[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6188944A - Production of fiber reinforced metallic composite material - Google Patents

Production of fiber reinforced metallic composite material

Info

Publication number
JPS6188944A
JPS6188944A JP20805984A JP20805984A JPS6188944A JP S6188944 A JPS6188944 A JP S6188944A JP 20805984 A JP20805984 A JP 20805984A JP 20805984 A JP20805984 A JP 20805984A JP S6188944 A JPS6188944 A JP S6188944A
Authority
JP
Japan
Prior art keywords
cavity
bundle
fiber bundle
small
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20805984A
Other languages
Japanese (ja)
Inventor
Atsushi Kitamura
厚 北村
Shunei Sekido
俊英 関戸
Masashi Ogasawara
小笠原 正史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20805984A priority Critical patent/JPS6188944A/en
Publication of JPS6188944A publication Critical patent/JPS6188944A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • B22D11/0455Bidirectional horizontal casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce easily and continuously a fiber reinforced metallic composite material with an inexpensive installation of a small floor area by inserting a continuous fiber bundle into a cavity, feeding and impregnating forcibly a molten metal to be constituted as the matrix to the fiber bundle from the intermediate small cavity and drawing the fiber bundle. CONSTITUTION:The continuous fiber bundle is inserted into the cavity 2 having coolers 5, 6 at the front and rear and a heater 9 in the intermediate part. The molten metal 12 to be constituted as the matrix is forcibly fed and impregnated by a plunger 4 to the bundle in the intermediate from the small cavity 3 having a heater 10, then the bundle is drawn by rolls 8. The fiber bundle 11 is easily made into the fiber reinforced metallic composite material with the inexpensive installation having the small floor area.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、繊組強化金属複合+41”Iの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for manufacturing fiber-reinforced metal composite +41''I.

従来技術 補強繊維で金属を強化してなる繊組強化金属複合材料(
FRM)は、金属のみからイfる材料にくらべて比強度
、比弾性率が高いことから、いろいろな分野で注目され
ている。
Conventional technology Fiber-reinforced metal composite material made by reinforcing metal with reinforcing fibers (
FRM) has attracted attention in various fields because it has higher specific strength and specific modulus than materials made only of metal.

そのようなl二RMを製造づる方法はいろいろあるが、
近年、高圧鋳造法ど叶ばれる方法が注目されるようにな
ってきた。
There are various ways to produce such l2RM, but
In recent years, methods such as high-pressure casting have been attracting attention.

高圧鋳造法はミ型のキャビティに補強繊維の集′ 合体
を入れた後、そのキャビティにマトリクスとなる金属の
溶湯を注ぎ込み、加圧して上記集合体に含浸し、凝固さ
せる、つまり鋳込むものである。
The high-pressure casting method involves placing an aggregate of reinforcing fibers into a mold cavity, then pouring molten metal to form a matrix into the cavity, applying pressure to impregnate the aggregate, and solidifying it, that is, casting it.

この方法によれば、他の、たとえばイオンブレーティン
グ法、蒸着法、拡散接合法、粉末冶金法、箔冶金法、焼
結法などにくらべて比強度、比弾刺率の高いFRMが得
られるといわれている。しかしながら、一方で、長尺物
の製造が難しいという欠点がある。すなわち、高圧鋳造
法においては、型のキャビティに溶湯を注ぎ込んだ後そ
の溶湯がキャビティ内で凝固するのを持つわけであるか
ら、キャビティの大きさ以上のものは作れt【い。ちっ
とも、理論的には非常に大きな3+1を使用すればよい
わけであるが、実際にはほとんど不可能なことである。
According to this method, an FRM with higher specific strength and bullet penetration rate can be obtained compared to other methods such as ion blasting, vapor deposition, diffusion bonding, powder metallurgy, foil metallurgy, and sintering. It is said that. However, on the other hand, it has the disadvantage that it is difficult to manufacture long objects. That is, in the high-pressure casting method, the molten metal is poured into the cavity of the mold and then solidified within the cavity, so it is impossible to make a product larger than the cavity. In theory, it would be possible to use a very large value of 3+1, but in practice this is almost impossible.

