JPS6187566A - Hollow yarn membrane type artificial lung having heat exchanger mounted therein - Google Patents
Hollow yarn membrane type artificial lung having heat exchanger mounted thereinInfo
- Publication number
- JPS6187566A JPS6187566A JP21094884A JP21094884A JPS6187566A JP S6187566 A JPS6187566 A JP S6187566A JP 21094884 A JP21094884 A JP 21094884A JP 21094884 A JP21094884 A JP 21094884A JP S6187566 A JPS6187566 A JP S6187566A
- Authority
- JP
- Japan
- Prior art keywords
- blood
- hollow fiber
- gas
- blood flow
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- External Artificial Organs (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、熱交換器を内蔵した中空糸膜型の人工肺に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow fiber membrane type oxygenator having a built-in heat exchanger.
中空糸膜を用いた人工肺としては、例えば米国特許第3
744468号、特開昭54−160098号、特開昭
58−155862号等、既に種々の提案が知られてい
る。As an artificial lung using a hollow fiber membrane, for example, US Pat.
Various proposals are already known, such as JP-A No. 744468, JP-A-54-160098, and JP-A-58-155862.
これらは、ポリオレフィン等の疎水性高分子からなる微
多孔質中空糸膜や、シリコン等の気体透過性の均質中壁
糸膜を用いて、中空糸膜面を介して気体と血液を接触さ
せ、その間でガス父換金行なわせるものであり、中空糸
膜の中窒部に血液を流し、中空糸膜の外部に気体を流す
ものと、その逆に、中空糸膜の中9部に気体を流し、外
部に血液を流すものとの二つの方式がある。These methods use microporous hollow fiber membranes made of hydrophobic polymers such as polyolefins or gas-permeable homogeneous middle-wall fiber membranes such as silicone to bring gas and blood into contact through the hollow fiber membrane surface. There is a system in which gas is exchanged between the two, with blood flowing into the inner part of the hollow fiber membrane and gas flowing outside the hollow fiber membrane, and vice versa, gas flowing into the middle part of the hollow fiber membrane. There are two methods: one in which blood flows externally, and the other in which blood flows externally.
従来知られている殆どの人工肺は、円筒状の一゛ウジン
グ内に単に多数のガス交換用中空糸膜の束をこの円筒ハ
ウジングの軸に平行に充填したものであり、このような
構造では、前記の二種の方式のいずれでも中空糸膜単位
面積当υのガス父換能は低いものとなる。後者の方式に
於ける改良さnた態様として、壁面に多数の穿孔を有す
る中窒の円筒軸に中空糸膜を巻き付けてこれをハウジン
グに収納し、血液を円筒軸の中空部より穿孔を通して流
出させ、一方、気体は中空糸膜の中空部に流す人工肺が
米国特許第3794468号に提案されている。Most conventional artificial lungs simply consist of a bundle of gas exchange hollow fiber membranes packed in a single cylindrical housing parallel to the axis of the cylindrical housing. In either of the above two methods, the gas exchange capacity per unit area of the hollow fiber membrane is low. As an improved version of the latter method, a hollow fiber membrane is wrapped around a cylindrical shaft of a hollow nitrogen core having many perforations on the wall, and this is housed in a housing, and blood flows out from the hollow part of the cylindrical shaft through the perforations. US Pat. No. 3,794,468 proposes an oxygenator in which the gas is allowed to flow through the hollow part of a hollow fiber membrane.
また、従来、人工肺全使用してガス交換を実施した血液
を、体外のガス交換回路から患者の体内に復帰させる場
合には、血液の温度を患者の体温とほぼ等しくする必要
があり、この目的に人工肺illむ血液のガス交換回路
にステンレス等熱伝導率の良い金属を伝熱部材とした熱
交換器が付設されて使用されてきた。In addition, when blood that has been gas exchanged using an artificial lung is returned to the patient's body from an extracorporeal gas exchange circuit, the temperature of the blood needs to be approximately equal to the patient's body temperature. For this purpose, a heat exchanger made of a metal with good thermal conductivity such as stainless steel as a heat transfer member has been attached to the blood gas exchange circuit in an artificial lung.
中空糸膜の中空部に血液金泥し、中空糸膜の外部に気体
を流してガス父換金行なわせる内部潅流方式では、血液
を多数の中空糸膜に均等に分配供給すnは血液のチャン
ネリング(偏流〕はないものの、中空糸膜の中9部を流
れる血液は層流となるため、酸素摂取能(単位膜面積当
シの酸素移動速度)を上げるためには中空糸膜の内径を
小さくすることが必要であり、このために150〜30
0μm程度の内径を有する中空糸膜が人工肺用として開
発さ扛ている。In the internal perfusion method, blood is poured into the hollow part of the hollow fiber membrane and gas is exchanged by flowing the gas outside the hollow fiber membrane. In this method, the blood is evenly distributed and supplied to a large number of hollow fiber membranes. Although there is no polarized flow, the blood flowing through the inner part of the hollow fiber membrane becomes a laminar flow, so in order to increase the oxygen uptake capacity (oxygen transfer rate per unit membrane area), the inner diameter of the hollow fiber membrane must be made small. It is necessary to do this, and for this purpose 150 to 30
Hollow fiber membranes having an inner diameter of about 0 μm have been developed for use in oxygenators.
