distance
deviation
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25554685A
Other languages
Japanese (ja)
Inventor
Shinsui Saruwatari
新水 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP25554685A priority Critical patent/JPS62115737A/en
Publication of JPS62115737A publication Critical patent/JPS62115737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To discriminate defectives and nondefectives automatically by comparing the quantity of deviation of a post-process to a pre-process and tolerance on a design, to decrease man- hours and to improve the precision of decision by detecting a positioning mark put in the pre-process and a positioning mark put in the post-process by using a sensor and recognizing the quantity of deviation of the post-process to the pre-process on the basis of an output signal from the sensor. CONSTITUTION:A developed wafer 1 is mounted onto a Y stage 9. A positioning X mark 2 in a pre-process at a first measuring point on the wafer 1 is carried just under laser beams 6 for positioning, and positioning operation is conducted. A positioning signal 7 is acquired at that time. X-stage coordinates at a point where the peak value of the positioning signal is formed are represented by (a). An X stage 10 is moved in the direction of the view B, a positioning mark 3 in a post-process is conveyed just under laser beams 6 for positioning, and positioning operation is performed. Coordinates at a point where the peak value of a positioning signal 8 obtained is shaped are represented by (b). The signal is inputted to a processing section 20, and the processing section 20 divides a distance between the positioning marks in the pre-process and the post-process and recognizes the quantity of deviation between the divided distance and a distance (c) on a design.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造プロセス中フォトレジスト現像後に
半導体基板(以下ウェハーと称する)の現1象状態等を
確認する為に用いられている外観検査装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a visual inspection method used to confirm the appearance, etc. of a semiconductor substrate (hereinafter referred to as a wafer) after photoresist development during a semiconductor manufacturing process. It is related to the device.

〔従来の技術〕[Conventional technology]

従来、この種の装置はウェハーのカセットからの出し入
れや搬送及びウェハーの位置決めのみを自動で行ない、
現像されたパターンの良否判定は装置に組み込まれた顕
微鏡による目視チェックで人間が判断するものが主流で
あった。
Conventionally, this type of equipment only automatically takes the wafer in and out of the cassette, transports it, and positions the wafer.
The quality of the developed pattern was mainly judged by humans through visual inspection using a microscope built into the device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般にフォトレジスト現障後のウェハーには、レジスト
塗布工程、目合せ露光工程及び現鍬工程で発生するパタ
ーンのズレやキレ具合及びその他の欠陥がある確率で存
在する為、現[象後にウェハーの全数もしくは一部を抜
きとりにより外観検査を行なうのが普通である。
In general, there is a probability that the wafer after the photoresist failure will have pattern deviations, sharpness, and other defects that occur during the resist coating process, alignment exposure process, and development process. It is common practice to conduct a visual inspection by sampling all or part of the product.

しかしながら、従来の装置ではパターンの良否判定を人
間の目に頼って実施しているので、多大の工数を要し、
又その判定精度の面においても多くの問題を抱えていた
However, conventional devices rely on the human eye to judge the quality of patterns, which requires a large amount of man-hours.
Furthermore, there were many problems in terms of determination accuracy.

特に前工程のパターンに対する後工程のズレの許容幅は
ツクターンの微細化とともに年々小さくなってお)、パ
ターンの重な9具合で感覚的に判断したシバ−ニアを目
視読みしたシする現在の方法ではもはや限界であると言
わざるを得ない。
In particular, the allowable range of deviation in the subsequent process from the pattern in the previous process is becoming smaller year by year as the pattern becomes finer), and the current method is to visually read the shibania, which is determined intuitively based on the 9 conditions in which the patterns overlap. I have to say that this has reached its limit.

本発明はパターンの良否判定を機械化できる外観検査装
置を提供するものである。
The present invention provides an appearance inspection device that can mechanize pattern quality determination.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は前工程の少なくとも一箇所以上の任意の箇所に
入れた位置合わせマークと前記位置合せマークから設計
上一定距離離れた箇所に入れた後工程の位置合せマーク
とを検出するセンサーと、該センサーの出力信号に基い
て2つの位置合わせマーク間の距離を割り出してこの割
り出した距離。
The present invention provides a sensor for detecting an alignment mark placed in at least one arbitrary position in a pre-process and an alignment mark in a post-process placed in a place that is designed to be a certain distance away from the alignment mark; This distance is determined by determining the distance between two alignment marks based on the output signal of the sensor.