一方、この発明の発明者らは、先に1.i趙nrl b
 8−137638号出願に、13い(f(尺1力の製
j:!が可能な方法を提案した。この方法は、組長のキ
せビティを有する型を使用し、上記−1−1−ビjイに
その上端から補強繊維の連続繊紐束を挿通した後マトリ
クスとなる金属の溶湯を注ぎ込み、キャビティに係合す
るプランジャで加圧し゛C連続楳紺束に含浸し、凝固さ
せて複合体を形成するとともにその複合体を上記キャビ
ティの下端から引き扱くものである。しかしながら、こ
の方法は以下に説明するような欠点を有する。
On the other hand, the inventors of this invention have previously described 1. i cho nrl b
In the application No. 8-137638, a method was proposed in which 13. After inserting a continuous fiber bundle of reinforcing fibers into the plastic cavity from the upper end, molten metal that will become the matrix is poured into the cavity, pressurized with a plunger that engages the cavity, impregnating the continuous fiber bundle, solidifying it, and forming a composite. However, this method has drawbacks as explained below.

すなわち、上記従来の方法は、縦長のキャビティを有す
る型を使用し、そのキャビティに注ぎ込んだ溶湯をキせ
ビティに係合するプランジャで加圧するため、補強i!
l帷束が挿通する孔を右するプランジャを使用しなけれ
ばならないが、プランジャの下降速度と楳釘を束の移動
速度を等しくすることは容易なことではないので、繊<
(を束がキャビティ内で弛んだり、プランジrと1%’
4 季11束との滑りが円滑に行われなくなって棋絹束
が下降しにくり4Tるという欠点がある。また、より良
いF RMをう、lj造しようとした場合、型が縦長で
あるため、2目−あるいは3階といった高所から階下に
向かって製jろを行う必要があり、設備が大規模になる
という問題もある。
That is, in the conventional method described above, a mold having a vertically elongated cavity is used, and the molten metal poured into the cavity is pressurized by a plunger that engages with the cracking hole.
It is necessary to use a plunger that is positioned to the right of the hole through which the thread bundle is inserted, but it is not easy to equalize the descending speed of the plunger and the moving speed of the thread bundle.
(If the bundle is slack in the cavity, plunge r and 1%'
4. There is a drawback that the sliding with the ki 11 bundle cannot be done smoothly, making it difficult for the kikinu bundle to descend, resulting in a 4T. In addition, when trying to manufacture better FRM, since the mold is vertically long, it is necessary to manufacture from a high place such as the 2nd or 3rd floor downwards, which requires large-scale equipment. There is also the problem of becoming.

発明が解決しようとする問題点 この発明は、従来の方法の上記欠点を解決し、より良い
FRMを容易に製造することができる方法を提供するこ
とを目的どしている。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks of the conventional method and to provide a method that can easily manufacture a better FRM.

問題点を解決するだめの手段 上記目的を達成するために、この発明においては、一端
から他端に延びるキャビティを有し、かつそのキャビテ
ィから分岐した小キャビティを右する横長の型を使用し
、前記キャビティにその一端から補強lINの連続m紐
束を挿通し、前記小キャどティから前記キャビディにマ
トリクスと4rる金属の溶湯を圧入して前記繊紐束に含
浸し、凝固させて複合体を形成するとともにその複合体
を前記キャビティの(l!!端から引き1友くことを特
徴とする繊維強化金属複合材11のう′1造り法が11
?供される。
Means for Solving the Problems In order to achieve the above object, the present invention uses an oblong mold having a cavity extending from one end to the other end, and having a small cavity branching from the cavity, A continuous m string bundle of reinforcing lIN is inserted into the cavity from one end thereof, and a matrix and molten metal are press-fitted into the cavity from the small cavity tee to impregnate the wire bundle and solidify to form a composite. The manufacturing method of the fiber reinforced metal composite 11 is as follows:
? Served.

