JPS6183813A - Fuel injecting device - Google Patents
Fuel injecting deviceInfo
- Publication number
- JPS6183813A JPS6183813A JP20172184A JP20172184A JPS6183813A JP S6183813 A JPS6183813 A JP S6183813A JP 20172184 A JP20172184 A JP 20172184A JP 20172184 A JP20172184 A JP 20172184A JP S6183813 A JPS6183813 A JP S6183813A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- fuel
- core
- top end
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/24—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/38—Nozzles; Cleaning devices therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はガスタービン燃焼器の燃料噴射ノズルに係り、
特に、ノズル側壁及び先端部の冷却構造に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel injection nozzle for a gas turbine combustor;
In particular, it relates to a cooling structure for the nozzle side wall and tip.
ガスタービン燃焼器からはNOx 、CO,Soxなど
の大気汚染物質が排出されるが、特に、NOxの低減化
が求められているうこのNOxの低減化の基本的方策は
N Ox生成シーンの高温領域(ホットスポット)を少
なくシ、均一な燃焼をさせることが必要となる。このた
めには(1)燃料を分散化し、燃料ノズル1本当シの燃
焼負荷量を下げること(2)空気過剰な希薄混合状態で
燃焼させることなどが必須条件となる。Air pollutants such as NOx, CO, and Sox are emitted from gas turbine combustors, and the basic measures to reduce NOx are particularly important when reducing NOx at high temperatures in the NOx generation scene. It is necessary to reduce the area (hot spot) and achieve uniform combustion. To achieve this, (1) the fuel must be dispersed to reduce the combustion load per fuel nozzle, and (2) the fuel must be burned in a lean mixed state with excess air.
空気過剰な状態で燃焼させるには、目標とする平均的な
空気過剰率が得られるところで燃料噴射を行なわせるこ
とが望ましく、このためには燃料ノズルを燃焼室に突出
させて配置することも必要となる。In order to burn with excess air, it is desirable to inject fuel at a point where the target average excess air ratio is obtained, and for this it is also necessary to place the fuel nozzle so that it protrudes into the combustion chamber. becomes.
第10図は、従来の環状燃焼筒IK突出して複数個配置
された燃焼ノズル2を示す。第11図は燃焼ノズル近傍
を拡大して示したもので、燃料はノズル先端3の近傍の
側壁に配置された複数個の噴射孔4よシ燃焼筒1の対向
する燃焼壁5に対しほぼ直角方向となるよう噴出される
。噴出孔4をこのような方向に配置する理由は、火炎の
保炎機構と関係している。すなわち、環状燃焼筒1では
、強い燃焼ガスの循環領域を燃焼筒1の上流板6と燃焼
壁5とが接続するコーナ付近に形成する必要があり、安
定した保炎を図るために燃料噴流と空気主流との干渉、
分流などから上述の要求が満たされる必要がある。FIG. 10 shows a conventional annular combustion cylinder IK with a plurality of protruding combustion nozzles 2 arranged therein. FIG. 11 is an enlarged view of the vicinity of the combustion nozzle, in which the fuel flows through a plurality of injection holes 4 arranged on the side wall near the nozzle tip 3, and at almost right angles to the opposing combustion wall 5 of the combustion tube 1. It is ejected in the same direction. The reason why the jet holes 4 are arranged in such a direction is related to the flame holding mechanism. That is, in the annular combustion tube 1, it is necessary to form a strong combustion gas circulation area near the corner where the upstream plate 6 of the combustion tube 1 and the combustion wall 5 connect, and in order to achieve stable flame holding, a strong combustion gas circulation area must be formed near the corner where the upstream plate 6 of the combustion tube 1 and the combustion wall 5 connect. Interference with the mainstream air,
The above-mentioned requirements need to be met from the viewpoint of shunting and the like.
