JPS618610A - Apparatus for inspecting steel sheet surface - Google Patents
Apparatus for inspecting steel sheet surfaceInfo
- Publication number
- JPS618610A JPS618610A JP59128963A JP12896384A JPS618610A JP S618610 A JPS618610 A JP S618610A JP 59128963 A JP59128963 A JP 59128963A JP 12896384 A JP12896384 A JP 12896384A JP S618610 A JPS618610 A JP S618610A
- Authority
- JP
- Japan
- Prior art keywords
- flaw
- flaw detection
- steel plate
- signal
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は鋼板連続搬送ラインにおいて用いられる鋼板
表面検査装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a steel plate surface inspection device used in a continuous steel plate conveyance line.
従来技術
圧延工程の酸洗ライン出側においては冷延母材としての
品質向上の為に熱延鋼帯の探傷が必要とされている。Conventional technology On the exit side of the pickling line in the rolling process, flaw detection of the hot rolled steel strip is required in order to improve the quality of the cold rolled base material.
従来、こうした熱延鋼帯の探傷には光学的探傷法、電磁
式探傷法等が用いられているが、光学的探傷法では酸洗
後の鋼材表面よごれ(水、油等)による誤検出が多く、
探傷精度を向上させる為には別途前処理が必要になって
いた。Conventionally, optical flaw detection methods, electromagnetic flaw detection methods, etc. have been used to detect flaws in hot rolled steel strips, but optical flaw detection methods often cause false detection due to contamination (water, oil, etc.) on the surface of the steel material after pickling. many,
Separate pretreatment was required to improve flaw detection accuracy.
また、検出精度及び高速度で移動する被探傷物体への探
傷性からは電磁式探傷法が優れているが測定範囲が狭い
為、被探傷物体幅に応じて高価なプローブを複数台配置
しなければならなかった。In addition, although electromagnetic flaw detection is superior in terms of detection accuracy and ability to detect flaws on objects to be tested that move at high speed, the measurement range is narrow, so multiple expensive probes must be arranged depending on the width of the object to be tested. I had to.
さらに、浸透液式等では探傷速度に問題があるため連続
搬送ラインでの探傷には適さないという問題があった。Furthermore, the penetrating liquid method has a problem in flaw detection speed and is therefore not suitable for flaw detection on a continuous conveyance line.
−このため、鋼板の連続搬送ラインの様に鋼板の搬送速
度が速く、板幅も広く、かつ酸洗によるヨゴレがある場
合には従来法による鋼板表面疵の完金な把握は困難であ
シ、最終的にはオペレータの感と目視と判断に頼ってい
るのが現状であった。-For this reason, when the steel plate is conveyed at a high speed and wide, and there is dirt due to pickling, such as in a continuous conveyance line, it is difficult to completely detect surface flaws on the steel plate using conventional methods. However, the current situation is that it ultimately relies on the operator's intuition, visual inspection, and judgment.
発明の目的
そこで、この発明は前記のような鋼板連続搬送ラインの
表面検査における従来技術の不都合な点を改善して、鋼
板の板幅や搬送速度に充分に対応でき、かつ酸洗による
ヨゴレも疵等と的確に判別出来得る鋼板表面検査装置を
提供することを目的とする。Purpose of the Invention Therefore, the present invention improves the above-mentioned disadvantages of the conventional technology in surface inspection of a continuous steel plate conveyance line, can sufficiently cope with the width and conveyance speed of the steel plate, and also eliminates stains caused by pickling. It is an object of the present invention to provide a steel sheet surface inspection device that can accurately identify defects and the like.
発明の構成
この発明による鋼板表面検査装置は、鋼板表面を撮像す
る撮像装置と、との撮像装置の鋼板搬送方向下流側に設
けられる鋼板表面の平坦度を測定する平担度測定装置と
、これら両装置を制御する演算制御部とを備え、この演
算制御部は前記撮像装置からの撮像画面を画像処理して
鋼板表面疵である確率の高い部分を選定し、この部分に
平担度測定装置を移動して再び測定し疵とよごれを区別
するよう構成された点に特徴がある。Structure of the Invention A steel plate surface inspection apparatus according to the present invention comprises: an imaging device for capturing an image of a steel plate surface; a flatness measuring device for measuring the flatness of a steel plate surface provided on the downstream side of the imaging device in the steel plate conveyance direction; The arithmetic and control unit controls both devices, and the arithmetic and control unit processes the image captured by the imaging device to select a portion with a high probability of being a steel plate surface flaw, and applies a flatness measuring device to this portion. It is unique in that it is constructed so that it can be moved and measured again to distinguish between scratches and dirt.
実施例 以下、図示する本発明の実施例によシ説明する。Example DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be explained below with reference to the illustrated embodiments.
第1図にこの発明による鋼板表面検査装置実施例の制御
ブロック図を示j−たが、この鋼板表面検査装置は撮像
装置である光学式探傷装置A、平平担測測定装置ある電
磁式探傷装置B、及び演算制御部Cとから構成される。FIG. 1 shows a control block diagram of an embodiment of the steel plate surface inspection apparatus according to the present invention. B, and an arithmetic control section C.
