JPS6190074A - Laser range finder - Google Patents
Laser range finderInfo
- Publication number
- JPS6190074A JPS6190074A JP59212992A JP21299284A JPS6190074A JP S6190074 A JPS6190074 A JP S6190074A JP 59212992 A JP59212992 A JP 59212992A JP 21299284 A JP21299284 A JP 21299284A JP S6190074 A JPS6190074 A JP S6190074A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- signal
- microwave
- component
- optical modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/32—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、レーザ光によるIjIII距装置・\に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an IjIII distance device using laser light.
従来のこの棟のレーザ測距装置の概略を第1図によって
説明する。第1図は、従来方式による測距装置コ(の構
成を示すブロック図である。レーザ装置1より出力さ江
る直線1hli光されたビームを1反射ミラー2を用い
てウォラストンプリズム3に適切な角度で入射させる。An outline of the conventional laser distance measuring device for this building will be explained with reference to FIG. FIG. 1 is a block diagram showing the configuration of a conventional distance measuring device. A straight beam 1hli outputted from a laser device 1 is sent to a Wollaston prism 3 using a reflecting mirror 2. incident at a certain angle.
光変調器5は、内部に複屈折性結晶が人っており、マイ
クロ波回路4と1を号処理制御器10の制御で、ある基
準の一イクロ波周波数ω0で屯界がかけられている。ウ
ォラストンプリズム3より出射したビームは、この光変
調器5を通ることにより複屈折性結晶のファースト(f
ast)成分とスo −(slow)成分とに分離され
、垂直と水平成分の位相差r (r=π・−V、、−、
Vπ;Vπ
結晶の半波長電圧、Vm;マイクロ波の毛玉)が生じて
それぞれ周波数(υ0で変調される。この変調さね、た
ビームは、光学系6を通って、測距l−たい目標点に置
かれた反射光学系7で折返され、再び光学系6を通って
光変調器5′に、入射し、再び変調され、ウォラストン
プリズム3に入射される。そして、今度は、変調された
成分だけを測定する為、送光時の偏光とは直交した成分
を反射ミラー2を用いて光検出型8に導き、光重変換す
る。ここに入射される信号ビーム強度■は、I=I
Jo(2F。。s 引”= ”” (1+ c。S 9
) ) f−pゎ@n;boC1”Cψけ、光変調器5
を出たビームが反射光学系7で折返され、再び光変調器
5に戻ってくるまでの間に生ずる位相差で距離情報を持
っている。The optical modulator 5 has a birefringent crystal inside, and the microwave circuits 4 and 1 are controlled by a signal processing controller 10 to be bounded at a certain standard microwave frequency ω0. . The beam emitted from the Wollaston prism 3 passes through this optical modulator 5, and is thus converted into the first (f) of the birefringent crystal.
ast) component and o-(slow) component, and the phase difference between the vertical and horizontal components is r (r=π・-V, ,-,
Vπ; Vπ: half-wavelength voltage of the crystal; Vm: microwave hairball) are generated and modulated at a frequency (υ0). This modulated beam passes through the optical system 6 and is used for distance measurement l-tai. It is reflected by the reflection optical system 7 placed at the target point, passes through the optical system 6 again, enters the optical modulator 5', is modulated again, and enters the Wollaston prism 3.Then, this time, the modulated light is In order to measure only the component that is transmitted, the component that is perpendicular to the polarization at the time of transmission is guided to the photodetection type 8 using the reflection mirror 2 and subjected to light weight conversion.The intensity of the signal beam incident here is I =I
Jo(2F..s pull”=””(1+c.S 9
) f-pゎ@n;boC1"Cψ, optical modulator 5
The beam exiting the optical system 7 is reflected by the reflective optical system 7, and has distance information based on the phase difference that occurs until it returns to the optical modulator 5.
光電変J臭さルた電流は、1亘流増幅器9で増幅され、
信号処理制御器lOに人力され処理される。The current emitted from the photoelectric transformer J is amplified by a current amplifier 9,
The signal is manually processed by the signal processing controller IO.
次に信号処理制御器10は、マイクロ波回路40マイク
ロ波周波数及び光変調器5の共振周波数を制御し、変化
させ5周波数ω1.ω2.・・・ωnをパラメータとし
てそれぞれ測定し、周波数と信号強度の関係より距離を
算出する。Next, the signal processing controller 10 controls and changes the microwave frequency of the microwave circuit 40 and the resonance frequency of the optical modulator 5 to 5 frequencies ω1. ω2. ... Measure each using ωn as a parameter, and calculate the distance from the relationship between frequency and signal strength.
j−かし、この方式は光検出器に人力される信号が直流
成分である為、信号でない光、例えば光度iJM il
!葺へ結晶組込時に加わるストレスによるバイアス成分
、光学系や結晶面で反射さflた信号と同一(in+光
ljX分、或いは背+は光等も光電変換され増幅。However, in this method, since the signal manually input to the photodetector is a DC component, light that is not a signal, such as luminous intensity iJM il
! The bias component due to the stress applied when the crystal is incorporated into the roof is the same as the signal reflected by the optical system or the crystal surface (in + light ljX, or back + light, etc., is also photoelectrically converted and amplified.