しかl−ながら、径を細くしても血液が層流流動する限
シは酸素摂取能が飛M的に向上するものではなく、さら
に径全細くするにつれてクロッキング(凝血による中空
部の閉塞現象)が多発(7、実用上大きな間粗と々って
いる。また、一般的に人工肺では、中空糸膜が数万本束
ねら扛た束として用いら扛ており、これら多数の中空糸
膜のそれぞれに光分に気体を方散供給するに(づ特別の
配慮が必要である。気体の分散供給が不光分である場合
には、炭酸ガス排泄能(単位膜面積当りの炭酸ガス移動
速度)が低下する。However, even if the diameter is made thinner, as long as the blood flows laminarly, the oxygen uptake capacity will not improve significantly. ) occurs frequently (7), which is a large gap in practical use.Also, in general, in an oxygenator, tens of thousands of hollow fiber membranes are used as a bundle, and these large numbers of hollow fiber membranes are Special consideration is required to supply gas diffusely to each membrane. If the distributed supply of gas is non-luminous, the carbon dioxide excretion capacity (carbon dioxide transfer per unit membrane area) must be taken into account. speed) decreases.
一方、中空糸膜の中9部に槃イtを汚、1〜、外部に血
液層流す外部層流方式では、ガスの分配は良好であシ、
かつ血液の流れに乱nが発生することが期待できるもの
の、血液のチャンネリングによる酸素化不足あるいは滞
留部における凝血が生じ易いという問題点があり、この
点に改良のほどこされた米国特許第3794468号の
人工肺においても、血液の充填量が過大となシ、さらに
その製造には煩雑な手数を要するなどの問題点を含んで
おり、未だ光分な性能を有する人工肺は笑現さ扛ていな
い。On the other hand, in the external laminar flow method in which the inside part of the hollow fiber membrane is contaminated and the blood layer flows outside, gas distribution is not good.
Although turbulence can be expected to occur in the flow of blood, there is a problem that blood channeling may lead to insufficient oxygenation or clots in the stagnation area. The artificial lung of this issue also had problems, such as an excessive amount of blood filling and the complicated manufacturing process. do not have.
1だ、血液のガス交換回路の調整は、一般に病院等の治
療施設に於いて、人工肺と熱交換器とを回路チューブ等
を介して接続することによシ実施されていた。したがっ
て、使用者にとっては血液ガスVP!回路の組み立てが
煩雑であり、回路の組み立てを誤る危険性もあり、!!
:た、回路の設置にスペースを要するという問題があっ
た。更に、人工肺と熱交換器という独立した血液の滞留
部全有し、かつこれらを接続するための回路接続チュー
ブが必要に□なるため、回路の作動初期に要する血液量
が多くカリ、1だこれら構成部材内の泡抜きを別々に実
施する必要がちシ、操作的にも煩雑な面があった。1. Adjustment of the blood gas exchange circuit was generally carried out in treatment facilities such as hospitals by connecting an oxygenator and a heat exchanger via a circuit tube or the like. Therefore, for the user, blood gas VP! Assembling the circuit is complicated and there is a risk of assembling the circuit incorrectly! !
: Another problem was that it required space to install the circuit. Furthermore, since it has an artificial lung and a heat exchanger, which are separate blood storage parts, and a circuit connection tube is required to connect them, the amount of blood required at the initial stage of circuit operation is large. It is necessary to remove bubbles from these constituent members separately, and the operation is also complicated.
このような問題を解決する手段として、例えは特公昭5
5−2982号、特開昭57−39854号等には、人
工肺と熱交換器とを一体化した人工肺装置が開示さ扛て
いる。しかし、こ扛ら人工肺装置は、血液のガス交換性
能、あるいは人工肺装置の大きさの点で必ずしも満足で
きるものではなかった。As a means to solve such problems, an example is the
No. 5-2982, Japanese Unexamined Patent Publication No. 57-39854, etc. disclose an artificial lung device in which an artificial lung and a heat exchanger are integrated. However, these artificial lung devices have not always been satisfactory in terms of blood gas exchange performance or the size of the artificial lung device.
本発明は、これらの問題点全解決するためになさ扛たも
のであり、優れた酸素摂取能と炭酸ガス排泄能とを有し
、かつ血液の滞留やチャンネリングを生じることが殆ど
ない人工肺と小型軽量で優れた熱交換機能を有する熱交
換器と全一体化させ、コンパクトで製造に当っては煩雑
な手間を必要としない安価で簡易な構造の使用者にとっ
て使いやすい人工肺を提供するものである。The present invention has been made to solve all of these problems, and is an artificial lung that has excellent oxygen uptake ability and carbon dioxide excretion ability, and hardly causes blood stagnation or channeling. and a heat exchanger that is small and lightweight and has an excellent heat exchange function, to provide an oxygenator that is compact and easy to use for users with a cheap and simple structure that does not require complicated manufacturing. It is something.