このように、燃料ノズルを燃焼室に突き出して配置する
従来方式の問題点は、燃焼ガスによりノズル壁が過熱さ
れ易く、特に、ノズル先端3が高温になるという欠点を
もっていた。As described above, the problem with the conventional method in which the fuel nozzle is disposed so as to protrude into the combustion chamber is that the nozzle wall is easily overheated by the combustion gas, and in particular, the nozzle tip 3 becomes hot.
本発明の目的は、ガスタービン燃焼器の燃料噴射ノズル
に2いて、燃焼室に突出して配置されたノズル先端及び
側壁を高温燃焼ガスによる過熱から保護するための冷却
構造を備えた燃料ノズルを提供することにある。An object of the present invention is to provide a fuel nozzle in a fuel injection nozzle of a gas turbine combustor, which is equipped with a cooling structure for protecting the nozzle tip and side wall, which are arranged to protrude into the combustion chamber, from overheating due to high-temperature combustion gas. It's about doing.
本発明は、燃料ノズルを二重管で構成し、ノズル先端部
では燃料を先端部に衝突させるように流し、いわゆる、
インピンジメント冷却を行なう構造とし、先端部以外の
ノズル側壁内面では燃料を内面に沿うように均一に流し
対流強制冷却を行なわせることを特徴とする。In the present invention, the fuel nozzle is constructed with a double pipe, and the fuel flows at the tip of the nozzle so as to collide with the tip.
It has a structure that performs impingement cooling, and is characterized in that the fuel is uniformly flowed along the inner surface of the nozzle side wall other than the tip, and forced convection cooling is performed.
第9図、第1図ないし第5図および第12図に本発明の
一具体例を示す。A specific example of the present invention is shown in FIG. 9, FIGS. 1 to 5, and FIG. 12.
第9図に本発明の基本となる冷却式燃料ノズル構造を示
す。第9図は従来技術の説明に使用した第10図の燃焼
器全体構成のうち環状燃焼室部及び燃料ノズル部を詳細
に示した図である。FIG. 9 shows a cooled fuel nozzle structure that is the basis of the present invention. FIG. 9 is a diagram showing in detail the annular combustion chamber section and the fuel nozzle section of the entire combustor configuration of FIG. 10 used to explain the prior art.
環状燃焼室7は燃−室外壁8、燃焼室内壁9及び前蓋1
0よシ構成された環状の空間よシなり、この空間部に周
方向等間隔で複数個の冷却構造をもつ燃料ノズル11が
図のように環状燃焼室7内に突き出し″C取付けられる
。第12図は第9図の■−店矢視図で環状部に配置され
た燃料ノズルの取付状況を示す。The annular combustion chamber 7 includes a combustion chamber outer wall 8, a combustion chamber inner wall 9, and a front cover 1.
The fuel nozzles 11 having a plurality of cooling structures are installed in this space at equal intervals in the circumferential direction, protruding into the annular combustion chamber 7 as shown in the figure. FIG. 12 is a view taken along the line (■) in FIG. 9 and shows how the fuel nozzle is installed in the annular portion.
燃料ノズル11の根元部はエンドカバー12と一体とな
るように取付けられ、環状燃焼室7に対しては独立した
構成となる。すなわち、前蓋1゜に設けられたノズル挿
入孔13はノズル径より十分大きめにあけられており、
燃料ノズル11が挿入された状態で同心状の十分な空気
流通間隙部14をもつように取付けられ、燃焼室7の構
成部材との間に接触部をもたない配置となる。The root portion of the fuel nozzle 11 is attached so as to be integral with the end cover 12, and is configured to be independent from the annular combustion chamber 7. That is, the nozzle insertion hole 13 provided in the front cover 1° is made sufficiently larger than the nozzle diameter,
When the fuel nozzle 11 is inserted, the fuel nozzle 11 is installed so as to have a sufficient concentric air flow gap 14, and there is no contact between the fuel nozzle 11 and the constituent members of the combustion chamber 7.
