JPS6186815A - Minute pressure controller - Google Patents
Minute pressure controllerInfo
- Publication number
- JPS6186815A JPS6186815A JP20815884A JP20815884A JPS6186815A JP S6186815 A JPS6186815 A JP S6186815A JP 20815884 A JP20815884 A JP 20815884A JP 20815884 A JP20815884 A JP 20815884A JP S6186815 A JPS6186815 A JP S6186815A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pressure control
- gas
- control device
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D16/00—Control of fluid pressure
- G05D16/20—Control of fluid pressure characterised by the use of electric means
- G05D16/2006—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
- G05D16/2013—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
- G05D16/2026—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
- G05D16/2033—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means the plurality of throttling means being arranged in series
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Control Of Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はウェハの温産制御する方法及装置に係り、導入
ガスの微小圧力制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for controlling hot production of wafers, and more particularly to a micropressure control apparatus for introduced gas.
従来、ガス伝導によるウェハ温度側!i!17 ¥p
貯では、ガスを可変弁へ導きガス留めへ送給し、圧力制
御装置をガス留め中の圧力を監視するためにガス留め上
の圧力変換器に接続し、かつ圧カフ制御するための可変
弁に接続してガス圧力の制御を行なっている(特開昭5
8−32410号公報)。Conventionally, wafer temperature side due to gas conduction! i! 17 ¥p
In the reservoir, gas is guided to a variable valve and delivered to the gas retainer, a pressure control device is connected to a pressure transducer on the gas retainer to monitor the pressure in the gas retainer, and a variable valve is used to control the pressure cuff. The gas pressure is controlled by connecting it to the
8-32410).
しかし、導入ガス社がI SCCM程度のわずかな微小
流量の場合、従来の方法では、ガス圧力を一定に制御す
ることがむずかしく、流値を精度よく制御できないとい
う問題があった。However, when the gas flow rate is as small as ISCCM, it is difficult to control the gas pressure to a constant level using the conventional method, and the flow value cannot be controlled accurately.
本発明の目的は、ウェハ電極間に4入するガスの圧力を
一定化する微小圧力制御装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a micro-pressure control device that stabilizes the pressure of gas introduced between wafer electrodes.
基析ト基板支持台間のガスによる熱の伝達のために導入
するガスがわずかな場合、このような微小流量において
はガス圧力を一定に制御することが必要である。最終ガ
ス圧力ヲ1.5〜5Torrに設定す7.Iには1段の
減圧ではむずかしいため。When a small amount of gas is introduced to transfer heat between the substrate and the substrate support, it is necessary to control the gas pressure to a constant value at such a small flow rate. Set the final gas pressure to 1.5 to 5 Torr7. For I, it is difficult to reduce the pressure in one stage.
絞り弁にまり流社ン制御しバッファ室を2個設け2段階
の減圧によって圧力を制御するものである。これにより
圧力の制御性を高めることができ微小圧力が設定できる
。The flow is controlled by a throttle valve, two buffer chambers are provided, and the pressure is controlled by two-stage pressure reduction. This makes it possible to improve pressure controllability and set a minute pressure.
〔発明の実施例〕
本発明の一実施例を第1図の本発明による微小圧力制御
装置の模式図、第2図の第1図のタイミング千ヤードに
ついて説明する。[Embodiment of the Invention] An embodiment of the present invention will be described with reference to FIG. 1, which is a schematic diagram of a micro-pressure control device according to the present invention, and FIG. 2, which is a timing diagram of FIG.
下記の構成の微小圧力制御装置により圧力制御されたガ
スは真空容器1内の下部電極2ウェハ4間に導入される
。ガス洪給源であるガスボンベ5.圧力調整弁6から送
り州されたガス(矢印)&i、絞り弁7 (C,)、空
気式開閉ノクルプ8 (AH) 、 ハy 77?