この発明の方法をさらに詳細に説明するに、この発明に
おいては、図面に示すような、一端から他端に延びるキ
ャビティ2を右するtδ[(の型1を使用する。キャビ
ティ2の横断面形状は、製造したいFRMの横断面形状
に応じて決められるが、通常は、円形、楕円形または矩
形が′J5<ばれる。上記型1には、その長手方向−1
1中央部に、そのキせビティ2と略直交し、かつ連通す
る小キャビティ3が設けられている。この小キャビティ
3には、プランジャ4が嵌合される。また、−1Vビテ
イ2にはヒータ9が、小キャビティ3 G、、: Gよ
ヒータ10がそれぞれが付設されでいる。さらに、型1
の両端部には水ジャケットなどの冷7JI装7i 9’
)、6が付設され、また前方には供給ロール7が設番ノ
られ、i受方には引抜ロール8が設けられ〔いる。もつ
とも、−り記冷却装置5.6は必ヂしb必・〃なりので
はない。
To explain the method of the present invention in more detail, in the present invention, a mold 1 of tδ [(with a cavity 2 extending from one end to the other end) as shown in the drawings is used.The cross-sectional shape of the cavity 2 is is determined depending on the cross-sectional shape of the FRM to be manufactured, but is usually circular, oval, or rectangular.
1, a small cavity 3 is provided in the center thereof, which is substantially perpendicular to and communicates with the crevice 2. A plunger 4 is fitted into this small cavity 3. Further, a heater 9 is attached to the -1V bit 2, and a heater 10 is attached to the small cavities 3G, . Furthermore, type 1
Cold 7JI equipment such as water jackets are installed at both ends of the 7i 9'
), 6 are attached, a supply roll 7 is provided at the front, and a drawing roll 8 is provided at the receiving side. However, the cooling device 5.6 described above is not necessarily required.

さて、まずヒータ9を運転し、−1: vビティ2の、
F記ヒータ9によって加熱される部分が、7トリクスと
なる金属の融点から融点1200°C程度の温度になる
ように加熱する。また、ヒータ10を運転し、小キせビ
ティ3がマトリクスと4する金属の融点から融点上10
0℃程度の温度になるように加熱する。
Now, first operate heater 9, -1: v bit 2,
The part heated by the heater 9 in F is heated to a temperature of about 1200° C. from the melting point of the 7-trix metal. In addition, the heater 10 is operated, and the small crack bit 3 is 10 times above the melting point from the melting point of the metal that is connected to the matrix 4.
Heat to a temperature of about 0°C.

次に、供給ロール7からキャビティ2を)ffIす、引
抜ロール8に至る経路に補強繊維の連続its If(
束11を通づ。もっとも、この発明においては、il続
繊維束11を通した後にヒータ9.10による加熱を行
ってもよい。
Next, a continuous reinforcing fiber is inserted into the cavity 2 from the supply roll 7 to the drawing roll 8.
Pass through bundle 11. However, in the present invention, heating by the heaters 9 and 10 may be performed after passing the il spun fiber bundle 11.

次に、小キャビティ3にマトリクスとなる金属の溶湯1
2を注ぎ込み、プランジ174で加JJE して連続繊
紺束11に含浸する。このどき、溶湯12は、キャビテ
ィ2内を冷却装置5側おJ、び冷7JI +’i置装側
に向かって流れるが、ヒータ9による加熱範囲が限られ
ており、また必要に応じて冷却装置5.6を設けて型1
を冷却することから、略ゾーンZの部分では溶融状態に
あるもののヒータ9の両端部付近では凝固し、それがシ
ールの役目を果すのでキャビティ2の両端から漏れ出す
ことはない。4Tお、ブランシト4による#II I−
i力は11゛hいIIどよいが、通常、300〜150
0KQ/cm2稈1αに選定される。
Next, the molten metal 1 that will become the matrix is placed in the small cavity 3.
2 is added using the plunger 174 to impregnate the continuous fiber bundle 11. At this time, the molten metal 12 flows inside the cavity 2 toward the cooling device 5 side and the cooling device side, but the heating range by the heater 9 is limited, and cooling is required as necessary. Mold 1 with equipment 5.6
Although it is in a molten state approximately in zone Z, it solidifies near both ends of the heater 9, and this serves as a seal, so that it does not leak out from both ends of the cavity 2. 4T Oh, #II I- by Blancito 4
The power is 11゛h II, but usually it is 300-150
0KQ/cm2 culm 1α was selected.

溶湯12が連続棋零11束11に含浸され、凝固りると
、複合体、つまりF RMがtTられるのC1これを引
j友ロール8 ”C3!i!続的に引さ扱く。
When the molten metal 12 is impregnated into the bundle 11 of the continuous chess zero 11 and solidified, the composite, that is, FRM, is treated as a continuous pull roll.