と前記設計上の距離とのズレ量を認識する処理部とを有
することを特徴とする半導体基板外観検査装置である。
A semiconductor substrate appearance inspection apparatus is characterized in that it has a processing section that recognizes the amount of deviation between the distance and the designed distance.

〔実施例〕〔Example〕

以下、本発明の一実施例を図によって説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、10はX駆動モータ12及びX。In FIG. 1, 10 is an X drive motor 12 and an X.

運動軸11によりX方向に送りを与えられるXステージ
、9はY駆動モータ14及びY駆動軸13によシXステ
ージ10上でY方向に送シを与えられるYステージであ
シ、Yステージ9上にウェハーが設置される。
An X stage 9 is fed in the X direction by a motion axis 11, and a Y stage 9 is fed in the Y direction on the X stage 10 by a Y drive motor 14 and a Y drive shaft 13. A wafer is placed on top.

本実施例は位置合わせ用レーザー光6をレンズ15にて
収束させてウェハー1上に照射し前工程位置合わせX、
Xマーク2,3と後工程位置合わせ4,5とを検出する
センサーと、該センサーの出力信号に基いて2の位置合
わせマーク2と3.4と5の間の距離を割シ出してこの
割り出した距離と設計上の距離Cとのズレ量を認識する
処理部20とを有するものである。16はX干渉計レー
ザー光、17はX干渉計ミラー、19はY干渉計レーデ
−光、18はY干渉計ミラーである。
In this embodiment, the alignment laser beam 6 is focused by a lens 15 and irradiated onto the wafer 1 to perform pre-process alignment
A sensor detects the X marks 2 and 3 and the post-process alignment marks 4 and 5, and the distance between the alignment marks 2 and 3.4 and 5 of 2 is calculated based on the output signal of the sensor. It has a processing unit 20 that recognizes the amount of deviation between the calculated distance and the designed distance C. 16 is an X interferometer laser beam, 17 is an X interferometer mirror, 19 is a Y interferometer radar beam, and 18 is a Y interferometer mirror.

ここではX方向ズレを代表例として説明する。Here, the X-direction deviation will be explained as a representative example.

まず現像されたウェハー1をYステージ9上へ設置する
(第1図)。次にウェハー1上の第1番目の測定点にお
ける前工程の位置合わせXマーク2を位置合わせ用レー
ザー光6の直下へ運び、位置決め動作を行なわせる(第
2図、第3図)。この時、第4図に示した位置決め信号
7が得られる。
First, the developed wafer 1 is placed on the Y stage 9 (FIG. 1). Next, the positioning X mark 2 from the previous process at the first measurement point on the wafer 1 is brought directly under the positioning laser beam 6, and a positioning operation is performed (FIGS. 2 and 3). At this time, the positioning signal 7 shown in FIG. 4 is obtained.

位置決め信号のピーク値が出た点のXステーノ座標をa
とする。さらにXステージ10を矢視B方向へ移動させ
て後工程の位置合わせXマーク3を位置合わせ用レーザ
ー光6の直下に運び位置決め動作を行なわせる。得られ
た位置決め信号8のピーク値が出た点の座標をbとする
。この信号を処理部20に入力し、処理部20は前工程
と後工程との位置合わせマーク間の距離を割シ出してこ
の割り出した距離と設計上の距離Cとのズレ量を認識す
る。
The X steno coordinate of the point where the peak value of the positioning signal appears is a
shall be. Furthermore, the X stage 10 is moved in the direction of arrow B to carry the positioning X mark 3 in the subsequent process directly under the positioning laser beam 6 and perform a positioning operation. Let b be the coordinates of the point where the peak value of the obtained positioning signal 8 appears. This signal is input to the processing unit 20, which calculates the distance between the alignment marks in the previous process and the subsequent process, and recognizes the amount of deviation between the calculated distance and the designed distance C.