処理される馬、信号と(−では十分なSN比(S/N)
が得l−)、f′Lなかった。又、信号が零となる点も
推定! し漫く、周波数のサンプル点数も多かった
。この様子を第3図(a)に示す。The signal being processed and the (-) sufficient signal-to-noise ratio (S/N)
was obtained l-), and f'L was not obtained. Also, estimate the point where the signal becomes zero! The number of frequency samples was large. This situation is shown in FIG. 3(a).
本発明の目的は、上記欠点を解決し、信号成分のみケ屯
気的に取出LS/Nの向上およびマイクロ波周波数のサ
ンプル点数の減少を可能と1−たレーザ測距装置を提供
することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks, and to provide a laser distance measuring device that is capable of extracting only signal components, improving the LS/N and reducing the number of microwave frequency samples. be.
本発明は、光変調器テ印加するマイクロ波に低周波AM
変調をかけ、信号光となる直流成分を変調させて光検出
し、光電変換された電気信号よりAM周波数成分のみを
取り出し、増幅し信号処理するようにしたものである。The present invention applies low frequency AM to the microwave applied to the optical modulator.
It modulates the DC component that becomes signal light, performs optical detection, extracts only the AM frequency component from the photoelectrically converted electrical signal, amplifies it, and performs signal processing.
次に、本発明を第21金参照しながら実施例について説
明する。Next, embodiments of the present invention will be described with reference to 21st gold.
符号1〜7で示す構成は従来装置と同じであるが、マイ
クロ波回路4は、周波数シンセサイザ11により低周波
のAM変調がかけられる。第2図における光検出器8も
従来装置と同じ光検出器である。光電変換された電流は
、交流増幅器12で信号でない直流成分がカットされ、
AM周波数成分のみが増幅される。これによって光変調
器内へ結晶組込時のストレスに基づくレーザ光変調成分
や。The configurations indicated by reference numerals 1 to 7 are the same as those of the conventional device, but the microwave circuit 4 is subjected to low frequency AM modulation by a frequency synthesizer 11. The photodetector 8 in FIG. 2 is also the same photodetector as the conventional device. The photoelectrically converted current has DC components that are not signals cut off by an AC amplifier 12.
Only AM frequency components are amplified. This reduces laser light modulation components based on stress when the crystal is incorporated into the optical modulator.
他の信号以外の成分が除去され、増幅されることになる
ので、S/Nが向上する。その(&、Rへ18メータ1
3により実効値に変換し、従来装置と同様の信号処理制
御器10に人力し、従来通りの信号処理を行う。マイク
ロ波周波数をパラメータとして測距する時、信号が零と
なる所がはっきりと分かる為、パラメータの数も少くで
き、精度良く測定することができる。この様子を第3図
(b)に示す。Since components other than other signals are removed and amplified, the S/N ratio is improved. its (&, 18 meters 1 to R
3, the signal is converted into an effective value, and then manually inputted to the signal processing controller 10 similar to the conventional device to perform the conventional signal processing. When measuring distance using the microwave frequency as a parameter, the point where the signal becomes zero can be clearly seen, so the number of parameters can be reduced and measurements can be made with high accuracy. This situation is shown in FIG. 3(b).
以上説明したように本発明は、光変調器に印加するマイ
クロ波て低周波のAM変調をかけ、信号光となる直流成
分を変調させ、光検出後の電気信号よりAM周波数成分
のみを取り出し、増幅し、信号処理する為、信号以外の
成分が除去できS/Nが向上1−、マイクロ波周波数を
パラメータと1〜た測定では零点がはっきりと分かり、
パラメータの数を少く出来る効果を有する。As explained above, the present invention applies low-frequency AM modulation using microwaves applied to an optical modulator, modulates the DC component that becomes signal light, and extracts only the AM frequency component from the electrical signal after photodetection. Because it amplifies and processes the signal, components other than the signal can be removed, improving the S/N ratio1-, and the zero point can be clearly seen in measurements using the microwave frequency as a parameter.
This has the effect of reducing the number of parameters.