上記において、補強繊維は、F’ RMに、11jいて
通常使用される、たとえば炭素朽ill、炭化クイ索用
雑、アルミナ繊維、ボロン用帷、金属FQ IFのよう
なものである。これらの補強棋粁tは連V、、4111
1で85す、中糸の状態ではLノフイラメン1へまたは
マルチフィラメントである。連vc楳<a束は、ぞのよ
うな補強繊維を所望の本数一方向に引きlff1えたも
のである。もっとも、上記補強摂?ftはただ1種類の
ものを使用する必要必ずしもなく、責なる少なくとも2
種類の補強繊維を引き揃えて桟tll東を形成してもよ
い。
In the above, the reinforcing fibers are those commonly used in F'RM, such as carbon rot, carbonized fiber, alumina fiber, boron cloth, and metal FQ IF. These reinforcement games are Ren V, 4111
1 and 85, and in the state of the medium thread, it is L no filament 1 or multifilament. The continuous vc<a bundle is made by pulling the desired number of reinforcing fibers lff1 in one direction. However, the above reinforcement? It is not necessary to use only one type of ft, but at least two
The crosspiece tll east may be formed by aligning different types of reinforcing fibers.

マトリクスとなる金属もまた、「RMにおいて通常使用
されるものである。たとえば、アルミニウム、マグネシ
ウム、チタン、ニラクル、銅、錫、鉛、1ト鉛や、イれ
らの少なくとも1種を主成分とする合金を使用すること
ができる。そうして、小キャビティに注ぎ込むときの溶
湯の淘磨は、補強lIl!雑との反応を抑制して補強繊
維が劣化4るのを防1卜するためにできるだけ低いのが
好ましく、その金属の融点から、融点上150℃程度ま
での範囲に選定するのが好ましい。
The metals that form the matrix are also those commonly used in RM. In this way, the molten metal can be washed when poured into the small cavity in order to suppress the reaction with the reinforcing materials and prevent the reinforcing fibers from deteriorating. It is preferably as low as possible, and it is preferably selected within a range from the melting point of the metal to about 150°C above the melting point.

上記においては、キャビティと略直交する小キャビティ
を使用し、連続繊維束の繊維軸方向に対して直交する方
向から溶湯を含浸する場合について説明したが、小キャ
ピテイを連M JJJ M束の移動方向または移動方向
とは逆方向に向けて配置し、$1i iff軸方向に対
して斜めの方向から含浸するようにしてもよい。
In the above, we have explained the case where a small cavity that is approximately perpendicular to the cavity is used and the molten metal is impregnated from a direction perpendicular to the fiber axis direction of the continuous fiber bundle. Alternatively, it may be arranged in a direction opposite to the moving direction and impregnated from a direction oblique to the $1i if axis direction.

また、小キャビティの上部を積極的に冷却するか、また
は小キャビティを長くすると、プランジャと型の隙き間
から溶湯が噴ぎ出すのを防止することができるようにな
るので好ま1ノい。
Furthermore, it is preferable to actively cool the upper part of the small cavity or to make the small cavity longer, since this can prevent the molten metal from spouting out from the gap between the plunger and the mold.

実施例 図面に示す型を使用し、炭素世相とアルミニウム合金か
らなるr:’ RMを連続的に製造した。
EXAMPLE Using the mold shown in the drawings, an r:' RM made of carbon and aluminum alloy was continuously produced.

すなわち、東し株式会社製炭素摂紐“1〜レ力″M40
(中糸数6000本)を230本束ねたものを繊維束1
1とし、これを型1の↑17ビテイ2に100m/′分
の速mで供給した。な;J3、キtlビティ2は直径1
0mmの円形横断面形状を(、1う、ピータ9による加
熱温鳴は約750℃どし、またヒータ10による小キャ
ビティ3の加熱1;+2度は約650℃とした。また、
冷却装置5.6は(・k用しなかった。
In other words, Toshi Co., Ltd.'s carbon fiber cord "1~Reki" M40
One fiber bundle is made by bundling 230 (6000 medium threads)
1, and this was supplied to ↑17 Bitey 2 of mold 1 at a speed of 100 m/'min. Na; J3, kitl bitty 2 has a diameter of 1
0 mm circular cross-sectional shape (1) The heating temperature by the Peter 9 was approximately 750°C, and the heating temperature of the small cavity 3 by the heater 10 was approximately 650°C.
The cooling device 5.6 was not used.

