[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6184537A - Capacitive sensor - Google Patents

Capacitive sensor

Info

Publication number
JPS6184537A
JPS6184537A JP20663984A JP20663984A JPS6184537A JP S6184537 A JPS6184537 A JP S6184537A JP 20663984 A JP20663984 A JP 20663984A JP 20663984 A JP20663984 A JP 20663984A JP S6184537 A JPS6184537 A JP S6184537A
Authority
JP
Japan
Prior art keywords
layer
substrate
epitaxial layer
type
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20663984A
Other languages
Japanese (ja)
Other versions
JPH0443226B2 (en
Inventor
Kyoichi Ikeda
恭一 池田
Katsumi Isozaki
克巳 磯崎
Tetsuya Watanabe
哲也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP20663984A priority Critical patent/JPS6184537A/en
Publication of JPS6184537A publication Critical patent/JPS6184537A/en
Publication of JPH0443226B2 publication Critical patent/JPH0443226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain an ideal elastic characteristic by forming a diaphragm on a silicon semiconductor substrate. CONSTITUTION:The 1st n<+> layer 2 and p type epitaxial layer 3 consisting of antimony-diffused layers and a protective film 4 consisting of SiO2, etc. are formed on the substrate 1 constituted of a semiconductor such as p type silicon substrate having elasticity. A protective film 5 consisting of SiO2, etc. is then formed thereon and the 2nd n<+> layer 6 is diffused except the range thereof. The film 5 is removed and the 1st and 2nd n<+> layers are inactivated. The p layer is removed except the n<+> layer. The layer 2 remaining between the etched part of the substrate 1 and the spacing (t) is the diaphragm.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はダイアフラムに生ずる圧力に対応した力を、5
?l電容吊信号として出力するゼンサに関し、シリコン
のような半導体基板を使用し、この基板上にダイアフラ
ムを形成さけた描)Δの容量式センサに関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention applies a force corresponding to the pressure generated on the diaphragm to 5
? The present invention relates to a capacitive sensor which uses a semiconductor substrate such as silicon and has a diaphragm formed on the substrate.

〈従来の技術〉 測定圧力をダイアフラムで受(ブ、ダイアフラムに生ず
る力を連結棒を介して移動電極と連結し、移動型t〜の
両側に設けた固定型*間の容Ω)変化を検出したり、一
定の間隔を況って対向する2枚の板を溶接や接着等で接
合づる構成の容量式センナは公知で、既に広く実用化さ
れている。このような容量式センサにおいては、 (1) 溶接歪みや異種材層の熱膨張係数のiff’/
)に起因する歪み等により均一な性能の装置ヲ1’、j
ることが雑しい、 (2〉 小形、高感度にするためには帽や上の精度に限
界がある、 という問題があった。
<Conventional technology> Measurement pressure is received by a diaphragm (the force generated on the diaphragm is connected to a movable electrode via a connecting rod, and changes in the volume Ω between the fixed molds installed on both sides of the movable mold) are detected. A capacitive sensor having a structure in which two plates facing each other at a certain distance are joined by welding, adhesive, etc. is well known and has already been widely put into practical use. In such a capacitive sensor, (1) welding distortion and thermal expansion coefficient of different material layers if'/
), the device has uniform performance due to distortion etc.
(2) In order to make it compact and highly sensitive, there was a limit to the accuracy of the cap and top.

〈発明の目的〉 本発明は上記従来技術の問題点に鑑みてな辷\れたしの
で、構成が簡単で小形、8感r印の容刊式センサを提供
することを目的とする。
<Object of the Invention> The present invention has been made in view of the problems of the prior art described above, and therefore, it is an object of the present invention to provide a compact, 8-sensor type sensor with a simple configuration.