光学式探傷装[Aは熱延から冷延間の鋼板連続搬送ライ
ン中で第2図に示した様に鋼板1のバクつきの少ないプ
ライドル・ロール23部付近に設置されている。The optical flaw detection device [A] is installed near the priddle roll 23 where the steel sheet 1 has less backlash, as shown in FIG. 2, in a continuous conveyance line for steel sheets from hot rolling to cold rolling.
この光学式探傷装置Aは鋼板1の幅方向に並べて配列さ
れた3台のITV(CCDカメラ)2と各ITY2の鋼
板1撮像面にストロボ光を照射する3台のストロボ3が
備えられている。これら3台のストロボ;うの中で2台
のストロボ3は鋼板1幅方向の一側方に配置されてお如
、残シの1台のストロボ3は鋼板l@力方向他側に配置
されている。とうして、対向関係にあるストロボ間の光
の相互干渉を防ぐために遮光板4が設けられている。This optical flaw detection device A is equipped with three ITVs (CCD cameras) 2 arranged side by side in the width direction of the steel plate 1 and three strobes 3 that irradiate strobe light onto the imaging surface of the steel plate 1 of each ITY2. . These three strobes; two strobes 3 are placed on one side of the steel plate in the width direction, and the remaining strobe 3 is placed on the other side of the steel plate in the force direction. ing. A light shielding plate 4 is provided to prevent mutual interference of light between the strobes that are in a facing relationship.
これらのITV2とス)oボ3は同期制御部5に接続さ
れてお)、この同期制御部5は鋼板lの通板速度に合わ
せてITV視野が重ならない様にストロボ発光タイミン
グが制御される。同期制御部5の次段にはタイミング制
御部6が接続されてお)各ITV2からの撮像信号が同
期制御部5からタイミング制御部6に入力される。この
タイミング制御部6には通板トラッキングを行なってい
るパルス・ジェネレータ7からのトラッキングi号が入
力されておシ、入力する撮像信号の撮像・画像処理タイ
ミング制御を行なって演算制御部C側に出力する。また
、タイミング制御部6がら同期制御部5へ同期信号が出
方され、通板速度に応じたITV2とス・トロボ3との
間の同期制御を行なう。The ITV 2 and the robot 3 are connected to a synchronization control unit 5), which controls the strobe light emission timing in accordance with the threading speed of the steel plate so that the ITV fields of view do not overlap. . A timing control section 6 is connected to the next stage of the synchronization control section 5, and the imaging signal from each ITV 2 is inputted from the synchronization control section 5 to the timing control section 6. The timing control section 6 receives the tracking number i from the pulse generator 7 that performs sheet tracking, controls the timing of imaging and image processing of the input imaging signal, and sends it to the arithmetic control section C side. Output. Further, a synchronization signal is outputted from the timing control section 6 to the synchronization control section 5, and synchronization control between the ITV 2 and the strobe 3 is performed in accordance with the threading speed.
ここで、光学式探傷装置AのITV2とストロボ3との
関係をtlca図に示した配置図に従って詳述すると、
ストロボ3はITV2の解像度不足を補うためにITV
2撮儂範囲ABに斜めからストロボ光を照射するよう構
成されている。また、ストロボ3の照射角αと照射距離
!に関するデータを第4図及び第5図に示したが、鋼板
1面上の深さIIuIlの疵を検出させるためにス)1
−ボ3の照射角を200未満とすることによ1)ztu
n長以上長形上発生させることができる。こうして発生
させる影と共に、斜め方向からのストロボ照射による鋼
板1表面幅方向の照度比をITV2の解像能力範囲に入
れるために鋼板1からストロボ3tIでの照射距離ノを
1000su+以上と表るように配置し良好な画像を得
ている。Here, the relationship between the ITV 2 and the strobe 3 of the optical flaw detection device A will be explained in detail according to the layout diagram shown in the TLCA diagram.
Strobe 3 uses ITV to compensate for the lack of resolution of ITV2.
2. The camera is configured to irradiate strobe light obliquely onto the camera range AB. Also, the firing angle α and firing distance of strobe 3! 4 and 5, in order to detect a flaw with a depth of IIuIl on one surface of the steel plate, Step 1)
- By setting the irradiation angle of Bo 3 to less than 200, 1) ztu
It can be generated in a long form with a length of n or more. In addition to the shadows generated in this way, in order to bring the illuminance ratio in the width direction of the surface of the steel plate 1 due to oblique strobe irradiation into the resolution capability range of ITV2, the irradiation distance from the steel plate 1 with the strobe 3tI is expressed as 1000su+ or more. I placed it and got a good image.
この実施例では各々3台ずつのITV2とストロボ3を
使用しているが銅板1の板幅が狭ければITV2は1台
とするととも可能であり、同様にストロボ3も照射能力
が充分に大きければ1台だけとすることも出来る。In this example, three ITVs 2 and three strobes 3 are used, but if the width of the copper plate 1 is narrow, it is possible to use only one ITV 2, and similarly, if the strobe 3 has a sufficiently large irradiation capacity. It is also possible to use only one unit.