即ち本発明の要旨は、血液導入口、血液導出口、ガス導
入口とガス導出口、熱交換媒体導出口と熱交換媒体導出
口と會有し、全体が略浅箱状をなし、かつ、内部に接触
室を有している〜・ウジングと、多数のガス交換用中空
糸からなる両端を固定された第1の中空糸束と、多数の
熱交換用中空糸からなる両端全固定された第2の中空糸
束とからなり、該接触室は邪魔板で巾を狭められた血液
流路と該血液流路を介して分けられ7’(複数の小室と
からなり、該第1および第2の中空糸束は、それぞれ別
個の小室に邪魔板と平行に設置されてなる熱交換器を内
蔵した中空糸膜型人工肺にある。That is, the gist of the present invention is to have a blood inlet, a blood outlet, a gas inlet and a gas outlet, a heat exchange medium outlet and a heat exchange medium outlet, and have a generally shallow box shape as a whole, and A first hollow fiber bundle consisting of a large number of gas exchange hollow fibers with both ends fixed, and a first hollow fiber bundle consisting of a large number of heat exchange hollow fibers with both ends completely fixed, which has a contact chamber inside. The contact chamber is divided into a blood flow path whose width is narrowed by a baffle plate and a plurality of small chambers 7' (the first and second hollow fiber bundles are separated from each other via the blood flow path) The two hollow fiber bundles are in a hollow fiber membrane oxygenator that includes a heat exchanger installed in separate small chambers in parallel with the baffle plates.
以下、本発明の人工肺につき図面を用いて詳細に説明す
る。Hereinafter, the oxygenator of the present invention will be explained in detail using the drawings.
第1図は、本発明の人工肺の一態様例を示す一部切截縦
断面図であり、第2図は一部切截平面図である。FIG. 1 is a partially cut away vertical sectional view showing an example of an embodiment of the artificial lung of the present invention, and FIG. 2 is a partially cut away plan view.
本発明の人工肺は、血液のガス交換機能を果す第1の中
空糸束(8)を設置17た小室からなるガス交換機能部
(1)と、これにチューブ等を介することな(面接接続
し、血液の熱交換機能を果す第2の中窒糸束會設置した
小室からなるガス交換機能部(2)とから構成される。The oxygenator of the present invention has a gas exchange function section (1) consisting of a small chamber in which a first hollow fiber bundle (8) that performs a blood gas exchange function is installed, and a gas exchange function section (1) that does not require a tube or the like to be connected thereto (face-to-face connection). It is also composed of a gas exchange function section (2) consisting of a small chamber in which a second inner yarn bundle is installed which performs a blood heat exchange function.
ガス交換機能部(1) Kは、基本的には中空糸膜(3
)と、ボッティング材(4)とが内蔵さtlこれらの部
材によりガス交換機能部(1)の内部は、血液の流れる
接触室(5)および中空糸膜(3)の内部9間に酸素を
含む気体を供給するためのガス分配路(6)に区分さj
、ている。接触室(5)の内部は、血液の流扛る方向を
横切る方向に設置されかつ中9糸膜の設置方向に対して
垂直な方向(以下、接触室の厚み方向と略称する)に幅
會せげめるよう構成された血液流路(7)と、この血液
流路(7)ヲ介してわけられその内部に中空糸膜(3)
全内蔵する複数の小室とに区分けさ扛る。血液流路(7
)には、接触室の厚み方向に伸びるような態様で支柱(
9)が配設されてもよい。浅箱状の形状を有するガス交
換機能部(1)には、ガス導入口(10)、ガス導出口
(11)、血液導入口(12)および血液流路(7)の
谷流体の出入口が設けら肛ている。Gas exchange function part (1) K is basically a hollow fiber membrane (3
) and a botting material (4) are built in. These members allow oxygen to flow between the contact chamber (5) through which blood flows and the interior of the hollow fiber membrane (3). divided into a gas distribution path (6) for supplying a gas containing
,ing. The inside of the contact chamber (5) is installed in a direction transverse to the blood flowing direction and has a width in a direction perpendicular to the installation direction of the inner membrane (hereinafter referred to as the thickness direction of the contact chamber). A blood flow path (7) configured to divide the blood flow path, and a hollow fiber membrane (3) separated through the blood flow path (7) and inside the blood flow path (7).
The entire building is divided into several small rooms. Blood flow path (7
) is provided with struts (
9) may be provided. The gas exchange function part (1) having a shallow box shape has a gas inlet (10), a gas outlet (11), a blood inlet (12), and a trough fluid inlet/outlet of the blood flow path (7). It has an anus.
中空糸膜(3)は小室内をほぼ旧線状で通過し相い向か
う二つのボッティング拐(4)により、それぞれの開口
両端をガス分配路(6)、ガス集合路(6′)に向は開
口を保ちつつ固定さ扛ている。The hollow fiber membrane (3) passes through the small chamber almost linearly, and by means of two opposing bottings (4), both opening ends of each are connected to a gas distribution path (6) and a gas collection path (6'). The direction is fixed while keeping the opening open.