く光明の構成〉 この目的を達成する本発明の溝或は、半導体相別で!4
成した(100)の格子面を有するp(n)形基板上に
、第1のn(p)層を拡散し、この第1のn(p)Ff
fiの上にp(n)形のエピタキシャル層を形成し、こ
のエピタキシャル層上の一定の範囲に保5膜を形成し、
前記+1(n)形のエピタキシャル層の上から第2のn
(p)層を前記p(n)形のエピタキシャル借が前記第
1のn(p)層との間に僅かに残る程度に拡散し、前記
保護膜を除去した後エツチングおよびアンダエッチング
の手法により、前記ρ (n)形のエピタキシャル層を
取除いたことを構成上の特徴とするものである。
The structure of the light of the present invention achieves this purpose with the groove or semiconductor phase of the present invention! 4
A first n(p) layer is diffused onto a p(n) type substrate having a (100) lattice plane, and this first n(p) Ff
A p(n) type epitaxial layer is formed on fi, a protective film is formed in a certain range on this epitaxial layer,
the second n from above the +1(n) type epitaxial layer;
The (p) layer is diffused to such an extent that the p(n) type epitaxial layer remains slightly between it and the first n(p) layer, and after the protective film is removed, etching and underetching are performed. , is characterized in that the ρ (n) type epitaxial layer is removed.

〈実施例〉 第1図(a)、(b)は本発明に係る容重式センナの一
実施例を示すもので、第1図<a >は平面図、第1図
(b)は第1図(a )におけるA−へ断面図、第2図
(a )〜(C)は容量式センサの製作工程を示す工程
図である。第2図(a)において、−1は弾性を有する
半導体で64成された1、(板である。この基板1は例
えばp形(不純物潤度10I5以下)のシリコン基板で
(111成凸れC−いる。
〈Example〉 Figures 1(a) and (b) show an example of a positive displacement type sensor according to the present invention. Figure 1(a) is a plan view, and Figure 1(b) is a first A sectional view taken along line A in FIG. 2(a), and FIGS. 2(a) to 2(C) are process diagrams showing the manufacturing process of the capacitive sensor. In FIG. 2(a), -1 is a board made of an elastic semiconductor. This substrate 1 is, for example, a p-type (impurity moisture content of 10I5 or less) silicon substrate (111 formed convex and convex). C-There is.

2は基板1上に拡散された不MA物濃度1020程度の
Sb  (アンチモン)の拡散層で第1のn1Nを形成
している。3は第1のn層層の上に形成された不純物温
度1015程度のp形エビタキシャルチ嚇シ〒キ層、4
は基板1の下部の周縁に形成さる工程を示している。こ
の工程では第1図(a )に示す如く、−辺をfとする
正方形状の81I分にSio2等の保護膜5を複数個(
図では12個)菱形状に形成し、この範囲を除いて不純
物Q度1020程度の第2のn”[6を拡散づるらので
ある。
Reference numeral 2 denotes a diffusion layer of Sb (antimony) with a non-MA concentration of about 1020, which is diffused on the substrate 1 and forms the first n1N. 3 is a p-type epitaxial layer formed on the first n-layer and has an impurity temperature of about 1015;
1 shows the step of forming the lower periphery of the substrate 1. In this step, as shown in FIG. 1(a), a plurality of protective films 5 such as Sio2 are applied to 81I of a square whose negative side is f.
12 in the figure) are formed in a rhombus shape, and except for this range, the second n''[6 impurity Q degree of about 1020 is diffused.

この第2のn十層6は、拡散速度および拡散時間をコン
トロールすることにより、先に拡散した第1のn十層2
の僅か手前でストップされ、p形のエピタキシャル層3
が僅かな厚さ1を残した状態とされる。
By controlling the diffusion rate and diffusion time, this second n10 layer 6 can be formed by controlling the diffusion rate and diffusion time to form the first n10 layer 2 which was diffused earlier
The p-type epitaxial layer 3 is stopped just before the p-type epitaxial layer 3
is left with a slight thickness of 1.

第2図(C)はエツチング工程を示している。FIG. 2(C) shows the etching process.

