[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6197912A - Cvd equipment - Google Patents

Cvd equipment

Info

Publication number
JPS6197912A
JPS6197912A JP21846184A JP21846184A JPS6197912A JP S6197912 A JPS6197912 A JP S6197912A JP 21846184 A JP21846184 A JP 21846184A JP 21846184 A JP21846184 A JP 21846184A JP S6197912 A JPS6197912 A JP S6197912A
Authority
JP
Japan
Prior art keywords
cvd
film
light
reaction chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21846184A
Other languages
Japanese (ja)
Inventor
Akira Takamatsu
朗 高松
Takeo Yoshimi
吉見 武夫
Hisayuki Kato
久幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21846184A priority Critical patent/JPS6197912A/en
Publication of JPS6197912A publication Critical patent/JPS6197912A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To upgrade a CVD film and to easily selectively form a film by proceeding the light CVD and eliminating a reactive product in regular sequence through sequentially controlling both a light illuminating timing to a semiconductor and a gas supply timing into a CVD equipment. CONSTITUTION:In CVD process, a sequential controlling portion 20 get both a gas supply portion 14 and a light illuminating portion 19 into operation at the same time and also intermittently. In other words, after it supplies gas with opening a switch valve 13, it operates a light source 17 into illuminating light, stops operating for a moment and supplying a gas, the gas in a reaction chamber 1 is exhausted once. After gas supply and light illuminating are done again when some time passes after the exhaust, the predetermined film thickness of an SiO2 film 21 is obtained through repeating this several times. Owing to the exhaust between each portion through the intermittent light CVD reactions, a reactive product is eliminated from the reaction chamber. Therefore, a reactive product's contamination into the CVD film is prevented, the formation of the good quality CVD film is realized, and the requested film thickness is easily obtained as the film thickness is in proportional to number of repetition.

Description

【発明の詳細な説明】 〔技術分野] 本発明はCV D (Chemical Vapour
 Deposi−tion)法に関し、特に高品質のC
VD膜をtCVD法によって選択的に形成するCVD装
置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to CVD (Chemical Vapor
Deposition method, especially high quality C
The present invention relates to a CVD apparatus that selectively forms a VD film by a tCVD method.

〔背景技術〕[Background technology]

IC,LSIの半導体装置の調造には各程薄膜を形成す
るCVD技術が利用されているが、近年ではこの薄膜を
選択的に形成する方法として、エツチング工程を必要と
することなく直接的に形成できる光CVD法が利用され
てきている。丁なわち、この光CVD法は、半導体基板
を反応ガス雰囲気中にセットする一万で光学的マスクを
利用して半導体基板の所望箇所にのみ光を照射する方法
であり、元の照射された部分にのみ元エネルギによって
CVD膜が選択的に形成される方法である。
CVD technology is used to form various thin films in the preparation of semiconductor devices such as IC and LSI, but in recent years, a method for selectively forming this thin film has been developed that directly eliminates the need for an etching process. Photochemical vapor deposition (CVD) methods have been used to form these materials. In other words, this photo-CVD method is a method in which a semiconductor substrate is set in a reactive gas atmosphere, and then an optical mask is used to irradiate light only on desired areas of the semiconductor substrate. This is a method in which a CVD film is selectively formed using source energy only in portions.

ところで、この光CVD法に限らずCVo法全般では、
CVD膜の反応形成に伴って他の反応生成物が発生して
これがCVD装置内に浮遊し、場合によっては半導体基
板の表面に付着することがある。この反応生成物が半導
体基板に付着すると形成するCVD膜内に混入されCV
D膜の品質を悪化させることになる。特に近年の半導体
装置では、素子の微細化に伴って前述の元CVD法が利
用され、CVD膜を微細な部分にのみしかも極めて薄く
形成しているため、このような反応生成物の混入による
CVDaの品質の悪化を生ずることは、素子の特性にも
影響を与えることになり、半導体装置の信頼性の点で好
ましくない。
By the way, not only this photo-CVD method but also the CVo method in general,
As the CVD film is formed by reaction, other reaction products are generated and float within the CVD apparatus, and in some cases may adhere to the surface of the semiconductor substrate. When this reaction product adheres to the semiconductor substrate, it is mixed into the CVD film that is formed.
D The quality of the film will deteriorate. In particular, in recent semiconductor devices, the above-mentioned original CVD method is used as elements become smaller, and CVD films are formed only in minute parts and extremely thin, so CVDa due to the contamination of such reaction products A deterioration in the quality of the semiconductor device also affects the characteristics of the element, which is undesirable in terms of reliability of the semiconductor device.