また、搬送ラインの前記光学式探傷装置Aよシも所定長
だけ下流には平担度測定装置である電磁式探傷装置Bが
設けられている。この電磁式探傷装置Bは鋼板lの幅方
向に変位自在となるように配置された2個のプローブ9
と、このプローブ9を検出端とする渦流探傷部8とを備
えている。Furthermore, an electromagnetic flaw detection device B, which is a flatness measuring device, is provided downstream of the optical flaw detection device A by a predetermined distance on the conveyance line. This electromagnetic flaw detection device B has two probes 9 disposed so as to be freely displaceable in the width direction of the steel plate l.
and an eddy current flaw detection section 8 that uses the probe 9 as a detection end.
2個のプローブ9は鋼板10幅方向中心から各々独立し
て幅方向外側に延在する2本のボール・ネジ10に螺合
されている。このボール・ネジ10の鋼板幅方向外側端
部にはモータ11が各々取付けられておシ、そ−夕11
で回転されるボール・ネジ10によって、2個のプロー
ブ9を独立して鋼板1の幅方向に変位可能としている。The two probes 9 are screwed into two ball screws 10 that each independently extend outward in the width direction from the center of the steel plate 10 in the width direction. A motor 11 is attached to each outer end of the ball screw 10 in the width direction of the steel plate.
The two probes 9 can be independently displaced in the width direction of the steel plate 1 by the ball screw 10 rotated by the ball screw 10.
モータ11にはサーボ回路14を介して後述する演算制
御部Cからの探傷位置信号が入力される。また2個のモ
ータ11には各々パルス・ジェネレータ12とタコ・ジ
ェネレータ13が取付けられており、これらのパルス・
ジェネレータ12とタコ・ジェネレータ13によシ各々
のプローブ9の変位量及び変位方向を示すモータ11の
回転数及び回転方向がサーボ回路14に入力される。こ
うして電磁式探傷装置Bは演算制御部Cからの探傷信号
によって鋼板1@方向の半分ずつの領域をカバーする2
個のプローブ9をサーボ制御し、鋼板1の渦流探傷を行
なう。A flaw detection position signal from an arithmetic control section C, which will be described later, is input to the motor 11 via a servo circuit 14. Furthermore, a pulse generator 12 and a tacho generator 13 are attached to each of the two motors 11, and these pulse generators
The rotational speed and rotational direction of the motor 11 indicating the displacement amount and displacement direction of each probe 9 are inputted to the servo circuit 14 by the generator 12 and the tacho generator 13 . In this way, the electromagnetic flaw detection device B covers half the area in the steel plate 1 direction by the flaw detection signal from the calculation control unit C.
The probes 9 are servo-controlled to perform eddy current flaw detection on the steel plate 1.
さらに、この発明の鋼板表面検査装置には前記光学式探
傷装置Aと電磁式探傷装置Bを制御する演算制御部Cが
設けられている。Furthermore, the steel plate surface inspection apparatus of the present invention is provided with an arithmetic control section C that controls the optical flaw detection apparatus A and the electromagnetic flaw detection apparatus B.
この演算制御部Cは3ch、の1次疵検出部16を備え
ておセ、光学式探傷装置Aのタイミング制御部6からの
画像信号を入力し、30回/秒程度の画像をリアルタイ
ムで疵判定して次段のフレーム・メモリ17に疵の画像
を記憶させる。この1次疵検出部11jITV画像の走
査線輝度を微分したものを微分スライスにより設定値以
上の値の有無を検出し、この設定値を越えた分の面積計
算もしくはピーク値によ)、第1次の疵有無判定を行な
い、疵有と判定した場合は尚該画面情報をフレーム・メ
モリ17に出力する。This arithmetic control section C is equipped with a 3-channel primary flaw detection section 16, which inputs the image signal from the timing control section 6 of the optical flaw detection device A, and detects flaws at a rate of about 30 times/second in real time. The judgment is made and the image of the flaw is stored in the frame memory 17 at the next stage. This primary flaw detection unit 11j differentiates the scanning line luminance of the ITV image and detects the presence or absence of a value exceeding a set value by differential slicing, and calculates the area exceeding this set value or by a peak value). Next, the presence/absence of flaws is determined, and if it is determined that there is a flaw, the screen information is output to the frame memory 17.
1次疵検出部16とフレーム・メモリ17線3台のIT
V2に対応するよう各々3チヤンネル(3ch、)で構
成されているが、処理能力の大きなものであれば各々1
チヤンネルで構成することも可能である。Primary flaw detection unit 16 and frame memory 17 line 3 IT
Each is composed of 3 channels (3ch) to correspond to V2, but if it has a large processing capacity, 1 channel each
It is also possible to configure it with channels.