、 9 (Vl)、 u’iスイ7+10(Vs)か
ら匝ろ第1の圧力制御機構部を経て直列に接続された絞
り弁11(CtL空気式開閉ハルフ12 (Az)、
ハフ 7 y室13 (V2) 、 タイアフラム箕空
計14(DG)から成る第2の圧力制御機構部W導かれ
る。Gas whose pressure is controlled by a micro pressure control device having the following configuration is introduced between the lower electrode 2 and the wafer 4 in the vacuum container 1. Gas cylinders are a source of gas flooding 5. Gas sent from pressure regulating valve 6 (arrow) &i, throttle valve 7 (C,), pneumatic opening/closing valve 8 (AH), Hi 77?
, 9 (Vl), throttle valve 11 (CtL pneumatic opening/closing half 12 (Az)) connected in series from u'i switch 7+10 (Vs) via the first pressure control mechanism section
A second pressure control mechanism section W consisting of a huff 7y chamber 13 (V2) and a tire flamm gage 14 (DG) is guided.
これら2つの圧力制御機構部で減圧されたガス圧力は、
真空スインチ10.ダイアフラム真空計14.で検出さ
れる。The gas pressure reduced by these two pressure control mechanisms is
Vacuum sinch 10. Diaphragm vacuum gauge14. Detected in
IIJmfH7は、真空スイッチ10及びダイアフラム
真室計14に接続されているメータリレー16からの出
力信号により、空気式開閉ノくルプA、及びAIをコン
トロールする。IIJmfH7 controls the pneumatic opening/closing knob A and AI by the output signal from the meter relay 16 connected to the vacuum switch 10 and the diaphragm true meter 14.
下部電極2と微小圧力制御装置の間には空気式開閉バル
ブ1B(A4)が設rされ、ガスの送給、停止を行なう
。A pneumatic opening/closing valve 1B (A4) is installed between the lower electrode 2 and the minute pressure control device to supply and stop gas.
以上の構成により本装置においての圧力設定は0〜9.
99 Torr の範囲ンもつメータリレーの2接点を
可変させることで最終ガス圧力を年、意の圧力箭囲に設
定することができる。ここでは05〜5 Torrの圧
力を設定する場合を例に説明する。With the above configuration, the pressure settings in this device are 0 to 9.
By varying the two contacts of the meter relay, which has a range of 99 Torr, the final gas pressure can be set within the desired pressure range. Here, the case where the pressure is set at 05 to 5 Torr will be explained as an example.
本微小圧力制御装置では、元圧(0,2kg/m2)を
2段FJK減圧する上でバクファ’Z9(V+)内ガス
圧力を50Torr、バク77室13r V、 )内ガ
ス圧力をo、 5〜3 Torr Vr前制御る。各C
,、C,は流」係% Cv = 0.005 トフンダ
クタンスの小さな絞り弁である。In this micro pressure control device, the original pressure (0.2 kg/m2) is depressurized in two stages by FJK, and the gas pressure in the vacuum chamber Z9 (V+) is set to 50 Torr, and the gas pressure in the vacuum chamber 77 chamber 13r V, ) is set to o, 5 ~3 Torr Vr pre-control. Each C
,,C, is a throttle valve with a small flow coefficient Cv = 0.005.
この時のガス圧力制御における各バルブ、真空スイッチ
、メータリレーのタイミングを第2図に示ス。バッファ
室9(V、)内のガス圧力真空スイッチ10により検知
し、この圧力が降下すルト頁空スイ7チ10がONL、
これン受は制御部17は圧力を上昇させるため空気式開
閉バルブ6乞開く。Figure 2 shows the timing of each valve, vacuum switch, and meter relay in gas pressure control at this time. The gas pressure in the buffer chamber 9 (V) is detected by the vacuum switch 10, and when this pressure decreases, the empty switch 7 10 turns ONL,
In response to this, the control unit 17 opens the pneumatic on-off valve 6 to increase the pressure.