なお、CVD技術を詳しく述べである例としては、工業
調査会発行電子材料1983年11月号別冊、昭和58
年11月15日発行、P、69〜P、74がある。
An example of a detailed explanation of CVD technology is the electronic materials November 1983 special issue published by Kogyo Kenkyukai, 1983.
Published November 15, 2015, pages 69-74.

〔発明の目的〕[Purpose of the invention]

本発明の目的は元CVD法による薄膜の形成に際しても
高品質のCVDaを容易に得ることができしかも膜の選
択形成をも合わせて容易に行なうことのできるCVD装
置を提供することにある。
An object of the present invention is to provide a CVD apparatus that can easily obtain high-quality CVDa even when forming thin films by the original CVD method, and can also easily perform selective film formation.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要] 本願にお℃・て開示される発明のうち代表的なものの概
要を簡単に説明すれば、下記のとおりである。
[Summary of the Invention] A brief overview of typical inventions disclosed in the present application is as follows.

すなわち、CVD装置内に供給するガスの供給タイミン
グと、半導体基板に照射する元の照射タイミングとをシ
ーケンス制御する制御部を設け、九〇VDの進行と反応
生成物の除去とを順序的に行なわせることにより、CV
D装置内の反応生成物を有効に除去した状態でCVD膜
を形成でき、これによりCVD膜の品質の向上と膜の選
択形成の容易化を達成できる。
That is, a control unit is provided that sequentially controls the timing of supplying gas into the CVD apparatus and the timing of the original irradiation of the semiconductor substrate, so that the progress of 90VD and the removal of reaction products are performed in sequence. By setting the CV
A CVD film can be formed while the reaction products in the D apparatus are effectively removed, thereby improving the quality of the CVD film and facilitating the selective formation of the film.

〔実施例] 第1図は本発明のCVD装置の一実施例を示し℃おり、
例えばシリコン基板の表面に8102膜を選が形成する
例を示している。図において、反応室1は密封状態に形
成し、その下部には排気ポンプ3を介装して反応室1内
を負正に設定し得る排気口2を開設している。また、反
応室1内にはシリコン基板(ウエーノ・)4の支持板5
を立設してシリコンウェーハ4を立てて支持でざるよう
にすると共に、その直近(ウエーノ・4の前面位置)に
は所定のパターンのフォトマスク6を立設支持して(・
る。更に反応室1の内側壁には後述する光照射部19の
一部を構成する大小一対の凹面ミラー7.8を対向配置
している。
[Example] Figure 1 shows an example of the CVD apparatus of the present invention.
For example, an example is shown in which an 8102 film is selectively formed on the surface of a silicon substrate. In the figure, a reaction chamber 1 is formed in a sealed state, and an exhaust port 2 is provided in the lower part of the reaction chamber 1 so that an exhaust pump 3 can be inserted to set the inside of the reaction chamber 1 to negative or positive. Also, in the reaction chamber 1, a support plate 5 for a silicon substrate (Weno) 4 is provided.
At the same time, a photomask 6 with a predetermined pattern is erected and supported in the immediate vicinity of the silicon wafer 4 (at the front position of the wafer 4).
Ru. Further, on the inner wall of the reaction chamber 1, a pair of large and small concave mirrors 7.8, which constitute a part of a light irradiation section 19 to be described later, are arranged facing each other.

一部、反応室1の上部にはガス供給口9を開設し、これ
にはSiH,ガス、N、0ガスまたはSiH4゜02ガ
スの各ガス源10.11.12に接続している。またガ
ス供給口9には開閉バルブ13を介装し、これによりガ
ス供給部14を構成して℃・る。
Part of the upper part of the reaction chamber 1 is provided with a gas supply port 9, which is connected to gas sources 10, 11, and 12 of SiH, gas, N, 0 gas, or SiH4.02 gas. Further, an on-off valve 13 is interposed in the gas supply port 9, thereby forming a gas supply section 14.