フレーム・メモリ17の出力側には2次疵検出部18が
接続されておシ、フレーム・メそす17内に記憶された
1次疵検出部16での疵判定で疵有となった部分と、電
磁式探傷装置Bの渦流探傷部8から入力される探傷結果
とから2次疵検出が行なわれる。この2次疵検出により
疵の有無確認疵の種類、深さ、危険の大きさ等の判定を
行う。A secondary flaw detection unit 18 is connected to the output side of the frame memory 17, and a portion determined to be flawed by the primary flaw detection unit 16 stored in the frame memory 17 is stored in the frame memory 17. Secondary flaw detection is performed from the flaw detection results inputted from the eddy current flaw detection section 8 of the electromagnetic flaw detection device B. Through this secondary flaw detection, the presence or absence of flaws is checked, and the type, depth, and level of danger of the flaws are determined.
2次疵検出部18の出力側にはモニター19と疵ア2−
ム20とが接続されており、2次疵検出部18での2次
疵検出結果として七ニター19上に疵部位の静止画、疵
の種類、および定量化された疵の大きさを表示し、必要
に応じて疵アラーム20を作動してオペレータに異常を
知らせる。A monitor 19 and a flaw detection unit 2- are connected to the output side of the secondary flaw detection section 18.
A still image of the flaw site, the type of flaw, and the quantified size of the flaw are displayed on the seventh monitor 19 as a result of the secondary flaw detection by the secondary flaw detection unit 18. , activate the flaw alarm 20 as necessary to notify the operator of the abnormality.
また、2次疵検出部18から1次疵検出部16には2次
疵検出結果としての1次検出設定値変更信号が出力され
る。この1次検出設定値変更信号は、1次検出で疵の疑
いをかけた撮像に対し、電磁式探傷装置Bでの探傷で疵
でないと判定された時(1次検出での誤検出)、2次検
出のソフトウェアロジックで暗部断面積、暗部長さ、明
部−暗部の判別レベル等の設定値を自動変更する。こう
して、1次疵検出部16の誤検出率を改善するととによ
シ、よシ高速の通板検査に対応し、よシ少ないプ四−プ
での検査を可能にする。Further, a primary detection setting value change signal is output from the secondary flaw detection unit 18 to the primary flaw detection unit 16 as a result of secondary flaw detection. This primary detection setting value change signal is used when it is determined that a defect is not detected in the electromagnetic flaw detection device B for an image that is suspected to be a flaw in the primary detection (erroneous detection in the primary detection). Software logic for secondary detection automatically changes settings such as dark area cross-sectional area, dark area length, bright area/dark area discrimination level, etc. In this way, by improving the false detection rate of the primary flaw detection section 16, it becomes possible to cope with a much higher speed inspection through the plate and to perform an inspection with fewer steps.
さらに、演算制御部Cにはマイクロ・コンピュータ15
が備えられておシ、1次疵検出部16から疵検用信号の
入力があるとパルス・ジェネレータ7の通板トラッキン
グ信号から所定距離だけ光学式探傷装置Aよシも搬送方
向下流に位置する電磁式探傷装置Bへの当該疵検山部到
達に合わせ−Cサーボ回路14によ多制御する。こうし
てサーボ回路】4は各々のモータ11を作動してプロー
ブ9の鋼板1の疵検山部への追従制御を行なうよう構成
されている。Furthermore, the arithmetic control section C includes a microcomputer 15.
is provided, and when a flaw detection signal is input from the primary flaw detection section 16, the optical flaw detection device A is also located downstream in the conveying direction by a predetermined distance from the threading tracking signal of the pulse generator 7. When the flaw detection section reaches the electromagnetic flaw detection device B, the -C servo circuit 14 is controlled. Thus, the servo circuit 4 is configured to operate each motor 11 to control the probe 9 to follow the flaw detection portion of the steel plate 1.
このマイクロ・コンピュータ15は、渦流探傷部8から
の探傷信号と1次疵検出部16からの入力信号とから溶
接点を検出して酸洗プロセス・コンピュータ21に溶接
点検出信号を出力する。また、酸洗プロセス・コンピュ
ータ21からはタイミング制御部6に通板中の板幅、材
質及び溶接点の位置等の表示信号を出力する。The microcomputer 15 detects welding points from the flaw detection signal from the eddy current flaw detection section 8 and the input signal from the primary flaw detection section 16, and outputs a welding point detection signal to the pickling process computer 21. In addition, the pickling process computer 21 outputs display signals to the timing control section 6 such as the width of the sheet being passed, the material, and the position of the welding point.
さらに、冷延プロセス・コンピュータ22には酸洗プロ
セス・コンピュータ21から疵の有無、位置等の情報が
入力され、疵検用位置の通板時には冷圧速度を下げて板
破断事故を防止する。Furthermore, information on the presence or absence of flaws, their location, etc. is inputted to the cold rolling process computer 22 from the pickling process computer 21, and the cold rolling speed is lowered when passing the sheet through the flaw inspection position to prevent sheet breakage accidents.