前工程位置合わせマーク2と後工程位置合わせマーク3
は設計上Cだけ離れているから、前工程に対する後工程
のズレ量はa−b−cで与えられる。
Pre-process alignment mark 2 and post-process alignment mark 3
are separated by C in design, so the amount of deviation in the subsequent process from the previous process is given by a-b-c.

Y方向のズレに関しても同様にして測定することができ
る。
The deviation in the Y direction can also be measured in the same manner.

さらにウェハー上の第2番目・・・第n番目の測定点に
ついても全く同様にして測定することができる。
Furthermore, the second...nth measurement points on the wafer can be measured in exactly the same manner.

上述した方法で求めたズレ量を予め装置内部に記憶させ
た設計上のズレの許容幅(dとする)と比較させ、1a
−b−CI≦ldl ならば良、l a−b−e l 
>I d lならば否と自動判定させることも可能であ
る。
The amount of deviation obtained by the method described above is compared with the allowable design deviation width (denoted as d) stored in advance inside the device, and 1a
-b-CI≦ldl then good, l a-b-e l
>I d l, it is also possible to automatically determine no.

尚本発明の一実施例においてはマーク間ノ距離を測定す
る方式としてレーザー光固定ステージ移動タイプの位置
決め方式とし、高精度なX−Y座標糸を得る為にレーザ
ー干渉計を備えたX−Yステージを使用したが、本発明
の特徴である前工程のマークと後工程のマークをレーザ
ー元等により測定してその距離を認識する方法を用いて
いる限シ形状・方法の如何は問わなAものである。
In one embodiment of the present invention, a laser beam fixed stage moving type positioning system is used as a method for measuring the distance between marks, and an X-Y system equipped with a laser interferometer is used to obtain a highly accurate X-Y coordinate thread. Although a stage was used, the shape and method do not matter as long as the method of measuring the pre-process mark and post-process mark with a laser source etc. and recognizing the distance is used, which is a feature of the present invention. It is something.

〔発明の効果〕 以上説明した様に本発明は前工程に入れた位置合わせマ
ークと後工程に入れた位置合わせマークとをセンサーを
用いて検出し、その出力信号に基いて前工程に対する後
工程のズレ量を認識するようにしたため、そのズレ量と
設計上の許容幅を比較させて自動的に良否の判定をさせ
ること等が可能であり、人的工数の削減化及び判定精度
の向上に対して有効であるという効果を有するものであ
る。
[Effects of the Invention] As explained above, the present invention uses a sensor to detect the alignment mark entered in the previous process and the alignment mark entered in the post process, and based on the output signal, the alignment mark is detected in the post process relative to the previous process. Since the amount of deviation is recognized, it is possible to automatically make a pass/fail judgment by comparing the amount of deviation with the design tolerance, reducing human labor and improving judgment accuracy. It has the effect of being effective against.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図はウェ
ハー上に焼き付けられた位置合わぜマークを示す斜視図
、第3図は第2図のA−A’断面図、第4図は位置決め
信号の波形を示す図である。 1・・・ウェハー、2・・・前工程位置合わせXマーク
、3・・・後工程位置合わせXマーク、4・・・前工程
位置合わせYマーク、5・・・後工程位置合わせYマー
ク、6・・・位置合わせ用レーザー光、7・・・前工程
マーク位置決め信号、8・・・後工程マーク位置決め信
号、9・・・Yステージ、10・・・Xステムシ、11
・・・X駆動軸、12・・・X駆動モータ、13・・・
Y駆、動軸、14・・・Y駆動モータ、15・・・レン
ズ、16・・・X干渉計レーザー元、17・・・X干渉
計ミラー、18・・・Y干渉計ミラー、19・・・Y干
渉計レーザー光。 第2図
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view showing alignment marks printed on a wafer, FIG. 3 is a sectional view taken along line AA' in FIG. FIG. 4 is a diagram showing the waveform of the positioning signal. 1... Wafer, 2... Front process alignment X mark, 3... Back process alignment X mark, 4... Front process alignment Y mark, 5... Back process alignment Y mark, 6...Laser beam for alignment, 7...Pre-process mark positioning signal, 8...Post-process mark positioning signal, 9...Y stage, 10...X stem, 11
...X drive shaft, 12...X drive motor, 13...
Y drive, driving axis, 14...Y drive motor, 15...Lens, 16...X interferometer laser source, 17...X interferometer mirror, 18...Y interferometer mirror, 19. ...Y interferometer laser light. Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板のフォトレジスト現像後等に、前工程
に対する後工程の外観を検査する装置において、前工程
にて半導体基板上の任意の箇所に入れた位置合わせマー
クと前記位置合わせマークから設計上一定距離離れた箇
所に入れた後工程の位置合せマークとを検出するセンサ
ーと、該センサーの出力信号に基いて2つの位置合わせ
マーク間の距離を割出してこの割出した距離と設計上の
距離とのズレ量を認識する処理部とを有することを特徴
とする半導体基板外観検査装置。
(1) In a device that inspects the appearance of a post-process with respect to a pre-process after photoresist development on a semiconductor substrate, etc., a design is made from the alignment mark placed at an arbitrary location on the semiconductor substrate in the pre-process and the alignment mark. A sensor detects an alignment mark for post-processing placed at a location a certain distance away from the top, and calculates the distance between the two alignment marks based on the output signal of the sensor. 1. A semiconductor substrate appearance inspection apparatus, comprising: a processing section that recognizes the amount of deviation from the distance.
JP25554685A 1985-11-14 1985-11-14 Inspection device for external appearance of semiconductor substrate Pending JPS62115737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25554685A JPS62115737A (en) 1985-11-14 1985-11-14 Inspection device for external appearance of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25554685A JPS62115737A (en) 1985-11-14 1985-11-14 Inspection device for external appearance of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS62115737A true JPS62115737A (en) 1987-05-27