第1図は従来のレーザ測距装置の構成を示すブロック図
、用2図は本発明の実施例を示すブロック図、第3図(
a) 、 (b)は、レーザ測距装置で光変調器に印加
するマイクロ波周波数をパラメータと]−で測定した信
号波形を示す図で、同図(a)は従来装置の場合の信号
波形図、同図(b)は本発明装置fイの場倉信号波形図
である。
1・・・レーザ% iff、、 2・・・反射
ミラー、3・・・ウォラストンプリズム。
4・・・マイクロ波回路、 5・・・光変調器、6
・・・光学系、 7・・・反射光学系、8
・・・光検出器、 9・・・直流増幅器、1
0・・・イ言号処理η1り御器、
11・・・周波数シンセサイザ、
12・・・交流i着甲IA器、 13・・・IζM
Sメータ。Fig. 1 is a block diagram showing the configuration of a conventional laser distance measuring device, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 (
Figures a) and (b) are diagrams showing signal waveforms measured using a laser rangefinder with the microwave frequency applied to the optical modulator as a parameter, and (a) is the signal waveform of a conventional device. FIG. 3B is a waveform diagram of the Hagakura signal of the device fA of the present invention. 1...Laser% if, 2...Reflecting mirror, 3...Wollaston prism. 4... Microwave circuit, 5... Optical modulator, 6
...optical system, 7...reflective optical system, 8
...Photodetector, 9...DC amplifier, 1
0...A word processing η1 controller, 11...Frequency synthesizer, 12...AC i armor IA device, 13...IζM
S meter.
Claims (1)
し、測距目標点から反射して戻って来た光を再び送光時
と同じ光変調器を通し、送光レーザ偏光と直交した成分
の強度をマイクロ波周波数をパラメータとして測定し測
距するレーザ測距装置において、前記光変調器に印加す
るマイクロ波に低周波のAM変調をかけ、受光成分より
AM変調周波数の信号成分のみを電気信号として取出す
手段を具備することを特徴とするレーザ測距装置。A laser beam modulated to a microwave frequency is transmitted using an optical modulator, and the light that is reflected from the distance measurement target point is passed through the same optical modulator that was used when transmitting the beam, and the polarization is perpendicular to the transmitted laser polarization. In a laser ranging device that measures distance by measuring the intensity of a component using a microwave frequency as a parameter, low-frequency AM modulation is applied to the microwave applied to the optical modulator, and only the signal component at the AM modulation frequency is extracted from the received light component. A laser distance measuring device characterized by comprising means for extracting an electrical signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59212992A JPS6190074A (en) | 1984-10-11 | 1984-10-11 | Laser range finder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59212992A JPS6190074A (en) | 1984-10-11 | 1984-10-11 | Laser range finder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6190074A true JPS6190074A (en) | 1986-05-08 |
Family
ID=16631670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59212992A Pending JPS6190074A (en) | 1984-10-11 | 1984-10-11 | Laser range finder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6190074A (en) |
-
1984
- 1984-10-11 JP JP59212992A patent/JPS6190074A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4853474B2 (en) | Photosensor and photocurrent / voltage sensor | |
JPS63218830A (en) | Immediate frequency measuring system of heterodyne laser and measuring method thereof | |
JPH01141388A (en) | Photoelectric distance measurement | |
CN106093599B (en) | Optical probe and electromagnetic field measuring equipment and measuring method thereof | |
US6285182B1 (en) | Electro-optic voltage sensor | |
JPH05264609A (en) | Method and system for measuring high frequency electric signal through electrooptic effect | |
US4982151A (en) | Voltage measuring apparatus | |
JPS6190074A (en) | Laser range finder | |
JPH08146066A (en) | Electrical signal-measuring method and device | |
JPH06186337A (en) | Laser distance measuring equipment | |
CN212301699U (en) | Laser intensity stability control device of rydberg atom microwave electric field intensity meter | |
JP3236941B2 (en) | Distance measurement method for lightwave distance meter | |
JPH0451772B2 (en) | ||
JP3057280B2 (en) | Optical sampling device | |
JPS6371675A (en) | Laser distance measuring instrument | |
JPH07181211A (en) | Surface potential measuring apparatus | |
JP2002031658A (en) | System and method for detecting high frequency electromagnetic wave | |
SU1018072A2 (en) | Magneto-optical hysteriograph | |
JPS5853731B2 (en) | Reflectance transmittance measuring device | |
SU1453180A1 (en) | Device for measuring dynamic characteristics of electric discharge | |
SU883822A1 (en) | Magnetic optical hysteriograph | |
JPS63158485A (en) | Phase detector | |
SU998988A1 (en) | Magnetooptical hysteriograph | |
JPS63314437A (en) | Optical fiber tester | |
JPH0385459A (en) | Voltage detector |