バッファ室13内のガス圧力を検出するダイアフラム喜
空計14と接続しているガス圧力範凹設定用としてLo
w −Hi gh tの2接点出力を有する供給ガス圧
力が不足してくると空気式開閉ノ・シブ12i開きガス
を供給しバッファ室13の圧力?高める。除々に圧力が
上昇しH−ONになるとスの圧力変動ン抑えパンツT室
9.13内の圧力を常に一定圧力にすることで較終段の
圧力を一定化することができる。Lo is connected to the diaphragm gauge 14 that detects the gas pressure in the buffer chamber 13 for setting the gas pressure range.
When the supply gas pressure becomes insufficient, the pneumatic opening/closing knob 12i opens and supplies gas to reduce the pressure in the buffer chamber 13. enhance When the pressure gradually increases and becomes H-ON, the pressure in the pants T chamber 9.13 is kept at a constant pressure by suppressing the pressure fluctuation, thereby making it possible to keep the pressure at the final stage of the calibration constant.
バフ7ア室9とバッファ室13の開のFE圧力は5oT
orr 程であるため元圧との圧力差約1000’fo
rr K比べ1/20 となっている。The opening FE pressure of buff 7a chamber 9 and buffer chamber 13 is 5oT.
orr, so the pressure difference with the original pressure is about 1000'fo
rr It is 1/20 compared to K.
そのため流Mの1tiIJal性は20倍向上しバッフ
ァ室13の圧力Y高精度して設定でき、lSCCm以下
の微少流tの場合でも安定した圧力を得ることができる
。Therefore, the 1tiIJal property of the flow M is improved by 20 times, the pressure Y of the buffer chamber 13 can be set with high accuracy, and a stable pressure can be obtained even in the case of a minute flow t of less than 1SCCm.
C発明の効果〕
本発明を適用すると、ウェハ電極間に導入するガスの圧
力を安定に供給することができるので、ウェハの温度が
安定化でプロセス処理の再現性がよくなる。C Effects of the Invention] When the present invention is applied, the pressure of the gas introduced between the wafer electrodes can be stably supplied, so the temperature of the wafer is stabilized and the reproducibility of the process is improved.
これによりデバイス製品歩留りを向上できる。This can improve device product yield.
第1図は本発明による微小圧力制?jjJ装置の模式図
、第2図は第1図のタイミングチャート。
7.11・・絞り手段、
8.12.18・・・空気式開閉パルプ。
9.13・・・ハンフ7 N% 10・・・真空スイ
ッチ、14・・・ダイヤフラム真空計、
16・・メータリレー、 17・・・制御部。Figure 1 shows the micro pressure system according to the present invention? A schematic diagram of the jjj device, and FIG. 2 is a timing chart of FIG. 1. 7.11... Squeezing means, 8.12.18... Pneumatic opening/closing pulp. 9.13... Hanfu 7 N% 10... Vacuum switch, 14... Diaphragm vacuum gauge, 16... Meter relay, 17... Control section.