作用
以上の構成において、この装置は搬送ライン上を鋼板1
が搬送されて光学式探傷装置Aに到達すると、タイミン
グ制御部6は入力するパルス・ジェネレータ7からの通
板トラッキング信号を同期制御部5に出力する。そこで
、同期制御部5はITV2とストロボ3を通板速度に合
わせて同期制御を行なう。In the configuration described above, this device moves the steel plate 1 on the conveyance line.
When the sheet is transported and reaches the optical flaw detection device A, the timing control section 6 outputs the input tracking signal from the pulse generator 7 to the synchronization control section 5. Therefore, the synchronous control section 5 performs synchronous control of the ITV 2 and the strobe 3 in accordance with the sheet passing speed.
こうして、ITV2で撮像された撮像信号は同期制御部
5からタイミング制御部6に送られる。In this way, the image signal captured by the ITV 2 is sent from the synchronization control section 5 to the timing control section 6.
このタイミング制御部6で撮像信号は静止画像に画偉処
理された後に1次疵検出部16に出力されて1次疵検出
が行なわれる。The timing control section 6 subjects the imaging signal to a still image, which is then outputted to the primary flaw detection section 16 for primary flaw detection.
ここで、第6図(a)、Φ) 、 ((り 、 (d)
に各々鋼板表面疵を示す斜視図、その断面図、撮像輝度
、及び2次検出例を示した。第6図(a)の鋼板表面の
各部は■かぶれ疵、■線状光沢、■、■、■水又は油等
のよごれ、■耳われ疵、■耳おれあとを示すものとする
。この鋼板A−A’ 部所面形状は第6図(′b)に
示すもので、とのA −A’ 部に相幽する撮像画面
上の走査線輝度を第6図(e)に示す。1次疵検出部1
6では撮像画面の走査線輝度上下制限値(第6図(e)
上の破線)を越えた量(同図の黒ぬシ部分)及び微分後
のピーク値、ピーク数等を元に、あらかじめ限界値とし
て設定された値との比較によシ疵の有無を判定する。Here, Fig. 6 (a), Φ), ((ri, (d)
A perspective view showing flaws on the steel plate surface, a cross-sectional view thereof, imaging brightness, and an example of secondary detection are shown respectively. Each part of the surface of the steel plate shown in FIG. 6(a) shows: 1) rash, 2) linear gloss, 2, 2, 2, 2) dirt from water or oil, 2) ear cracks, and 2) ear marks. The surface shape of this steel plate A-A' section is shown in Fig. 6 ('b), and the scanning line brightness on the imaging screen that appears in the A-A' section is shown in Fig. 6 (e). . Primary flaw detection section 1
6, the scanning line luminance upper and lower limit values of the imaging screen (Fig. 6 (e)
The presence or absence of flaws is determined by comparing with the value set in advance as the limit value, based on the amount exceeding the upper dotted line (black squared part in the same figure), the peak value after differentiation, the number of peaks, etc. do.
こうして、設定値以上で疵の疑いがある部位を検出し、
その画面情報をフレーム・メモリ17に記憶する。In this way, areas suspected of having flaws are detected when the value exceeds the set value, and
The screen information is stored in the frame memory 17.
これと同時に、1次疵検出部16はマイクロ・コンピュ
ータ15に1次疵検出信号を出力し、この信号を入力し
たマイクロ・コンピュータ15は電磁式探傷装置Bのサ
ーボ回路14に信号を送91次疵検出部16によシ疵と
みなされた部位にプローブ9を追従制御して渦流探傷を
行なう。At the same time, the primary flaw detection section 16 outputs a primary flaw detection signal to the microcomputer 15, and the microcomputer 15, which has input this signal, sends a signal to the servo circuit 14 of the electromagnetic flaw detection device B to detect the 91st flaw detection signal. Eddy current flaw detection is performed by controlling the probe 9 to follow a portion deemed to be a flaw by the flaw detection section 16.
この電磁探傷部8は探傷結果をマイクロ・コンピュータ
15と2次疵検出部18に出力する。電磁式探傷部Bか
らの探傷結果を入力した2次疵検出部18は、この探傷
結果とフレーム・メモリ17から読み出した1次疵検出
のデータを付き合わせて判定を行なう。The electromagnetic flaw detection section 8 outputs the flaw detection results to the microcomputer 15 and the secondary flaw detection section 18. The secondary flaw detection unit 18, which receives the flaw detection results from the electromagnetic flaw detection unit B, compares the flaw detection results with the primary flaw detection data read from the frame memory 17 and makes a determination.
第6図(d)に2次疵検出例を示したが、■′ は明線
、暗線が連続して閉じてお)電磁式探傷部Bからの探傷
結果と付き合わせて1かぶれ疵”と判定し面積、深さを
算出する。同様に、エツジで終わる階状線部である■′
を1耳われ疵”として長さをチェックし、暗線・明線
が連続しエツジとで閉じている■′ を1耳おれあと”
と判別して面積及び深さを算出する。″また、閉じてい
ない暗部■′及び第1図(IL)の■7.■、■は2次
疵検出によっては疵とは見なさない。Figure 6(d) shows an example of secondary flaw detection. Judgment is made and the area and depth are calculated.Similarly, ■'
Check the length as "one ear break", and check the length if the dark line and bright line are continuous and close with the edges.