燃料ノズル11のうち環状燃焼室の前蓋1oの上流部か
ら燃焼室内部に配置される部分は図に示すように、二重
管構造となって込る。この部分はノズル根元部15よシ
小径に製作されたノズルコア16と、これを覆う薄肉の
外管17よシ構成される。ノズルコア先端18及び外管
先端19は球面に成形され、ノズルコア16の中心部に
は燃料流入孔20がノズルコア先端18まで伸びている
。As shown in the figure, the portion of the fuel nozzle 11 disposed from the upstream side of the front cover 1o of the annular combustion chamber into the combustion chamber has a double pipe structure. This part consists of a nozzle core 16 manufactured to have a smaller diameter than the nozzle root part 15, and a thin outer tube 17 covering the nozzle core 16. The nozzle core tip 18 and the outer tube tip 19 are formed into spherical shapes, and a fuel inlet hole 20 extends to the nozzle core tip 18 at the center of the nozzle core 16 .
外管17はノズルコア16のコア外壁、21との間に流
路22及び空隙23を形成するように取付けられる。燃
料流入孔20t−流ルてきた燃料はコア先端18から流
出し、次いで、外管先端19の内面に衝突しなから流路
22を逆流し、外管側壁に設けられた4JI数個の燃料
噴出孔24を通り、環状燃焼室7内に噴射される。流路
22を通った燃料が空隙23に流れ込まないようにする
ため、空隙部には環状のスベーナ25を配置している。The outer tube 17 is attached to the core outer wall 21 of the nozzle core 16 so as to form a flow path 22 and a gap 23 between the outer tube 17 and the core outer wall 21 of the nozzle core 16 . The fuel flowing through the fuel inlet hole 20t flows out from the core tip 18, then flows backward through the flow path 22 without colliding with the inner surface of the outer tube tip 19, and flows through several 4JI fuel holes provided on the outer tube side wall. It passes through the injection hole 24 and is injected into the annular combustion chamber 7. In order to prevent the fuel that has passed through the flow path 22 from flowing into the gap 23, an annular subena 25 is arranged in the gap.
特に、空隙23を設けている理由は、この部分で熱抵抗
を太きくシ、コア16に流れる熱流束を小さく抑え、コ
ア外壁21と燃料流入孔2oの内壁間との温度勾配を小
さくし熱応力の発生を抑制するものである。一方、外管
17部は薄肉管で構成するが、これも仮にこの部分のメ
タル温度レベルが上昇しても板厚内外での温度勾配を小
さくし熱応力の発生を抑えるように配慮しているう
本発明の利点は比較的簡単な構造で問題となるノズル先
端部の冷却を、燃料自体の流動によって効率よく実現で
きるところにある。In particular, the reason why the void 23 is provided is to increase the thermal resistance in this part, suppress the heat flux flowing into the core 16, and reduce the temperature gradient between the core outer wall 21 and the inner wall of the fuel inlet hole 2o. This suppresses the generation of stress. On the other hand, the outer tube 17 is constructed of a thin-walled tube, which is designed to minimize the temperature gradient inside and outside the plate thickness and suppress the generation of thermal stress even if the metal temperature level in this section rises. An advantage of the present invention is that the cooling of the nozzle tip, which is a problem, can be efficiently achieved by the flow of the fuel itself with a relatively simple structure.
第1図に示した実施例はノズル先端部の冷却構造を除く
と、先に述べた第9図の基本構造と同じである。この構
造の特徴はノズルコア16の下流部に空気室26を設け
、先端部は一様な板厚の球面構造とし、球面板には球中
心を向くように放射状の噴出細孔27を設けている。第
2図に球面板に設けられた複数個の細孔27の取付状況
を示す。The embodiment shown in FIG. 1 has the same basic structure as that shown in FIG. 9 described above, except for the cooling structure for the nozzle tip. The feature of this structure is that an air chamber 26 is provided downstream of the nozzle core 16, the tip has a spherical structure with a uniform plate thickness, and the spherical plate has radial ejection holes 27 facing the center of the sphere. . FIG. 2 shows how a plurality of pores 27 are attached to the spherical plate.