この工程ではp形エピタキシャル層3の上に形成された
保護膜5を取り除さ、基板1を4〜12規定(ノルマル
)のKOH液(80℃程度)に浸し、P [電極とn”
Ffとの間に→・0.6V程度の電圧を加えたもので、
第1および第2のn十届のみが不活性化(パッシベーシ
ョン)され、エツチングおよびアンダエッチングにより
n層層を残してp形が取り除かれ(第1図(a)に承り
点線の範囲)第1 J5よび第2のn十層の間に僅かな
間隙tが形成される。そして、基板1のエツチングされ
た部分と間隙(の間に残った第1のn+層2がダイアフ
ラムとなり第2のn層 5との間で容■センザが形成さ
れる。なお、エピタキシャル層3に第2のn層層を拡散
する場合は、第3図(a )に示す如(公設n* 5の
正方形の各頂点Qを隣接する正方形の頂点Qと格子面(
11’O)方向にオーバラップ部Wを有するように形成
することが肝要で、このオーバラップ部がない場合、第
3図(1) )に丞す如くアンズエッチングが進IT 
L/ <Rい部分りが発生し、第1図<a >に点線で
示す如さアンダ」−ツブーング部は形成されない。なお
、この保i1.9 Ill! 5の形状は正方形に限る
ことなく、例えば第3図(c)に長方形で、(d )に
円形で、(e ’)に不特定形状で示す如く各種の形状
に形成するごどが−Cさる。
In this step, the protective film 5 formed on the p-type epitaxial layer 3 is removed, and the substrate 1 is immersed in a 4 to 12 normal KOH solution (about 80°C).
A voltage of about 0.6V is applied between Ff and
Only the first and second n layers are inactivated (passivated), and the p-type layer is removed by etching and under-etching, leaving the n layer (the area indicated by the dotted line in Figure 1(a)). A slight gap t is formed between J5 and the second n+ layer. The first n+ layer 2 remaining between the etched portion of the substrate 1 and the gap becomes a diaphragm, and a sensor is formed between the second n layer 5. When diffusing the second n-layer layer, as shown in Figure 3(a), each vertex Q of the public n*5 square is connected to the vertex Q of the adjacent square with the lattice plane (
It is important to form the film so that it has an overlapping part W in the 11'O) direction; if there is no overlapping part, the apricot etching will proceed as shown in Figure 3 (1)).
L/<R portion bending occurs, and an under-tube portion is not formed as shown by the dotted line in FIG. 1<a>. In addition, this maintenance i1.9 Ill! The shape of 5 is not limited to a square; for example, it can be formed into various shapes such as a rectangle in FIG. 3(c), a circular shape in FIG. 3(d), and an unspecified shape in FIG. Monkey.

このような構成の容量式センサに第1図(b)に示す如
く第1Jノよび第2のn 十glに電(^1.jを形成
し、信号検出手段10に接♀ノシすれば、圧力に応じて
変化する第1のn十層の動きを静電容ai変化として検
出することができる。
If a capacitive sensor with such a configuration is connected to the signal detecting means 10 by forming an electric current (^1. The movement of the first n10 layers that changes depending on the pressure can be detected as a change in capacitance ai.

なお、本実施例においては基板1をp形とし、このp形
の基板の上に第1のn層を拡散し、この上にp形のエピ
タキシャル層を形成し、このエピタキシャル層の上に第
2のn層を拡散したが、基板1をn形とし、このn形の
基板の上に第1のp層を拡散し、この上にn形のエピタ
キシャル層を形成し、このエピタキシ1!ル層の上に第
2のp層を拡散してもよい。この場合は第1および第2
のp層を残しn形のエピタキシp−/I/F’iJをエ
ツブングすることになるが、エツチング時、K O+−
1液に浸しPt?12極と0層に印加する電圧は+0.
5V以下にする必要がある。
In this example, the substrate 1 is of p-type, a first n-layer is diffused on this p-type substrate, a p-type epitaxial layer is formed on this, and a first n-layer is formed on this epitaxial layer. However, the substrate 1 is made n-type, the first p-layer is diffused on this n-type substrate, and an n-type epitaxial layer is formed on this, and this epitaxial layer 1! A second p-layer may be diffused over the p-layer. In this case, the first and second
The n-type epitaxy p-/I/F'iJ will be etched, leaving the p-layer. During etching, K O+-
Pt soaked in 1 liquid? The voltage applied to the 12 poles and the 0 layer is +0.
It is necessary to keep it below 5V.