更に、反応室1の一部には図示の上下、左右に往復微動
される微動機構15を設け、ここに元ファイバ16の一
端を取着している。元ファイバ16の他端は光源17に
延設しているが、その途中にはフィルタ分光器18を介
装しており、′:ytJ諒17から出射される光の中の
特定波長光を元ファイバ16の一端から反応−1内に照
射し得る光照射部19を構成して℃・る。光源には白色
光やレーザ光の光源が利用される。
Furthermore, a fine movement mechanism 15 is provided in a part of the reaction chamber 1, and one end of the original fiber 16 is attached to the fine movement mechanism 15, which is reciprocated vertically and horizontally as shown in the figure. The other end of the original fiber 16 is extended to a light source 17, and a filter spectrometer 18 is interposed in the middle of the fiber, and a filter spectrometer 18 is installed in the middle of the fiber, and a filter spectrometer 18 is inserted in the middle. A light irradiation unit 19 capable of irradiating the inside of the reaction-1 from one end of the fiber 16 is configured. A light source of white light or laser light is used as the light source.

そして、前記光源17.開閉バルブ13はシーケンス制
御部20に接続し、予め設定したプログラムに従ってシ
ーケンス的に作動されるように構成している。
The light source 17. The on-off valve 13 is connected to a sequence control section 20 and is configured to be operated in sequence according to a preset program.

以上の構成によれば、排気ポンプ3によって反応室1内
を真空引きする一部で開閉バルブ13を開に丁れば、S
 IH4、N20.(S IH4、Ot )の各ガスが
反応室1内に供給される。−万、f、源17を動作させ
れば、所定の元が元ファイバ16を通して反応室1内に
照射される。そして、この光は凹面ミラー7.8によっ
て反射されフォトマスク6を通してシリコンウェー/・
40表面に照射される。このとき、微動機構15を作動
することにより、光は上下、左右に走査され、結局フォ
トマスク6の全面に対して走査すれ、フォトマスクのパ
ターン形状に従ってウエーノ・4表面に選択的に照射さ
れる。このため、第2図に示すように、光の照射された
ウェーハ4部位では光エネルギによって S i H4+ N20 (02)→S i02+ H
,0+N2の反応が進行され、その部位にのみSin、
が堆積されてSiQ、膜21が選択的に形成されること
になる。
According to the above configuration, if the opening/closing valve 13 is opened at the part where the inside of the reaction chamber 1 is evacuated by the exhaust pump 3, the S
IH4, N20. Each gas (S IH4, Ot ) is supplied into the reaction chamber 1 . - When the source 17 is operated, a predetermined source is irradiated into the reaction chamber 1 through the original fiber 16. Then, this light is reflected by a concave mirror 7.8 and passes through a photomask 6.
40 surfaces are irradiated. At this time, by operating the fine movement mechanism 15, the light is scanned up and down, left and right, and eventually scans the entire surface of the photomask 6, and is selectively irradiated onto the surface of the Ueno 4 according to the pattern shape of the photomask. . Therefore, as shown in FIG. 2, in the four parts of the wafer irradiated with light, the light energy changes S i H4+ N20 (02) → S i02+ H
,0+N2 reaction proceeds, and only at that site is Sin,
is deposited to selectively form SiQ film 21.

そして、このCVDの進行に際し、第3図にタイムチャ
ートを示すように、シーケンス制御部20はガス供給部
14と光照射部19の動作を略同時にしかも間欠的に行
なわせることにより、換言丁れば開閉バルブ13を開い
てガス供給を行なった上で光源17を作動して光照射を
行なし・、これを一旦停止した上で開閉バルブ13を閉
めてガス供給を停止し、反応室1内のガスを一度排気さ
せる。排気後に若干時間経過丁れば再びガス供給と光照
射を行ン1’−’、これを数回繰返丁ことにより所要の
膜厚のSiQ、膜21を得るものである。
As this CVD progresses, as shown in the time chart in FIG. For example, the on-off valve 13 is opened to supply gas, and then the light source 17 is activated to irradiate the light. After this is temporarily stopped, the on-off valve 13 is closed to stop the gas supply, and the interior of the reaction chamber 1 is Exhaust the gas once. After some time has elapsed after evacuation, gas supply and light irradiation are performed again (1'-'), and by repeating this several times, a SiQ film 21 of a required thickness is obtained.

このよいにしてSiQ!膜21膜形1すれば、光CVD
反応によって5iQ2と共に生成されたH2O。
This good thing is SiQ! If film 21 film type 1, photo CVD
H2O produced along with 5iQ2 by the reaction.