細孔27を出た噴流28は、対向して配置されている外
管17の先端部球面内壁29に衝突した後、流路22を
通り、燃料噴出孔24より放出される。The jet stream 28 exiting the pore 27 collides with the spherical inner wall 29 of the distal end portion of the outer tube 17 disposed opposite to each other, passes through the flow path 22, and is emitted from the fuel injection hole 24.
この方式は多少先端部が複雑となるが、細孔28による
衝突噴流により、いわゆる、インピンジメ/ト冷却を行
なわせることができるため、冷却効率が冒<、先端部の
冷却を効率よく行なうことができる。Although this method makes the tip a little more complicated, the impingement/impingement cooling can be performed by the impingement jet generated by the fine holes 28, so the tip can be cooled efficiently even though the cooling efficiency is affected. can.
次に、第3図に示した実施例について説明する。Next, the embodiment shown in FIG. 3 will be described.
この実施例は、ノズル先端部でインビ/ジメント冷却す
ることは第1図に示した実施例と同じであり、やはり、
ノズルコアの先端付近に空気室30を設け、空気室内の
圧力を一様に回復させた後、噴流細孔27よジ冷媒の燃
料を噴出させている。This embodiment is the same as the embodiment shown in FIG. 1 in that impulse cooling is performed at the nozzle tip, and also,
An air chamber 30 is provided near the tip of the nozzle core, and after the pressure in the air chamber is uniformly restored, the refrigerant fuel is jetted out through the jet pores 27.
本実施例の特徴は、空気室30に流れ込む冷媒の通路に
ある。実施列ではノズルコア中心部に設けられた流路を
通って燃料は空気室に入ったが、本発明では、環状燃焼
室7の前蓋10に相当するノズル位置までは、ノズルコ
ア16の中心部に設けられた燃料流入孔20で導かれ、
この先は、斜めに設けられた複数個の上流側分岐路31
を通って、ノズルコア外壁21と外管17との間の環状
空隙23に流れる。空[23を強制的にノズル下流側に
流れた燃料は空気室30に導かれるようにあけられた複
数個の下流側分岐路32を通って空気室に流入する。こ
のように流路を変更することによって、燃焼ガスにさら
され易く、高温になりがちな外管についても強制対流冷
却が実施でき、所定の温度以下に抑えることができる。The feature of this embodiment lies in the passage of the refrigerant flowing into the air chamber 30. In the embodiment, the fuel entered the air chamber through the flow path provided in the center of the nozzle core, but in the present invention, the fuel enters the air chamber through the flow path provided in the center of the nozzle core, but in the present invention, the fuel enters the center of the nozzle core 16 up to the nozzle position corresponding to the front lid 10 of the annular combustion chamber 7. The fuel is guided through the provided fuel inlet hole 20,
Beyond this, a plurality of upstream branch paths 31 are provided diagonally.
It flows through the annular gap 23 between the nozzle core outer wall 21 and the outer tube 17 . The fuel that has flowed forcibly through the air [23] to the downstream side of the nozzle flows into the air chamber 30 through a plurality of downstream branch passages 32 that are opened so as to be guided to the air chamber 30. By changing the flow path in this way, forced convection cooling can be performed on the outer tube, which is easily exposed to combustion gas and tends to reach a high temperature, and the temperature can be kept below a predetermined temperature.
さらに、ノズルコア16部への熱流束を抑えることもで
きるのでノズルコア16部の信頓性もあがるという利点
がある。Furthermore, since the heat flux to the nozzle core 16 can be suppressed, there is an advantage that the reliability of the nozzle core 16 can be improved.