次に、連続fit Ilt束1束合1(iさぜつつ、小
キャビティ3にアルミニウム合金(JI3  Δ〇4C
)の溶湯(温度:約750’G:)を注ぎ込み、プラン
ジャ4r約500KO/Cm2の圧h^加えて連続楳キ
11束11に含浸し、複合体、つまりrRMを形成する
とともに、引1ノiロール8によって100m/分の速
度で連続的に引き1ムいた。1“1られたFRMは、直
径約1Qmmの棒状で、その炭素請帷体1^含有↑は約
60%であった。
Next, while continuing to fit 1 bundle of continuous fit Ilt, insert aluminum alloy (JI3 Δ〇4C) into the small cavity 3.
) is poured into the molten metal (temperature: approx. 750'G), and a pressure h^ of approx. 500 KO/Cm2 is applied to the plunger 4r to impregnate the bundle 11 of the continuous brush 11 to form a composite, that is, rRM. It was continuously pulled by an i-roll 8 at a speed of 100 m/min. The 1"1 FRM had a rod shape with a diameter of about 1 Qmm, and its carbon conductor 1^ content was about 60%.

次に、上記F RMから、ぞの長丁方向に沿って長さ8
Qmm、幅9mm、厚み2mmの試験ハを切り出し、そ
の試験片について3点曲げ試験をしたところ、曲げ強度
は約104K(J/mm2であった。
Next, from the above F RM, length 8 along the long direction of the
A test piece of Qmm, width 9mm, and thickness 2mm was cut out, and a three-point bending test was performed on the test piece, and the bending strength was about 104K (J/mm2).

発明の効果 この発明の方法は、一端から他端に延びるキレビティを
有し、かつそのキャビティから分岐する小キャビティを
有する横長の型を使用し、小キャビティからマトリクス
となる金属の溶湯を圧入してキャビティ内の連続in束
に含浸するものであるから、上述した従来の方法のよう
に、プランジャの移動速度と繊維束の移動速度を厳密に
等しくする必要がない。また、横長の型を使用するから
、長尺FRMを製造する場合でも、縦長の型を使用する
従来の方法のように2階あるいは3階といった高所から
階下に向かって製造覆る必要がなく、床面積さえ確保す
ればよいから設備も7が安い。
Effects of the Invention The method of this invention uses an oblong mold having a chirality extending from one end to the other and a small cavity branching from the cavity, and press-fits a molten metal to form a matrix from the small cavity. Since the continuous in-bundle in the cavity is impregnated, it is not necessary to make the moving speed of the plunger and the moving speed of the fiber bundle strictly equal, as in the above-mentioned conventional method. In addition, since a horizontally long mold is used, even when manufacturing a long FRM, there is no need to cover the manufacturing from a high place such as the second or third floor downwards, unlike the conventional method using a vertically long mold. 7 is cheaper in terms of equipment as all you have to do is secure the floor space.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の方法を実施している様子を示す概略
m断面図である。 1:型 2:キャビティ 3:小キセビテイ 4ニブランジヤ 5.6;冷」装置 7:供冶ロール 8′;引扱ロール 9.10:ヒータ 11:浦強粛維の運涜繊維束 12:金属の溶湯 特許出量人  東し株式会社
The drawing is a schematic cross-sectional view showing how the method of the present invention is carried out. 1: Mold 2: Cavity 3: Small crack 4 Ni lunge 5.6; Cooling device 7: Supply roll 8'; Molten metal patent producer Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 一端から他端に延びるキャビティを有し、かつそのキャ
ビティから分岐した小キャビティを有する横長の型を使
用し、前記キャビティにその一端から補強繊維の連続繊
維束を挿通し、前記小キャビティから前記キャビティに
マトリクスとなる金属の溶湯を圧入して前記繊維束に含
浸し、凝固させて複合体を形成するとともにその複合体
を前記キャビティの他端から引き抜くことを特徴とする
繊維強化金属複合材料の製造方法。
A horizontally elongated mold having a cavity extending from one end to the other end and a small cavity branching from the cavity is used, a continuous fiber bundle of reinforcing fibers is inserted into the cavity from one end, and the reinforcing fibers are inserted into the cavity from the small cavity. Production of a fiber-reinforced metal composite material, characterized in that a molten metal serving as a matrix is press-fitted into the fiber bundle, impregnated into the fiber bundle, solidified to form a composite, and the composite is pulled out from the other end of the cavity. Method.
JP20805984A 1984-10-05 1984-10-05 Production of fiber reinforced metallic composite material Pending JPS6188944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20805984A JPS6188944A (en) 1984-10-05 1984-10-05 Production of fiber reinforced metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20805984A JPS6188944A (en) 1984-10-05 1984-10-05 Production of fiber reinforced metallic composite material