Family

ID=17280225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25554685A Pending JPS62115737A (en) 1985-11-14 1985-11-14 Inspection device for external appearance of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS62115737A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850747A (en) * 1981-09-19 1983-03-25 Toshiba Corp Pattern for detecting connection
JPS6297327A (en) * 1985-10-23 1987-05-06 Mitsubishi Electric Corp Evaluation method of overlapping accuracy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850747A (en) * 1981-09-19 1983-03-25 Toshiba Corp Pattern for detecting connection
JPS6297327A (en) * 1985-10-23 1987-05-06 Mitsubishi Electric Corp Evaluation method of overlapping accuracy

Similar Documents

Publication Publication Date Title
Che et al. Real-time monitoring of workpiece diameter during turning by vision method
US4539481A (en) Method for adjusting a reference signal for a laser device operating in a giant pulse mode
US4365163A (en) Pattern inspection tool - method and apparatus
US6624897B1 (en) Apparatus and method for feature edge detection in semiconductor processing
JPH0669017B2 (en) Alignment method
JPS62115737A (en) Inspection device for external appearance of semiconductor substrate
JPH1058175A (en) Calibration method for optical axis of laser beam machine
JPH0443407B2 (en)
JP2000329521A (en) Pattern measuring method and aligning method
JP3146568B2 (en) Pattern recognition device
JP2626637B2 (en) Positioning method
JPH04226012A (en) Space setting method
JPH0256812B2 (en)
JPH0430175B2 (en)
JPH09283580A (en) Superposition error measuring method
JPH04361548A (en) Method and device for defect detection
JPH0835908A (en) Apparatus and method for measuring eccentricity of lens
CN115268219A (en) Stray light measuring device, stray light measuring method and stray light measuring system
JPH02187618A (en) Inspection method for mounted printed board
JPS63271618A (en) Aligning mark and aligning method
JPH0782390B2 (en) Stage positioning method
JPH07120618B2 (en) Particle beam drawing method
JPH02176406A (en) Position adjusting apparatus
JPH05234845A (en) Reduction-type projection aligner
JPS63225110A (en) Inspection instrument