第4図の実施例は、第3図の実施例と同様、外管側壁と
外管先端部の冷却を同時に行なうもので、外管側壁の冷
却は、第3図の実施例と同じで、外管17とノズルコア
外壁21の間に形成された環状空隙23に燃料を流し、
強制対流熱伝達を実施する。一方、外管先端部は、第3
図の実施例では球面形状であったものを、製作容易な平
滑な円板33で代用し、円板のノズル内面側には、複数
個の伝熱フィン34を配置している。このフィンと対向
するノズルコア16の先端部には、空隙23部の流量バ
ランスを均一にする目的で、やはり、空気室35が設け
てあり、その下流側出口には、フィン付円板33に対し
て垂直になるように噴出孔36を設けている。この構造
では噴出孔36を出た燃料は対向する円板33に衝突し
たのち、林立する伝熱フィン間を流れて最終的に燃料噴
出孔24より噴出される。The embodiment shown in FIG. 4, like the embodiment shown in FIG. 3, cools the outer tube side wall and the tip of the outer tube at the same time. The fuel is allowed to flow through the annular gap 23 formed between the outer tube 17 and the nozzle core outer wall 21,
Perform forced convection heat transfer. On the other hand, the tip of the outer tube
In the illustrated embodiment, the spherical shape is replaced by a smooth disk 33 that is easy to manufacture, and a plurality of heat transfer fins 34 are arranged on the inner surface of the nozzle of the disk. At the tip of the nozzle core 16 facing this fin, an air chamber 35 is also provided for the purpose of equalizing the flow rate balance in the air gap 23, and the downstream outlet of the air chamber 35 is provided with respect to the finned disk 33. The ejection holes 36 are provided vertically. In this structure, the fuel that has exited the nozzle 36 collides with the opposing disc 33, flows between the rows of heat transfer fins, and is finally jetted out from the fuel nozzle 24.
この発明の基本的な考え方は、ノズル先端部については
、インピンジメント冷却及び円板又は伝熱フィンとの強
制対流伝熱を合わせて実現しようとするものであり、円
板にフィンを内貼ジする製作工程が加わるが、ノズル先
端部が円板であシ、製作性が比較的容易であり、平板に
衝突流が垂直に当たるように噴出孔36を配置すること
も比較的容易であるためインビンジメント冷却の効率を
筒めることができる。The basic idea of this invention is to achieve both impingement cooling and forced convection heat transfer with a disk or heat transfer fins for the nozzle tip, by attaching fins to the disk. However, since the nozzle tip is a disk and is relatively easy to manufacture, it is also relatively easy to arrange the jet holes 36 so that the colliding flow perpendicularly hits the flat plate. It is possible to increase the efficiency of moisture cooling.
次に、第5図に示す実施例について説明する。Next, the embodiment shown in FIG. 5 will be described.
この実施例は第4図の実施例の変形例となり、ノズル側
壁部の冷却方式はこれまで述べてきたように環状空隙2
3部に燃料を流し強制対流熱伝達を行なわせている。一
方、ノズル先端部は、製作性容易な円板36で構成され
、ノズルコア先端部にはこれまでの実施例と同様、圧力
調整用の空気室37を配置し、空気室37の出口部には
、円板33と対向するように噴射用円板38を設け、こ
の円板38には、燃料噴射用の細孔39が第8図に示す
ように、円板の中心部付近には密に、中心から遠い所で
は粗に配置され、円板36の中心付近の冷却を強化する
ように配慮している。細孔39を出た燃料は噴流となっ
て円板36の内面に衝突し、インビンジメント冷却を効
率よく行なうように構成されている。This embodiment is a modification of the embodiment shown in FIG.
Fuel flows through the three sections to perform forced convection heat transfer. On the other hand, the nozzle tip is composed of a disk 36 that is easy to manufacture, and the nozzle core tip is provided with an air chamber 37 for pressure adjustment, as in the previous embodiments, and the outlet of the air chamber 37 is , an injection disk 38 is provided to face the disk 33, and this disk 38 has fine holes 39 for fuel injection densely arranged near the center of the disk, as shown in FIG. , are arranged sparsely in areas far from the center to strengthen cooling near the center of the disk 36. The fuel exiting the pores 39 becomes a jet and collides with the inner surface of the disc 36, thereby efficiently performing impingement cooling.