The area and depth are calculated. ``Furthermore, the unclosed dark area ■'' and ■7.■, ■ in FIG. 1 (IL) are not considered as defects by secondary flaw detection.
こうして、2次疵検出部18の出力はモニター19に入
力されて疵部位の静止画、疵の種類及び定量化された疵
の大きさを表示することによシオペレータに疵の検出を
知らせる。In this way, the output of the secondary flaw detection section 18 is input to the monitor 19, which displays a still image of the flaw site, the type of flaw, and the quantified size of the flaw, thereby notifying the operator of the flaw detection.
また、必要に応じて疵アラーム20からアラームを発し
、疵部位の冷圧時には圧延速度を減速して冷圧時の鋼板
破断を防止する。Further, if necessary, an alarm is issued from the flaw alarm 20, and the rolling speed is reduced during cold rolling of the flawed area to prevent breakage of the steel plate during cold rolling.
また、2次疵検出部18からは1次疵検出部16に1次
検出設定値変更信号を出力して、1次疵検出部16での
過検出もしくは検出漏れ気味となるめを修正する。Further, the secondary flaw detection unit 18 outputs a primary detection set value change signal to the primary flaw detection unit 16 to correct over-detection or under-detection in the primary flaw detection unit 16.
さらに、1次疵検出部16からの検出信号と渦流探傷部
8からの探傷信号を入力するマイクロ・コンピュータ1
5は鋼板の溶接点も検出できるので、この溶接点検出信
号を酸洗プロセス・コンピュータ21に出力し、酸洗プ
ロセス・コンピュータ21中の通板トラッキングの誤差
補正用として使用する。Further, a microcomputer 1 inputs the detection signal from the primary flaw detection section 16 and the flaw detection signal from the eddy current flaw detection section 8.
Since the welding point 5 can also detect the welding point of the steel plate, this welding point detection signal is outputted to the pickling process computer 21 and used for error correction of sheet threading tracking in the pickling process computer 21.
この点に関して詳述すると、酸洗プロセス・コンピュー
タ21内では酸洗入側の溶接器よシ溶接したとの信号が
入力すると、酸洗ラインの動きよシ溶接点位置を時間を
追って計算する。この計算によシ、鋼板表面検査装置に
溶接点が到達したとみなす時点で鋼板表面検査装置のタ
イミング制御部6を通してマイクロ・コンピュータ15
に(1を送力、次に鋼板表面検査装置自体で溶接点を検
知した信号を得る事によ〕、今までの計算上の溶接位置
との誤差を算出する。そこで、この誤差に基づいて巻取
シ鋼帯長さ等の値の補正を行なうと同時に、本装置以外
に送っている通板トラッキング情報用に誤差補正の為の
リセットを行なう。To explain this point in detail, when the pickling process computer 21 receives a signal indicating that welding has been performed from the welder on the pickling input side, the pickling process computer 21 calculates the movement of the pickling line and the position of the welding point over time. According to this calculation, when the welding point is considered to have arrived at the steel plate surface inspection apparatus, the microcomputer 15 is
Calculate the error from the previously calculated welding position (by sending 1 as the force and then obtaining the signal from the welding point detected by the steel plate surface inspection device itself). Based on this error, At the same time as the values such as the length of the steel strip to be wound are corrected, the threading tracking information sent to a device other than this device is reset for error correction.
これによシ、例えば酸洗出側シャーでの溶接点部切断除
去作業では、溶接点の位置情報が格段に正確となる事よ
υ、最適減速・停止が行なえ、従来は自動減速、目視停
止であったものを完全自動化することができる。As a result, for example, when cutting and removing a welding point on the pickling side shear, the positional information of the welding point becomes much more accurate. What used to be can be fully automated.
なお、電磁式探傷装置B[光学式探傷装置Aが疵を検出
しない間は、鋼板の角部近傍の横割れ(毛割れ)検出の
ためにエツジ近傍を探傷する。Note that while the electromagnetic flaw detector B [optical flaw detector A does not detect flaws, the flaws are detected near the edges of the steel plate in order to detect horizontal cracks (hair cracks) near the corners.
本実施例装置の採用により、疵検出量は光学式のみの場
合に比べて1/4〜115の検出量に減シ目視によるサ
ンプル部での比較では過検出量は1.2であシ、本装置
の疵情報を冷間圧延工程時の圧延速度調整に適用した結
果、冷間圧延時の板破断が全く発生しなかった。By employing the device of this embodiment, the amount of defects detected was reduced to 1/4 to 115 compared to the case using only the optical method, and the amount of overdetection was 1.2 when visually compared at the sample section. As a result of applying the flaw information from this device to the rolling speed adjustment during the cold rolling process, no plate breakage occurred during cold rolling.