本発明の人工肺のガス交換機能部(1)内に於いては、
酸素を含む気体は、ガス導入口(10)からガス分配路
(6)へ供給され、中空糸膜(!1)の内部を流れ、接
触室(5)円で中空糸膜(3)を介して血液とガス交換
を行ない、酸素が減少し、炭酸ガスの増加した気体とな
って、ガス集合路(6′)へ導か扛だ後ガス導出口(1
1)から排出される。なお、ガス導入口(10)から供
給される酸素を含む気体は、もちろん純粋な酸素であっ
てもよい。In the gas exchange function part (1) of the oxygenator of the present invention,
Gas containing oxygen is supplied from the gas inlet (10) to the gas distribution path (6), flows inside the hollow fiber membrane (!1), and passes through the hollow fiber membrane (3) in the contact chamber (5). The gas exchanges with the blood, resulting in a gas with decreased oxygen and increased carbon dioxide, which is led to the gas collection path (6') and then passed through the gas outlet (1).
1). Note that the oxygen-containing gas supplied from the gas inlet (10) may of course be pure oxygen.
一方、人体からをり出された血液(静脈血)は、血液導
入口(12)から血液整流室(14)へ導入され、次い
で接触室(5)へ供給され、接触室(5)内で中を糸膜
(3)の内部を流扛る酸素を含む気体と中空糸膜(3)
ヲ介してガス交換を行ないつつ血液が静脈血から動脈血
化された後、ガス交換機能部(1)と熱交換機能部(2
)を結ぶ血液流路(7)を経て、熱交換機能部(2)に
供給される。On the other hand, blood drawn from the human body (venous blood) is introduced into the blood rectification chamber (14) through the blood introduction port (12), then supplied to the contact chamber (5), and then fed into the contact chamber (5). Gas containing oxygen flowing inside the fiber membrane (3) and the hollow fiber membrane (3)
After the blood is converted from venous blood to arterial blood while performing gas exchange through the gas exchange function section (1) and heat exchange function section (2),
) is supplied to the heat exchange function section (2) through a blood flow path (7) that connects the blood flow path (7).
第1図には、二つの血液流路(7)により接触室が三つ
の小室に区分された例が示されているが、小室の数は二
つ以上であれば幾つあってもよく、その数が多い方が好
ましいが、加工性全考慮すると、3〜10個程度である
ことが実用上好ましい。Figure 1 shows an example in which the contact chamber is divided into three chambers by two blood flow channels (7), but the number of chambers may be any number as long as it is two or more; Although it is preferable that the number is large, it is practically preferable that the number is about 3 to 10 when considering all workability.
第6図は、小室とそれに隣接する血液流路(7)の他の
態様例を示した部分断面図である。血液流路(7)の断
面形状としては、第1図および第5図に示すものを初め
として接触室の厚み方向に幅をせばめるものであればど
のような形状でも採用できるが、第1図に示すような曲
面を有する断面のものであることが血液の滞留を避ける
点で好ましい。接触室(5)の内部に血液流路(7)ヲ
設けるのは、接触室の厚み方向についても血液流に乱れ
を生じさせて血液のチャンネリングを防止すると同時に
、血液の流れ方向に垂直な断面での血中の酸素ガス、炭
酸ガス濃度を均一にし、ガス交換を良くするためのもの
である。FIG. 6 is a partial sectional view showing another embodiment of the small chamber and the blood flow path (7) adjacent thereto. The cross-sectional shape of the blood flow path (7) may be any shape as long as it narrows the width in the thickness direction of the contact chamber, including those shown in FIGS. 1 and 5. It is preferable to have a cross section with a curved surface as shown in the figure in order to avoid blood stagnation. The purpose of providing the blood flow path (7) inside the contact chamber (5) is to prevent blood channeling by causing turbulence in the blood flow in the thickness direction of the contact chamber, and at the same time to prevent blood channeling in the thickness direction of the contact chamber. This is to equalize the oxygen and carbon dioxide concentrations in the blood across the cross section and improve gas exchange.
第1図および第3図に図示されるように、血液流路の接
触室の厚み方向の幅のせばめ方は、隣接する血液流路部
が上下の位置に交互に配設されるようにするのが好まし
い。As shown in FIGS. 1 and 3, the width of the contact chamber of the blood flow path in the thickness direction is narrowed so that adjacent blood flow path sections are arranged alternately in upper and lower positions. is preferable.
次に、本発明の人工肺に於ける接触室の寸法について説
明する。小室の血液流れ方向の長さbは、該小室の厚み
の最大寸法aより大きいことが好ましい。aがbより大
きいと小室の厚み方向の血液の流れが支配的となり小室
の隅(小室の血液流路との境界近傍)に血液の滞留が生
じ気泡が混入した場合脱泡を困難にするおそれがある。Next, the dimensions of the contact chamber in the oxygenator of the present invention will be explained. The length b of the small chamber in the blood flow direction is preferably larger than the maximum thickness a of the small chamber. If a is larger than b, the flow of blood in the thickness direction of the chamber becomes dominant, and if blood stagnates in the corner of the chamber (near the boundary with the blood flow path of the chamber) and air bubbles are mixed in, defoaming may become difficult. There is.
血液流路の厚みθけ、小室の厚みaの半分以下であるこ
とが血液流路を設置した効果を発揮させる上で好ましい
。It is preferable that the thickness θ of the blood flow path is less than half of the thickness a of the small chamber in order to achieve the effect of installing the blood flow path.