N1等が排気の度毎に反応室から排気されウェー/・4
0表面近傍から取除かれるため、SiQ、膜21中にこ
れら生成物が混入されることはなく、高品質の810.
膜を形成することができる。また、この形成では所定時
間の光照射を複数回繰返して5102膜21を形成して
いるので、この繰返し回数に応じてSin、膜の膜厚を
容易にコントロールすることができ、所望の膜厚を容易
に得ることができる。更に、光照射部19に光ファイバ
16を使用しているので、光学系の設備のフ易化を図る
ことができ、かつ光損失が少な(・ので高効率の膜形成
を行なうことができる。勿論、光走査も容易に行うこと
ができる。
N1 etc. are exhausted from the reaction chamber every time the exhaust is performed.
Since these products are removed from near the 810.
A film can be formed. In addition, in this formation, the 5102 film 21 is formed by repeating light irradiation for a predetermined time multiple times, so the thickness of the Sin film can be easily controlled according to the number of repetitions, and the desired film thickness can be achieved. can be easily obtained. Furthermore, since the optical fiber 16 is used in the light irradiation section 19, it is possible to simplify the equipment of the optical system, and there is less light loss (.), so that highly efficient film formation can be performed. Of course, optical scanning can also be easily performed.

〔効果〕〔effect〕

(1)反応室に対してガス供給部と光照射部とを備える
元CVD装置にシーケンス制御部を設け、このシーケン
ス制御部によってガス供給部と光照射部とをシーケンス
作動させるよう構成しているので、光CVD反応を間欠
的に行なって谷間で排気を行なうことにより、反応生成
物を反応室から除去することができ、これによりCVD
膜中への反応生成物の混入を防止して品質の良いCVD
膜の形成を実現する。
(1) A sequence control unit is provided in the original CVD apparatus that includes a gas supply unit and a light irradiation unit for the reaction chamber, and the sequence control unit is configured to operate the gas supply unit and the light irradiation unit in sequence. Therefore, the reaction products can be removed from the reaction chamber by performing the photoCVD reaction intermittently and exhausting the air in the valley.
High-quality CVD by preventing reaction products from entering the film
Achieve film formation.

(21CVD膜は短い時間のCVD反応を複数回繰返し
て行なっているので、膜厚と繰返し回数とが比例し、膜
厚のコントロールを容易にして所望の膜厚を容易に得る
ことができる。
(Since the 21CVD film is produced by repeating a short CVD reaction multiple times, the film thickness is proportional to the number of repetitions, making it easy to control the film thickness and obtain a desired film thickness.

(31光照射部に元ファイバを用いているので、光源か
ら反応室内に到る光学系の構成の簡易化を図ると共に、
ウェーハに対する光走査を容易に行なうことができる。
(Since the original fiber is used for the 31 light irradiation section, it is possible to simplify the configuration of the optical system from the light source to the inside of the reaction chamber,
Optical scanning of the wafer can be easily performed.

(4)元ファイバな利用しているので光損失が少なく、
元CVD反応を高効率で行なうことができる。
(4) Since the original fiber is used, there is little optical loss.
Original CVD reactions can be performed with high efficiency.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨な逸脱しない範囲で種々変更可
能であることは℃・うまでもない。たとえば、反応室内
の構造、元の走査方式等に種々の変更が可能であり、更
にレーザビーム等を利用して直接CVD膜の選択形成を
行なうようにしてもよい。
Although the invention made by the present inventor has been specifically explained based on Examples, the present invention is not limited to the above Examples, and it is understood that various changes can be made without departing from the gist of the invention. It's no good. For example, various changes can be made to the internal structure of the reaction chamber, the original scanning method, etc., and it is also possible to directly selectively form a CVD film using a laser beam or the like.

〔利用分野〕[Application field]

以上の説明では主とし1本発明者によってなされた発明
をその背景となった利用分野であるC■DSiOz膜の
形成技術に適用した場合について説明したが、それに限
定されるものではなく、ナイトライド膜等CVD法によ
って形成される腹の形成用装置として適用できる。
In the above explanation, we have mainly explained the case where the invention made by the present inventor is applied to the technology for forming a C■DSiOz film, which is the field of application that formed the background of the invention, but it is not limited thereto. It can be applied as a device for forming an antinode formed by a CVD method such as a membrane.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の断面構成図、第2図は
ウェーハ表面部の要部孤太図、第3図はシーケンス動作
のタイムチャート図で゛ある。 1°゛°反応呈、3・・・排気口、4・・・ウエーノ・
、6・・・フォトマスク、10〜12・・・ガス源、1
3・・開閉バルブ、14・・・ガス供給部、16・・・
元ファイバ、17・・・光源、19・・・光照射部、2
0・・・シーケンス制御部、21・・・CVD (Si
n、)膜。 7ど\、 第   1  図 /チ 第  2  図 Z/ 第  3  図
FIG. 1 is a cross-sectional configuration diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is an isolated diagram of essential parts of the wafer surface, and FIG. 3 is a time chart of sequence operations. 1°゛°reaction, 3...Exhaust port, 4...Ueno・
, 6... Photomask, 10-12... Gas source, 1
3...Opening/closing valve, 14...Gas supply section, 16...
Original fiber, 17... Light source, 19... Light irradiation part, 2
0...Sequence control unit, 21...CVD (Si
n,) membrane. 7D\, Figure 1/CH Figure 2Z/Figure 3