この実施例では、熱延−冷延間に本発明の装置を設置す
るものとしたが、冷圧後に設置することによシ製品の最
終検査をオンラインで行なえ、圧延油による誤検出を減
少させることができる。In this example, the device of the present invention was installed between hot rolling and cold rolling, but by installing it after cold rolling, the final inspection of the product can be performed online, reducing false detections caused by rolling oil. be able to.
発明の効果
本発明による鋼板表面検査装置実施例は以上の通シであ
シ、次に述べる効果を挙げることができる。Effects of the Invention The embodiment of the steel sheet surface inspection apparatus according to the present invention is not only the above-mentioned, but also has the following effects.
鋼板の連続搬送ラインでの鋼板表面検査において鋼板の
板幅や搬送速度に充分に対応でき、かつ酸洗によるヨゴ
レと疵等と的確に判別すると共に過検出を大巾に減少し
て自動化の信頼性を大巾に向よさせることが可能となる
。In the steel plate surface inspection on a continuous steel plate conveyance line, it is fully compatible with the width of the steel plate and the conveyance speed, and it can accurately distinguish between stains and scratches caused by pickling, and it greatly reduces overdetection, making automation reliable. It becomes possible to bring one's sexuality to the forefront.
第1図は本発明による鋼板表面検査装置実施例の制御ブ
ロック図、第2図はITVの設置位置を示す概略図、第
3図はストロボの照射角と照射距離を示す概略図、第4
図はス)oボ照射角と疵影長さ゛の関係を示すグラフ、
第5図は照射距離とITV視野左右コーナの照度比を示
すグラフ、第6図(a) a鋼板表面例を示す斜視図、
同図中)はそのA −A’ 線断面図、同図(C)は
その撮像輝度信号波形図、同図(d)は2次疵検出例を
示すパターンであるO
A・・光学式探傷装置、B・・電磁式探傷装置C・・演
算制御部、1・・鋼板、2・・ITV。
3・・ストロボ、4・・遮光板、5・・同期制御部、6
・・タイミング制御部、7・・パルス・ジェネレータ、
8・・渦流探傷部、9・・プローブ10書・ボールネジ
、11・・モータ、12・争パルス0ジェネレータ、1
3・・タコ・ジェネレータ、14・・サーボ回路、
15・・マイクロ・コンピュータ、
16−・1次疵検出部、17・9フレーム・メモリ、1
8・・2次疵検出部、19・・・モニター、20・・疵
アラーム、21・・酸洗プロセス参コンピュータ、22
@−冷延7’ロセス−コンピュータ、23・・プライド
ル・ロール。
第2図
第3図
;;−5+I
超明sE#tノFig. 1 is a control block diagram of an embodiment of the steel plate surface inspection device according to the present invention, Fig. 2 is a schematic diagram showing the installation position of the ITV, Fig. 3 is a schematic diagram showing the irradiation angle and irradiation distance of the strobe, and Fig. 4
The figure is a graph showing the relationship between the irradiation angle and the flaw length.
Figure 5 is a graph showing the irradiation distance and the illuminance ratio of the left and right corners of the ITV field of view, Figure 6 (a) is a perspective view showing an example of a steel plate surface,
(in the same figure) is a cross-sectional view taken along the line A-A', (C) is a waveform diagram of the imaging luminance signal, and (d) is a pattern showing an example of secondary flaw detection. Equipment, B...Electromagnetic flaw detection device C...Calculation control unit, 1...Steel plate, 2...ITV. 3. Strobe, 4. Light shielding plate, 5. Synchronization control section, 6
...Timing control section, 7..Pulse generator,
8. Eddy current flaw detection section, 9. Probe 10 book, ball screw, 11. Motor, 12. Pulse 0 generator, 1
3. Tacho generator, 14. Servo circuit, 15. Micro computer, 16-. Primary flaw detection section, 17. 9 frame memory, 1
8. Secondary flaw detection unit, 19. Monitor, 20. Flaw alarm, 21. Pickling process reference computer, 22
@-Cold rolling 7' process-computer, 23...pridle roll. Figure 2 Figure 3 ;;-5+I super light sE#tノ
Claims (1)
移送される鋼板表面を撮像する撮像装置と、 前記撮像装置の鋼板搬送方向下流側に配置され、当該搬
送ライン上を搬送される鋼板表面の平坦度を測定する平
坦度測定装置と、 前記撮像装置から入力される撮像画面を画像処理して鋼
板表面疵である確率の高い部分を選定し当該選定された
部分を前記平坦度測定装置に指令して再測定すると共に
その平坦度測定装置の測定値から鋼板の疵部分を確定す
る演算制御部とを備えたことを特徴とする鋼板表面検査
装置。[Scope of Claims] In a continuous steel plate conveyance line, an imaging device disposed upstream in the steel plate conveyance direction and configured to image the surface of the steel plate transferred on the conveyance line; and an imaging device disposed downstream of the imaging device in the steel plate conveyance direction. a flatness measuring device that measures the flatness of the surface of the steel sheet transported on the conveyance line; and a flatness measuring device that processes the captured screen input from the imaging device to select areas with a high probability of being surface flaws of the steel sheet. A steel plate surface inspection characterized by comprising: an arithmetic control unit that instructs the flatness measuring device to re-measure the selected portion and determines a flawed portion of the steel plate from the measurement value of the flatness measuring device. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59128963A JPS618610A (en) | 1984-06-22 | 1984-06-22 | Apparatus for inspecting steel sheet surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59128963A JPS618610A (en) | 1984-06-22 | 1984-06-22 | Apparatus for inspecting steel sheet surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS618610A true JPS618610A (en) | 1986-01-16 |