Claims (1)
に、前記管路中に第1段の減圧のためのバッファ室を備
えた第1の圧力制御機構部と、第2段の減圧のためのバ
ッファ室を備えた第2の圧力制御機構部とを直列に設け
たことを特徴とする微小圧力制御装置。 2、前記第1、第2の圧力制御機構部は、絞り手段開閉
バルブ、バッファ室、被圧力制御流体の圧力を検出する
圧力検出部より構成されることを特徴とする特許請求範
囲第1項の微小圧力制御装置。 3、被圧力制御流体の圧力設定は、前記第2の圧力制御
機構部の圧力検出部からの出力信号によって所望の2つ
の接点信号を出力する出力手段をもって、第2、第1の
圧力制御機構部の開閉バルブを逐次開閉駆動する制御部
によってなされることを特徴とする特許請求範囲第1項
の微小圧力制御装置。 4、所望の設定圧力に制御された被圧力制御流体は、前
記制御部からの信号によって微小圧力制御装置の系外に
設けられた管路上の開閉バルブを通し、真空室に供給さ
れることを特徴とする特許請求範囲第1項の微小圧力制
御装置。[Scope of Claims] 1. A first pressure control mechanism unit that connects a vacuum chamber and a gas supply source through a conduit, and includes a buffer chamber for first-stage pressure reduction in the conduit; A micro-pressure control device characterized in that a second pressure control mechanism section provided with a buffer chamber for second-stage pressure reduction is provided in series. 2. The first and second pressure control mechanism sections are comprised of a throttle means opening/closing valve, a buffer chamber, and a pressure detection section that detects the pressure of the pressure-controlled fluid. micro pressure control device. 3. The pressure of the pressure controlled fluid is set by controlling the second and first pressure control mechanisms using an output means that outputs two desired contact signals based on output signals from the pressure detection section of the second pressure control mechanism section. The minute pressure control device according to claim 1, characterized in that the micro pressure control device is controlled by a control section that sequentially opens and closes the on-off valves of the sections. 4. The pressure controlled fluid controlled to a desired set pressure is supplied to the vacuum chamber through an on-off valve on a pipe provided outside the micro pressure control device system in response to a signal from the control section. A micro-pressure control device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20815884A JPS6186815A (en) | 1984-10-05 | 1984-10-05 | Minute pressure controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20815884A JPS6186815A (en) | 1984-10-05 | 1984-10-05 | Minute pressure controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6186815A true JPS6186815A (en) | 1986-05-02 |
Family
ID=16551610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20815884A Pending JPS6186815A (en) | 1984-10-05 | 1984-10-05 | Minute pressure controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6186815A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006237532A (en) * | 2005-02-28 | 2006-09-07 | Hitachi Kokusai Electric Inc | Substrate processing apparatus |
JP2010537796A (en) * | 2007-05-11 | 2010-12-09 | エスディーシー マテリアルズ インコーポレイテッド | Gas supply system and gas supply method |
US8859035B1 (en) | 2009-12-15 | 2014-10-14 | SDCmaterials, Inc. | Powder treatment for enhanced flowability |
US8865611B2 (en) | 2009-12-15 | 2014-10-21 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8969237B2 (en) | 2011-08-19 | 2015-03-03 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9089840B2 (en) | 2007-10-15 | 2015-07-28 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9216406B2 (en) | 2011-02-23 | 2015-12-22 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US9522388B2 (en) | 2009-12-15 | 2016-12-20 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
-
1984
- 1984-10-05 JP JP20815884A patent/JPS6186815A/en active Pending
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006237532A (en) * | 2005-02-28 | 2006-09-07 | Hitachi Kokusai Electric Inc | Substrate processing apparatus |
JP4566787B2 (en) * | 2005-02-28 | 2010-10-20 | 株式会社日立国際電気 | Substrate processing apparatus and semiconductor device manufacturing method |
US9216398B2 (en) | 2005-04-19 | 2015-12-22 | SDCmaterials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US9023754B2 (en) | 2005-04-19 | 2015-05-05 | SDCmaterials, Inc. | Nano-skeletal catalyst |
US9180423B2 (en) | 2005-04-19 | 2015-11-10 | SDCmaterials, Inc. | Highly turbulent quench chamber |
US9599405B2 (en) | 2005-04-19 | 2017-03-21 | SDCmaterials, Inc. | Highly turbulent quench chamber |
US9719727B2 (en) | 2005-04-19 | 2017-08-01 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US9132404B2 (en) | 2005-04-19 | 2015-09-15 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
US8893651B1 (en) | 2007-05-11 | 2014-11-25 | SDCmaterials, Inc. | Plasma-arc vaporization chamber with wide bore |
US8906316B2 (en) | 2007-05-11 | 2014-12-09 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US8956574B2 (en) | 2007-05-11 | 2015-02-17 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