接触室の幅w1すなわち二つのボッティング材間の距離
は、血液の流量及び小室の厚みaとの関連で最適値が選
定されるが、接触室内で好ましい平板状の血液流を形成
させるためには、接触室の幅Wは、接触室の厚みaの3
〜60倍程度とするのが好ましい。3倍より小さい場合
は、血液流に対してボッティング材表面の及ばず影響が
大きくなり、1だ加工性も悪く好着しくないことがある
。また、60倍より大きい場合は、血液流を中空糸膜面
全体に均等に流すのが難しくなり、チャンネリング全抑
制するのが困難となる。The width w1 of the contact chamber, that is, the distance between the two botting materials, is selected at an optimum value in relation to the blood flow rate and the thickness a of the small chamber, but in order to form a preferable flat blood flow in the contact chamber. is the width W of the contact chamber is 3 of the thickness a of the contact chamber
It is preferable to set it to about 60 times. If it is smaller than 3 times, the effect of the surface of the botting material on the blood flow becomes large, and the processability is also poor, which may result in unfavorable adhesion. Moreover, if it is larger than 60 times, it becomes difficult to make blood flow evenly over the entire hollow fiber membrane surface, and it becomes difficult to completely suppress channeling.
接触室内の中空糸膜は、血液の流n2方向とほぼ血行す
るよう配設される。本発明にいう血液の流れ方向とは、
血液全接触室内に流した際に実際に形成される血液流の
流れ方向をいうのではなく、接触室内での血液の入口か
ら出口へ向かう方向をいう。血液の流れ方向と中空糸の
なす角度は、チャンネリング抑制の点から少なくとも4
5度であることが必要であり、はぼ直交していることが
最も好ましい。これは血液が中空糸膜を横切って流む、
ることにより中空糸膜のまわりに小さな血液流の乱れが
発生することによるものと考えらj7る。また、小室内
に配設された多数の中空糸膜は、これら中空糸膜の束の
中心軸にそれぞれの中空糸膜が平行に並べら扛たものが
好ましいが、何本かの中空糸膜が束としてかつそれら中
空糸膜の束の中心軸に対して4゛5度までの角度で巻か
nるようにして配設さnてもよい。The hollow fiber membrane in the contact chamber is arranged so that blood circulates approximately in the n2 direction of blood flow. The blood flow direction according to the present invention is
It does not refer to the flow direction of the blood flow actually formed when blood flows into the total contact chamber, but rather refers to the direction from the inlet to the outlet of blood within the contact chamber. The angle between the blood flow direction and the hollow fiber should be at least 4 to suppress channeling.
It is necessary that the angle is 5 degrees, and it is most preferable that the angles are perpendicular to each other. This is because blood flows across a hollow fiber membrane.
This is thought to be due to small disturbances in blood flow occurring around the hollow fiber membrane. In addition, it is preferable that the large number of hollow fiber membranes arranged in the small chamber be such that each hollow fiber membrane is arranged parallel to the central axis of a bundle of these hollow fiber membranes. The hollow fiber membranes may be arranged as a bundle and wound at an angle of up to 4° to the central axis of the bundle of hollow fiber membranes.
各小室に収納さ扛た中空糸膜の充填率は、10〜55%
であることが好ましい。ここでいう充填率とは、接触室
の血液の流扛方向に平行な面に於ける、谷小室の断面積
に対する中空糸膜の占める断面積の割合をいう。充填率
が10%より小さい場合は血液のチャンネリングが生じ
易く(血液の乱れの効果も得難い)、また、55係より
犬きくなると血液の流動抵抗が過大となり、溶血を誘発
することがある。谷小室におけ乙中孕糸膜の充填率は各
小室で異なっていてもよいが、等しくするほうが加工製
作上都合がよい。The filling rate of the hollow fiber membranes stored in each small chamber is 10 to 55%.
It is preferable that The filling rate here refers to the ratio of the cross-sectional area occupied by the hollow fiber membrane to the cross-sectional area of the valley chamber in a plane parallel to the blood flow direction of the contact chamber. If the filling rate is less than 10%, blood channeling is likely to occur (it is difficult to obtain the effect of blood turbulence), and if it is more than 55%, blood flow resistance becomes excessive and hemolysis may be induced. Although the filling rate of the Otsuka thread membrane in the valley chambers may be different for each chamber, it is more convenient for processing and manufacturing to make them equal.
本発明の人工肺内に設置される中空糸膜としては種々の
ものが使用でき、例えばセルロース系、ポリオレフィン
系、ポリスルホン系、ポリビニルアルコール系、シリコ
ーン樹H’tl 系、P MM A系等の各種材料から
々る均質もしくは多孔質の中空糸膜が使用できる。しか
し耐久性に優れ、かつヅ体の透過性能に優扛たものとし
ては、ポリオレフィン糸の多孔質中望糸膜が挙げら扛る
。Various types of hollow fiber membranes can be used to be installed in the oxygenator of the present invention, such as cellulose-based, polyolefin-based, polysulfone-based, polyvinyl alcohol-based, silicone H'tl-based, PMMA-based, etc. Homogeneous or porous hollow fiber membranes of various materials can be used. However, a porous membrane made of polyolefin threads is used as a membrane that has excellent durability and excellent permeability through the body.