JPH0477843B2 JPH0477843B2 (en) | 1992-12-09 |
Family
ID=14997742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59128963A Granted JPS618610A (en) | 1984-06-22 | 1984-06-22 | Apparatus for inspecting steel sheet surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS618610A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01291386A (en) * | 1988-05-18 | 1989-11-22 | Mitsubishi Electric Corp | Visual inspecting device |
JPH02269943A (en) * | 1989-04-11 | 1990-11-05 | Mitsubishi Electric Corp | Outward appearance inspecting device for semiconductor device |
JP2003344013A (en) * | 2002-05-31 | 2003-12-03 | Tomoegawa Paper Co Ltd | Apparatus and method for position detection or visual inspection |
JP2010025652A (en) * | 2008-07-17 | 2010-02-04 | Nippon Steel Corp | Surface flaw inspection device |
JP2010071722A (en) * | 2008-09-17 | 2010-04-02 | Nippon Steel Corp | Method and device for inspecting unevenness flaws |
JP2022011396A (en) * | 2020-06-30 | 2022-01-17 | Jfeスチール株式会社 | Surface inspection device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5334586A (en) * | 1976-09-10 | 1978-03-31 | Ishikawajima Harima Heavy Ind | Method of and apparatus for detecting surface flaw |
-
1984
- 1984-06-22 JP JP59128963A patent/JPS618610A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5334586A (en) * | 1976-09-10 | 1978-03-31 | Ishikawajima Harima Heavy Ind | Method of and apparatus for detecting surface flaw |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01291386A (en) * | 1988-05-18 | 1989-11-22 | Mitsubishi Electric Corp | Visual inspecting device |
JPH02269943A (en) * | 1989-04-11 | 1990-11-05 | Mitsubishi Electric Corp | Outward appearance inspecting device for semiconductor device |
JP2003344013A (en) * | 2002-05-31 | 2003-12-03 | Tomoegawa Paper Co Ltd | Apparatus and method for position detection or visual inspection |
JP2010025652A (en) * | 2008-07-17 | 2010-02-04 | Nippon Steel Corp | Surface flaw inspection device |
JP2010071722A (en) * | 2008-09-17 | 2010-04-02 | Nippon Steel Corp | Method and device for inspecting unevenness flaws |
JP2022011396A (en) * | 2020-06-30 | 2022-01-17 | Jfeスチール株式会社 | Surface inspection device |
Also Published As
Publication number | Publication date |
---|---|
JPH0477843B2 (en) | 1992-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100941592B1 (en) | Detecting method of defect in rolling state of roll and the detecting apparatus | |
JP2009008659A (en) | Surface flaw detection device | |
US20110268343A1 (en) | Method for the nondestructive testing of pipes | |
KR100914897B1 (en) | Method and device for optically measuring the surface shape and for the optical surface inspection of moving strips in rolling and processing installations | |
JPS618610A (en) | Apparatus for inspecting steel sheet surface | |
JP4901578B2 (en) | Surface inspection system and diagnostic method for inspection performance of surface inspection system | |
JP2002156333A (en) | Surface inspection device | |
JPH02194307A (en) | Curvature shape measuring instrument for plate-like body | |
JPH01212352A (en) | Method and apparatus for electromagnetic flaw detection | |
JP4023295B2 (en) | Surface inspection method and surface inspection apparatus | |
JP2001174414A (en) | Standard plate, and method and apparatus for adjusting surface inspection apparatus | |
JPH0628690Y2 (en) | Metal plate defect detector | |
JP6597691B2 (en) | Surface defect inspection method and surface defect inspection system | |
JPS5922894B2 (en) | Surface quality identification method for moving objects | |
JPH11248638A (en) | Automatic detection method for surface of press-molded product | |
JPH0238952A (en) | Surface defect inspection device | |
JP2002090306A (en) | Self-diagnostic method for surface inspection device | |
JPH0690148B2 (en) | Surface defect inspection device | |
RU2777718C1 (en) | Method for non-destructive optical and visual testing of items by means of computer vision | |
JPS6250775B2 (en) | ||
JP3230295B2 (en) | Method and apparatus for measuring guide roller flange dimension | |
JPH071236B2 (en) | Surface defect inspection device | |
JPH0335148A (en) | Defect inspection device for sheet like body | |
JPH05249051A (en) | Detecting apparatus of imperfection of solvent of ingot bloom | |
JPS62115357A (en) | Defect inspection device |