JP2010537796A (en) * | 2007-05-11 | 2010-12-09 | エスディーシー マテリアルズ インコーポレイテッド | Gas supply system and gas supply method |
US9302260B2 (en) | 2007-10-15 | 2016-04-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9737878B2 (en) | 2007-10-15 | 2017-08-22 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9089840B2 (en) | 2007-10-15 | 2015-07-28 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US9186663B2 (en) | 2007-10-15 | 2015-11-17 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9592492B2 (en) | 2007-10-15 | 2017-03-14 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US9597662B2 (en) | 2007-10-15 | 2017-03-21 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US8906498B1 (en) | 2009-12-15 | 2014-12-09 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US8877357B1 (en) | 2009-12-15 | 2014-11-04 | SDCmaterials, Inc. | Impact resistant material |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8992820B1 (en) | 2009-12-15 | 2015-03-31 | SDCmaterials, Inc. | Fracture toughness of ceramics |
US9522388B2 (en) | 2009-12-15 | 2016-12-20 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8932514B1 (en) | 2009-12-15 | 2015-01-13 | SDCmaterials, Inc. | Fracture toughness of glass |
US9308524B2 (en) | 2009-12-15 | 2016-04-12 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9332636B2 (en) | 2009-12-15 | 2016-05-03 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US9533289B2 (en) | 2009-12-15 | 2017-01-03 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8859035B1 (en) | 2009-12-15 | 2014-10-14 | SDCmaterials, Inc. | Powder treatment for enhanced flowability |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US8865611B2 (en) | 2009-12-15 | 2014-10-21 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US9433938B2 (en) | 2011-02-23 | 2016-09-06 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PTPD catalysts |
US9216406B2 (en) | 2011-02-23 | 2015-12-22 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US8969237B2 (en) | 2011-08-19 | 2015-03-03 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9498751B2 (en) | 2011-08-19 | 2016-11-22 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9533299B2 (en) | 2012-11-21 | 2017-01-03 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US9566568B2 (en) | 2013-10-22 | 2017-02-14 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9950316B2 (en) | 2013-10-22 | 2018-04-24 | Umicore Ag & Co. Kg | Catalyst design for heavy-duty diesel combustion engines |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10086356B2 (en) | 2014-03-21 | 2018-10-02 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10413880B2 (en) | 2014-03-21 | 2019-09-17 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6186815A (en) | Minute pressure controller | |
US6450200B1 (en) | Flow control of process gas in semiconductor manufacturing | |
EP0969342B1 (en) | Fluid supply apparatus | |
US5488967A (en) | Method and apparatus for feeding gas into a chamber | |
JP3830670B2 (en) | Semiconductor manufacturing equipment | |
US4993256A (en) | Leakage test method and apparatus | |
US6289923B1 (en) | Gas supply system equipped with pressure-type flow rate control unit | |
CA1297556C (en) | Method and apparatus for controlling the automatic inflation of tires for testing | |
US8047510B2 (en) | Evaporation supply apparatus for raw material and automatic pressure regulating device used therewith | |
JP2004005308A (en) | Method of dividing flow supply of gas to chamber from gas supply plant equipped with flow-control device | |
US6363959B1 (en) | Fluid pressure regulator with differential pressure setting control | |
US4475381A (en) | Method and apparatus for detecting pneumatic pressure in an internal combustion engine | |
JPH07210253A (en) | System for control of actuator of flow-rate control valve | |
JP2001066211A (en) | Method and apparatus for automatically calibrating transmitter | |
JP3590030B2 (en) | Vacuum pressure control system and controller | |
EP0151698B1 (en) | Valve testing system utilizing an artificial atmosphere | |
US2714894A (en) | Transfer from auxiliary to automatic control in pressure-actuated systems | |
JPS5911765B2 (en) | digital flow control device | |
JP2003167635A (en) | Back pressure control valve | |
JPH06174381A (en) | Controlling equipment of atmosphere of furnace | |
JP2001051723A (en) | Flow rate controller and flow rate controlling method | |
JPH02304604A (en) | Flow rate controller | |
JPH05297955A (en) | Mass flow controller | |
JPH06324747A (en) | Flow rate control method | |
JPH0232636Y2 (en) |