このように構成した装置によれば、溶接や別械的力を加
えることなくダイアフラムを形成したので、理想的な弾
性特性が157られ、安定したモノリシツクヒンサを実
現することができる。この容量式センサは圧力計の他マ
イクLIホン、加速度計、振動計等としても応用するこ
とができる。
According to the device configured in this way, the diaphragm is formed without welding or applying any other mechanical force, so ideal elastic properties can be achieved and a stable monolithic hinge can be realized. This capacitive sensor can be applied not only as a pressure gauge but also as a microphone LI phone, an accelerometer, a vibration meter, etc.

〈発明の効果〉 以上、実III!i例とともに具体的に説明したように
本発明によれば、圧力に対応し、安定な信号を出力する
ことができ、かつ、構成の簡単な容量センサを実現する
ことができる。
<Effects of the invention>That's it! As specifically explained with Example i, according to the present invention, it is possible to realize a capacitive sensor that can respond to pressure, output a stable signal, and has a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明に係る容量式セト・・基
板、2・・・第1のn(p)拡散層、3・・・p(n)
形エピタキシャル層、4,5・・・保1か膜、6・・・
第2のn(p)拡散層。 /′丁 ′ トリ ′j 代理人 弁理士 小沢信向孔、、ン \τ−−/ 篤1図 (a) (b) 篤2図 第3図 (a) (c)       (d) (b) (e)
Figures 1 (a) and (b) show a capacitive set substrate according to the present invention, 2... a first n(p) diffusion layer, 3... a p(n)
shaped epitaxial layer, 4, 5... 1 or film, 6...
Second n(p) diffusion layer. /'Ding'Tori'j Agent: Patent Attorney Nobuaki Ozawa,, N\τ--/ Atsushi 1 Figure (a) (b) Atsushi 2 Figure 3 (a) (c) (d) (b) (e)

Claims (1)

【特許請求の範囲】[Claims] 半導体材料で構成した(100)の格子面を有するp(
n)形基板上に、第1のn(p)層を拡散し、この第1
のn(p)層の上にp(n)形のエピタキシャル層を形
成し、このエピタキシャル層上の一定の範囲に保護膜を
形成し、前記p(n)形のエピタキシャル層の上から第
2のn(p)層を前記p(n)形のエピタキシャル層が
前記第1のn(p)層との間に僅かに残る程度に拡散し
、前記保護膜を除去した後エッチングおよびアンダエッ
チングの手法により、前記p(n)形のエピタキシャル
層を取除いたことを特徴とする容量式センサ。
p(
Diffusion of a first n(p) layer onto an n) type substrate;
A p(n) type epitaxial layer is formed on the n(p) layer, a protective film is formed in a certain range on this epitaxial layer, and a second layer is formed on the p(n) type epitaxial layer. The n(p) layer is diffused to such an extent that the p(n) type epitaxial layer remains slightly between the first n(p) layer, and after the protective film is removed, etching and under-etching are performed. A capacitive sensor characterized in that the p(n) type epitaxial layer is removed by a method.
JP20663984A 1984-10-02 1984-10-02 Capacitive sensor Granted JPS6184537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20663984A JPS6184537A (en) 1984-10-02 1984-10-02 Capacitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20663984A JPS6184537A (en) 1984-10-02 1984-10-02 Capacitive sensor

Publications (2)

Publication Number Publication Date
JPS6184537A true JPS6184537A (en) 1986-04-30
JPH0443226B2 JPH0443226B2 (en) 1992-07-15

Family

ID=16526684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20663984A Granted JPS6184537A (en) 1984-10-02 1984-10-02 Capacitive sensor