その甲でも、膜の微小壁孔が一方の面から他方の面にか
けて幾重にも積層したフィブリルとフィブリルの両端を
固足する節部によりできるフィブリル間の空間で形成さ
nだ微小壁孔がそのフィブリル間の壁間として相互につ
ながって膜の一方の面から他方の面“まで貰* +、て
いるような膜が特に好1しく用いら扛、このような中空
糸膜の例としては、例えばポリプロピレン中9糸膜及び
ポリエチレン中空糸@(そ扛ぞ扛、KP F、 ”d
H?、商品名 三菱レイヨン(株)製)が挙げられる
。Also on the instep, the micro wall pores of the membrane are formed in the spaces between the fibrils created by the fibrils stacked many times from one side to the other and the knots that anchor both ends of the fibrils. Particularly preferred are membranes in which the fibrils are interconnected between the walls and extend from one side of the membrane to the other. Examples of such hollow fiber membranes include: For example, 9-fiber membranes in polypropylene and hollow polyethylene fibers
H? , trade name (manufactured by Mitsubishi Rayon Co., Ltd.).
血液流路(7)に設けてもよい支柱(9)は、接触室内
を流する血液流に乱扛を生じさせると同時に、血液を流
すことにより小室内の中空糸膜(3)が血液流路(7)
へ押し流され、この部分の中空糸膜(3)の充填率が異
常に高くなり溶血等が生ずるの全防上する役割を果すこ
とができるので、支柱(9)全設けるのは本発明の好ま
しい態様である。The struts (9), which may be provided in the blood flow path (7), create turbulence in the blood flow flowing in the contact chamber, and at the same time, the hollow fiber membrane (3) in the small chamber increases the blood flow by causing the blood to flow. Road (7)
It is preferable in the present invention to provide all the struts (9), since this can completely prevent hemolysis and the like from occurring due to the abnormally high filling rate of the hollow fiber membrane (3) in this area. It is a mode.
ボッティング材(4) Fi、中空糸膜全便用した所謂
中窒糸瀘過モジュールを製造する場合と同様の手法によ
り、接着性のよいポリウレタン、不飽和ポリエステル、
エボキ7樹脂等を使用して中空糸膜と一体化させ、簡易
に製造することができる。Botting material (4) Polyurethane with good adhesiveness, unsaturated polyester,
It can be easily manufactured by integrating it with a hollow fiber membrane using EBOKI 7 resin or the like.
一部゛、熱交換機能部(2)は、熱交換媒体の流れる熱
交換媒体入口(18)、熱交換媒体出口(19X熱交換
媒体流路(20) 、 、(2o’)と血液の流れる(
血液流路(7)、第2の中空糸束(16)が配設された
接触室)および血液流出口(13) を有し、熱交換手
段が配設さ扛る。熱交換機能部(2)内に配設される熱
交換手段としては、融水等の熱交換媒体をその内部に流
すための複数本の中空糸(17)が血液流路(7)から
血液流出口(13)へ向かう方向(血液の流れ方向)に
対してほぼ直交するよう配設されている。中空糸(17
) ’にこのようガ態様で配設すると、血液境膜側の伝
熱抵抗會小さく出来、血液と熱交換媒体との熱交換効率
を高めることが可能であり、熱交換機能部(2)全コン
パクトなものとして形成することが可能である。Part of the heat exchange function section (2) includes a heat exchange medium inlet (18) through which the heat exchange medium flows, a heat exchange medium outlet (19X heat exchange medium flow path (20), , (2o'), and (
It has a blood flow path (7), a contact chamber in which a second hollow fiber bundle (16) is disposed, and a blood outlet (13), and is provided with heat exchange means. The heat exchange means disposed within the heat exchange function section (2) includes a plurality of hollow fibers (17) for flowing a heat exchange medium such as melted water into the heat exchange section (2). It is arranged so as to be substantially perpendicular to the direction toward the outflow port (13) (blood flow direction). Hollow fiber (17
) When arranged in this manner, the heat transfer resistance on the blood membrane side can be reduced, and the heat exchange efficiency between the blood and the heat exchange medium can be increased. It is possible to form it as compact.
熱交換媒体を流、すための中空糸(17)の素材として
は、熱伝導率が10−5c a、t/cm/ s e
c / ℃以上であ扛け、いかなる素材も使用用能であ
り、月俸的には、例えはセルロース系、ポリオレフィン
系、シリコーン樹脂系、アクリロニトリル糸位1脂、ポ
リメチルメタクI)レー、ト系粕1脂等を挙けることが
できる。中空糸の形態としては、内径が50〜1000
μ、肉厚が2〜200μ程度のものが使用出来、熱伝導
率の点から多孔膜でないものが良い。The material for the hollow fibers (17) for flowing the heat exchange medium has a thermal conductivity of 10-5 ca, t/cm/s e
Any material can be used at temperatures above c/℃, and in terms of monthly cost, examples include cellulose-based, polyolefin-based, silicone resin-based, acrylonitrile thread 1 fat, polymethyl methacrylate, and tomato-based lees 1 Fat, etc. can be mentioned. The hollow fiber has an inner diameter of 50 to 1000 mm.
A material having a wall thickness of about 2 to 200 microns can be used, and a non-porous film is preferable from the viewpoint of thermal conductivity.