Claims (1)

【特許請求の範囲】 1、半導体基板を内装しかつ内部を真空圧に設定できる
反応室と、この反応室内に反応ガスを供給するガス供給
部と、前記半導体基板に対して選択的に光を照射する光
照射部とを備え、かつ前記ガス供給部と光照射部とをシ
ーケンス的に制御するシーケンス制御部とを備えること
を特徴とするCVD装置。 2、シーケンス制御部はガス供給と光照射とを略同期し
て作動させ、かつその間に反応室内の負圧を増加させて
反応室内の反応生成物を除去し得る特許請求の範囲第1
項記載のCVD装置。 3、光照射部は反応室と光源とを光ファイバで接続して
なる特許請求の範囲第1項又は第2項記載のCVD装置
[Claims] 1. A reaction chamber containing a semiconductor substrate and capable of setting the inside to a vacuum pressure, a gas supply unit supplying a reaction gas into the reaction chamber, and selectively applying light to the semiconductor substrate. A CVD apparatus comprising: a light irradiation section that irradiates the gas; and a sequence control section that sequentially controls the gas supply section and the light irradiation section. 2. The sequence control unit operates the gas supply and the light irradiation substantially synchronously, and during that time, increases the negative pressure in the reaction chamber to remove reaction products in the reaction chamber. Claim 1
CVD apparatus described in section. 3. The CVD apparatus according to claim 1 or 2, wherein the light irradiation section is formed by connecting the reaction chamber and the light source with an optical fiber.
JP21846184A 1984-10-19 1984-10-19 Cvd equipment Pending JPS6197912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21846184A JPS6197912A (en) 1984-10-19 1984-10-19 Cvd equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21846184A JPS6197912A (en) 1984-10-19 1984-10-19 Cvd equipment

Publications (1)

Publication Number Publication Date
JPS6197912A true JPS6197912A (en) 1986-05-16

Family

ID=16720263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21846184A Pending JPS6197912A (en) 1984-10-19 1984-10-19 Cvd equipment

Country Status (1)

Country Link
JP (1) JPS6197912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232416A (en) * 1987-03-20 1988-09-28 Sony Corp Formation of thin-film through photochemical vapor growth
JPH098037A (en) * 1995-06-15 1997-01-10 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232416A (en) * 1987-03-20 1988-09-28 Sony Corp Formation of thin-film through photochemical vapor growth
JPH098037A (en) * 1995-06-15 1997-01-10 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
EP0456479B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
US4716852A (en) Apparatus for thin film formation using photo-induced chemical reaction
EP0186419A2 (en) Method of dry etching or film formation
JPH04196559A (en) Method of controlling thickness of single crystalline thin film layer of soi board
JPS631097B2 (en)
US4693779A (en) Manufacturing apparatus for semiconductor devices
JPS6197912A (en) Cvd equipment
JPS61228633A (en) Formation of thin film
JP2840419B2 (en) Light treatment method and light treatment device
JPS59129774A (en) Selective formation of nitrided film
JPS5940525A (en) Growth of film
JPS63124528A (en) Device for manufacturing semiconductor
JPS59208065A (en) Depositing method of metal by laser
JPH0437129A (en) Etching and device thereof
JPS6132429A (en) Device for manufacturing semiconductor device
JPH07150361A (en) Method of manufacturing SOI device using YSZ thin film
JPS60216549A (en) Manufacture of semiconductor device
JPH0429220B2 (en)
JP2719174B2 (en) Manufacturing method of metal film
JPS60167316A (en) Film formation method
JPS63199431A (en) Deposition device for thin-film and deposition method thereof
JPH0242715A (en) Pattern formation
JP2683612B2 (en) Method for forming structure of compound semiconductor
JPS60124816A (en) Thin film growth method
JPS63308910A (en) Manufacture of thin film applying energy beam irradiation and its equipment