Country Status (1)

Country Link
JP (1) JPS6184537A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290524A (en) * 1989-01-30 1990-11-30 Dresser Ind Inc Semiconductor wafer, forming method of the same, transducer and manufacturing method of the same
JPH04143628A (en) * 1990-10-05 1992-05-18 Yamatake Honeywell Co Ltd Capacitance type pressure sensor
EP0501359A2 (en) * 1991-02-25 1992-09-02 Canon Kabushiki Kaisha Semiconductor sensor of electrostatic capacitance type
US5520051A (en) * 1989-09-27 1996-05-28 Nippondenso Co., Ltd. Strain sensing device
US6250165B1 (en) 1998-02-02 2001-06-26 Denso Corporation Semiconductor physical quantity sensor
US6388300B1 (en) 1999-01-25 2002-05-14 Denso Corporation Semiconductor physical quantity sensor and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153692A1 (en) * 2020-01-31 2021-08-05 住友金属鉱山株式会社 Electromagnetic wave absorbing particles, electromagnetic wave absorbing particle dispersion, and production method for electromagnetic wave absorbing particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764978A (en) * 1980-10-03 1982-04-20 Ibm Capacitive pressure transducer
JPS5873166A (en) * 1981-10-13 1983-05-02 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Capacitive pressure transducer and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764978A (en) * 1980-10-03 1982-04-20 Ibm Capacitive pressure transducer
JPS5873166A (en) * 1981-10-13 1983-05-02 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Capacitive pressure transducer and method of producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290524A (en) * 1989-01-30 1990-11-30 Dresser Ind Inc Semiconductor wafer, forming method of the same, transducer and manufacturing method of the same
US5520051A (en) * 1989-09-27 1996-05-28 Nippondenso Co., Ltd. Strain sensing device
JPH04143628A (en) * 1990-10-05 1992-05-18 Yamatake Honeywell Co Ltd Capacitance type pressure sensor
EP0501359A2 (en) * 1991-02-25 1992-09-02 Canon Kabushiki Kaisha Semiconductor sensor of electrostatic capacitance type
EP0501359A3 (en) * 1991-02-25 1994-05-18 Canon Kk Semiconductor sensor of electrostatic capacitance type
US6250165B1 (en) 1998-02-02 2001-06-26 Denso Corporation Semiconductor physical quantity sensor
US6388300B1 (en) 1999-01-25 2002-05-14 Denso Corporation Semiconductor physical quantity sensor and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0443226B2 (en) 1992-07-15

Similar Documents

Publication Publication Date Title
US4071838A (en) Solid state force transducer and method of making same
US4553436A (en) Silicon accelerometer
US4050049A (en) Solid state force transducer, support and method of making same
US20050101047A1 (en) Process of making an all-silicon microphone
KR20010050327A (en) Micromechanical device
JPS6184537A (en) Capacitive sensor
JP2000155030A (en) Manufacture of angular velocity sensor
JPS63250865A (en) Pressure detecting element and manufacture thereof
JPH10104263A (en) Semiconductor acceleration sensor and manufacture thereof
JP2696894B2 (en) Semiconductor pressure sensor
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JP2748077B2 (en) Pressure sensor
JPS6267880A (en) Manufacture of semiconductor device
JP3327088B2 (en) Semiconductor acceleration sensor
JP2680471B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0650255B2 (en) Method for manufacturing silicon microsensor
JP2004069596A (en) Semiconductor pressure sensor and its manufacturing method
KR950009638B1 (en) Manufacturin method of semiconductor pressure sensor
JPH02254764A (en) Silicon pressure sensor
JP3070118B2 (en) Semiconductor acceleration sensor
JPS63178567A (en) Manufacture of semiconductor pressure sensor
JPH0862078A (en) Pressure sensor and its manufacturing method
JPH04329676A (en) Manufacture of semiconductor acceleration sensor
JPH05251715A (en) Semiconductor pressure sensor and its manufacture
JP6691414B2 (en) Stress sensor