捷だ、中空糸内径は用途にもよるが、人工肺用の熱交換
器としては、余り小さくすると中苧糸内を流1れる熱交
換媒体の圧損が大きくなり、熱交換媒体流路(:?n)
、 (2rl’)のシール性や回路の操作性が悪くなる
。逆に、太きすぎると中9糸内金流扛る液体の伝熱係数
が小さくなり、また単位伝熱面積当りの中空糸の占める
体積も大きくなり熱交換器が大型1t1.する。このた
め、好ましくは、内径200〜500μ程度が良い。肉
厚も、伝熱係数を犬きくするためには薄くするほど良い
が、強度、加工性の点から考えて、特に10〜150μ
程度とするのが好ましい。The inner diameter of the hollow fiber depends on the application, but for a heat exchanger for an oxygenator, if it is too small, the pressure drop of the heat exchange medium flowing through the hollow fiber becomes large, and the heat exchange medium flow path (: ?n)
, (2rl') sealability and circuit operability deteriorate. On the other hand, if the hollow fibers are too thick, the heat transfer coefficient of the liquid flowing inside the hollow fibers will be small, and the volume occupied by the hollow fibers per unit heat transfer area will also be large, resulting in a large 1t1. do. For this reason, the inner diameter is preferably about 200 to 500 μm. The thinner the wall thickness is, the better in order to increase the heat transfer coefficient, but from the viewpoint of strength and workability, it is especially preferable to use a wall thickness of 10 to 150 μm.
It is preferable to set it as approximately.
第1図では、第2の中空糸束(16)の配設された接触
室は一室だけであるが、ガス交換機能部(1)と同様複
数個の小室に分割しても良い。また本例では、ガス交換
機能部(1)を潅流した後の血液が熱交換機能部(2)
に入るようになっているが、逆に熱交換機能部(2)に
血液を供給し先に熱交換を行った後、ガス交換機能部(
1)でガス交換を行っても良いし、本発明人工肺の接触
室の任意の小室に第1の中を糸束又は第2の中空糸束全
配設することで任意の順序でガス交換と熱交換を行う事
も可能である。 ・〔発明の効果〕
このような本発明の人工肺によれば、血液の滞留及びチ
ャンネリングの発生がなく容易に血液流に乱扛が起こる
ため(低圧損で血液を潅流しても)中空糸膜を介しての
単位膜面積当りの酸素及び炭酸ガス交換量が大きく、9
7″1.た性能が発揮できる。さらに、容易(こ加工が
できるため安価でかつ体外への血液搬出量が小さくなり
、患者の負担全軽減するという利点も有[2ている。In FIG. 1, there is only one contact chamber in which the second hollow fiber bundle (16) is disposed, but it may be divided into a plurality of small chambers as in the gas exchange function section (1). In addition, in this example, the blood after perfusing the gas exchange function part (1) is transferred to the heat exchange function part (2).
However, conversely, blood is supplied to the heat exchange function part (2) and heat exchange is performed first, and then the gas exchange function part (2) is supplied with blood.
Gas exchange may be performed in step 1), or gas exchange may be performed in any order by arranging the first fiber bundle or the second hollow fiber bundle in any small chamber of the contact chamber of the oxygenator of the present invention. It is also possible to exchange heat with・[Effects of the Invention] According to the artificial lung of the present invention, blood stagnation and channeling do not occur, and turbulence easily occurs in the blood flow (even when blood is perfused with low pressure drop). The amount of oxygen and carbon dioxide gas exchanged per unit membrane area through the thread membrane is large, and 9
In addition, it has the advantage of being easy to process, making it inexpensive, and reducing the amount of blood pumped out of the body, reducing the burden on the patient.
1だ、熱交換器がガス交換機能部と一部1ヒさ扛て形成
さ扛ているため、使用に際しての煩雑な回路の糾み立て
、作動初期の個々の部品の泡抜きを別々に実施する必要
がなく、使用者にとっては極めて簡便に操作することが
出来、しかも、軽くて、血液との反応性が小さい高分子
を使用出来るため、小型軽−1で加工性の良い安価な人
工肺全便用者に提供することがIf、]来る。1. Because the heat exchanger is formed by partially touching the gas exchange function part, it is necessary to assemble the complicated circuit and remove bubbles from each part separately at the beginning of operation. It is an inexpensive oxygenator that is small, lightweight, and easy to process because it is lightweight and uses polymers that have low reactivity with blood. If it is available to all users.