Publications (1)

Publication Number Publication Date
JPS6188944A true JPS6188944A (en) 1986-05-07

Family

ID=16549956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20805984A Pending JPS6188944A (en) 1984-10-05 1984-10-05 Production of fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS6188944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304167A2 (en) * 1987-07-20 1989-02-22 Cray Advanced Materials Limited Production of fibre reinforced metal sections
WO2016092510A1 (en) * 2014-12-11 2016-06-16 Arcactive Limited Method and machine for manufacturing a fibre electrode
CN110369683A (en) * 2019-08-09 2019-10-25 大连理工大学 A kind of bearing bush antifriction layer copper alloy fills type device and a kind of preparation method of bearing shell double metallic composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304167A2 (en) * 1987-07-20 1989-02-22 Cray Advanced Materials Limited Production of fibre reinforced metal sections
WO2016092510A1 (en) * 2014-12-11 2016-06-16 Arcactive Limited Method and machine for manufacturing a fibre electrode
US10476069B2 (en) 2014-12-11 2019-11-12 Arcactive Limited Method and machine for manufacturing a fibre electrode
US11276847B2 (en) 2014-12-11 2022-03-15 Arcactive Limited Method and machine for manufacturing a fibre electrode
CN110369683A (en) * 2019-08-09 2019-10-25 大连理工大学 A kind of bearing bush antifriction layer copper alloy fills type device and a kind of preparation method of bearing shell double metallic composite material
CN110369683B (en) * 2019-08-09 2020-06-02 大连理工大学 Bearing bush antifriction layer copper alloy mold filling device and preparation method of bearing bush bimetal composite material

Similar Documents

Publication Publication Date Title
DE60024748T2 (en) High strength and lightweight conductor and stranded and compressed conductor
CN105172169B (en) High-temperature resistance carbon fiber strengthens composite continuous sucker rod and preparation facilities and method
CN102286709B (en) Preparation method of continuous fiber reinforcement metal-based composite material section
CN103160760B (en) Continuous filament reinforced metallic matrix composite strip casting moulding process and equipment
CN102021503B (en) Preparation method of continuous fiber reinforced metal matrix composite
GB2082112A (en) Pulltrusion of elongate fibre-reinforced resin articles
DE2746238A1 (en) METHOD AND DEVICE FOR MANUFACTURING A METAL STRIP
DE1508895A1 (en) Process for the production of molded objects directly from melts of low viscosity
CN107080927B (en) A kind of amorphous alloy wire modified fish oil ball rapping bar and preparation method thereof
CN105679459B (en) A kind of preparation method of aluminium bag carbon-fibre wire
JPS6188944A (en) Production of fiber reinforced metallic composite material
EP1499462A1 (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
CN206632325U (en) A kind of continuously casting building mortion of solid-liquid clad composite material
DE2210771C3 (en) Process for the production of a fiber composite material
CN106694836A (en) Continuous casting forming device and method for solid-liquid wrapping composite material
EP0304167A2 (en) Production of fibre reinforced metal sections
CN108568511A (en) A kind of Metal screen cloth reinforced phase and its application in infiltration by squeeze casting casting
CN103834881A (en) Preparation method of metal porous material with controllable through holes
EP3473352B1 (en) Method for producing a copper profile and copper profile
EP0436807A1 (en) Impregnation nozzle for manufacturing metal-matrix composite material
DE2018024B2 (en) Process for the continuous production of metal wire reinforced with carbon fibers
JPS6029433A (en) Production of fiber-reinforced metallic composite material
CN109538276A (en) Tunnel flue sheet
JPH07105761A (en) Manufacture of fiber-reinforced composite wire
DE60010643T2 (en) High performance molding process