第1図は本発明の人工肺モジュールの一実施態様の一部
切截縦断面図であり、第2図は一部切截平面図である。
帖3a図から第3c図は、小室および血液流路の他の態
様を示す部分拡大断面図である。
1:機能部1 2:機能部2
5:中空糸膜 4:ポツテイング材5:接触室
6:ガス分配路
6′:ガス集合路 7;血液流路
8:第1の中苧糸束 9:支 柱
10:ガス導入口 11:ガス導出口12:血液導入
口 15;血液流出口14:血液整流室 15:血
液集合室16:第2の中穿糸束 17:中空糸
18:熱交換媒体人口 19:慈父換媒体出口20.2
0’:熱交換媒体流路
21:仕切り仮に開孔した孔
a:小室の最大厚み
b:小室の−長さの最大寸法
e:血液流路の厚み
W:接触室の幅
入1図FIG. 1 is a partially cutaway vertical sectional view of an embodiment of the oxygenator module of the present invention, and FIG. 2 is a partially cutaway plan view. Figures 3a to 3c are partially enlarged sectional views showing other aspects of the small chamber and the blood flow path. 1: Functional part 1 2: Functional part 2 5: Hollow fiber membrane 4: Potting material 5: Contact chamber
6: Gas distribution path 6': Gas collection path 7; Blood flow path 8: First lactic filament bundle 9: Strut 10: Gas inlet 11: Gas outlet 12: Blood inlet 15; Blood outlet 14 : Blood rectification chamber 15: Blood collection chamber 16: Second medium thread bundle 17: Hollow fiber 18: Heat exchange medium population 19: Heat exchange medium outlet 20.2
0': Heat exchange medium flow path 21: Partition Temporarily opened hole a: Maximum thickness of small chamber b: Maximum length of small chamber e: Thickness of blood flow path W: Width of contact chamber 1 figure
Claims (1)
交換媒体導入口と熱交換媒体導出口とを有し、全体が略
浅箱状をなし、かつ、内部に接触室を有しているハウジ
ングと、多数のガス交換用中空糸からなる両端を固定さ
れた第1の中空糸束と、多数の熱交換用中空糸からなる
両端を固定された第2の中空糸束とからなり、該接触室
は邪魔板で巾を狭められた血液流路と該血液流路を介し
て分けられた複数の小室とからなり、該第1および第2
の中空糸束は、それぞれ別個の小室に邪魔板と平行に設
置されてなる熱交換器を内蔵した中空糸膜型人工肺。It has a blood inlet, a blood outlet, a gas inlet and a gas outlet, a heat exchange medium inlet and a heat exchange medium outlet, and has a generally shallow box shape as a whole, and has a contact chamber inside. A first hollow fiber bundle consisting of a large number of gas exchange hollow fibers fixed at both ends, and a second hollow fiber bundle consisting of a large number of heat exchange hollow fibers fixed at both ends. , the contact chamber is composed of a blood flow path whose width is narrowed by a baffle plate and a plurality of small chambers separated through the blood flow path, and the first and second
The hollow fiber bundle is a hollow fiber membrane oxygenator with a built-in heat exchanger, each of which is installed in a separate small chamber parallel to the baffle plate.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21094884A JPS6187566A (en) | 1984-10-08 | 1984-10-08 | Hollow yarn membrane type artificial lung having heat exchanger mounted therein |
CA000473882A CA1259870A (en) | 1984-10-01 | 1985-02-08 | Heat exchanger and blood oxygenating device furnished therewith |
DE8585101629T DE3575075D1 (en) | 1984-10-01 | 1985-02-14 | HEAT EXCHANGER WITH OXYGEN ENHANCEMENT FOR BLOOD. |
EP85101629A EP0176651B1 (en) | 1984-10-01 | 1985-02-14 | Heat exchanger and blood oxygenating device furnished therewith |
US06/939,236 US4791054A (en) | 1984-10-01 | 1986-12-08 | Heat exchanger and blood oxygenating device furnished therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21094884A JPS6187566A (en) | 1984-10-08 | 1984-10-08 | Hollow yarn membrane type artificial lung having heat exchanger mounted therein |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6187566A true JPS6187566A (en) | 1986-05-02 |
Family
ID=16597746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21094884A Pending JPS6187566A (en) | 1984-10-01 | 1984-10-08 | Hollow yarn membrane type artificial lung having heat exchanger mounted therein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187566A (en) |
-
1984
- 1984-10-08 JP JP21094884A patent/JPS6187566A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0176651B1 (en) | Heat exchanger and blood oxygenating device furnished therewith | |
US4111659A (en) | Mass and heat transfer exchange apparatus | |
EP0160268B1 (en) | Blood oxygenator using a hollow-fiber membrane | |
US4659549A (en) | Blood oxygenator using a hollow fiber membrane | |
US5312589A (en) | Gas transfer apparatus | |
US5217689A (en) | Blood oxygenation system | |
US5395525A (en) | Apparatus for exchanging substances | |
JPH0286817A (en) | Hollow yarn-type fluid treating device | |
JPS6120559A (en) | Hollow yarn type artificial lung | |
EP0114732A2 (en) | Blood oxygenator | |
CA2241844C (en) | Mesh spacer for heat exchanger | |
JPS63139562A (en) | Hollow yarn type artificial lung | |
JP2792048B2 (en) | Hollow fiber type fluid treatment device | |
JPS6187566A (en) | Hollow yarn membrane type artificial lung having heat exchanger mounted therein | |
JP2827228B2 (en) | Hollow fiber type fluid treatment device | |
JPH04193178A (en) | Hollow thread membrane type oxygenator module | |
JPH042067B2 (en) | ||
JPS60225572A (en) | Hollow yarn membrane type artificial lung | |
JPS61119273A (en) | Hollow yarn membrane type artificial lung | |
JPS6137251A (en) | Heat exchanger built-in artificial lung | |
EP0157941B1 (en) | Blood oxygenator using a hollow fiber membrane | |
JPS6311972Y2 (en) | ||
JPH11137671A (en) | Artificial lung with built-in heat exchanger | |
JPS6137250A (en) | Hollow yarn membrane type artificial lung equipped with heat exchange capacity | |
JPS6129360A (en) | Artificial lung having dialytic function |