本実施例の利点は、先端部の製作性が比較的容易である
うえVこ、冷却効率の高いイ/ビンジメント冷却金十分
に芙現でき、かつ、細孔39の配置状況や孔径によって
冷却の度合いを変更することもできる。The advantages of this embodiment are that the tip part is relatively easy to manufacture, and that a high cooling efficiency can be achieved with sufficient cooling efficiency. You can also change the degree.
本発明によれば、燃焼lに突き出されて設置された燃料
噴射ノズルの先端部及び側壁を燃焼ガスによる過熱から
防ぎ、所定の温度以下に保持して運用できる。According to the present invention, the tip and side wall of the fuel injection nozzle installed protruding into the combustion chamber can be prevented from being overheated by combustion gas, and the fuel injection nozzle can be operated while being maintained at a predetermined temperature or lower.
第1図は本発明の一実施例で、先端部にインピンジメ/
ト冷却用の細孔を設置した燃料ノズルの断面図、第2図
はノズル先端の細孔付近を拡大した図、第3図は本発明
の一実施例で、ノズル先端と側壁を同時に冷却する構造
図、第4図は本発明の一実施例で、ノズル先端部を平板
とし、その内面に伝熱フィンを配置した冷却構造図、第
5図は本発明の一実施例で、ノズル先端部は平板とし、
こILと付量する複数個の細孔を設けた平板を配置し冷
却効率と強化し九〇却構造図、第6図は第5図の■−■
矢視断面図、第7図は第5図の■−■矢祝矢面断面図8
図は第5図の■−■矢視断面図、第9図は本発明の基本
となる冷却式燃料ノズル図、第10図は従来構造の燃焼
器に占める燃料ノズルの位置関係を示した図、第11図
は第10図のうち燃料ノズル付近を拡大した図、第12
図は第9図の店−店矢視図で、複数本の燃料ノズルの配
置状況を示す図であ63
1品壊状燃焼藺、2・・・燃料ノズル、3・・・ノズル
先端、4・間質射孔、5・・・燃焼壁、6・・・上流板
、7・・・環状燃焼室、8・・・燃焼室外壁、9・・・
燃焼室内壁、10・・・前蓋、11・・・燃料ノズル、
12・・・工/ドカパー、13・・・ノズル挿入穴、1
4・・・空気通路間隙部、15・・・ノズル根元部、1
6・・・ノズルコア、17・・・外管、18・・・ノズ
ルコア先端、19・・・外′u先端、20・・・燃料流
入孔、21・・・コア外壁、22・・・流路、23・・
・空隙、24・・・燃料噴出孔、25・・・スペーサ、
26・・・空気室、27・・・細孔、28・・・噴流、
29・・・先端部球面内壁、30・・・空気室、31・
・・上流側分岐路、32・・・下流側分岐路、33・・
・円板、34・・・伝熱フィン、35・・・空気室、3
6・・・噴出穴、37・・・空気室、38・・・噴射用
円板、39・・・細孔。Figure 1 shows an embodiment of the present invention, with impingement/
Fig. 2 is an enlarged view of the vicinity of the pores at the tip of the nozzle, and Fig. 3 is an embodiment of the present invention, in which the nozzle tip and side wall are simultaneously cooled. A structural diagram, FIG. 4 is an embodiment of the present invention, and a diagram of a cooling structure in which the nozzle tip is a flat plate and heat transfer fins are arranged on the inner surface. FIG. 5 is an embodiment of the present invention. is a flat plate,
A flat plate with multiple pores attached to the IL is arranged to improve cooling efficiency.
Fig. 7 is a cross-sectional view taken along arrows, and Fig. 7 is a cross-sectional view taken along arrows 8
The figure is a sectional view taken along arrows -■ in Figure 5, Figure 9 is a diagram of the cooling type fuel nozzle that is the basis of the present invention, and Figure 10 is a diagram showing the positional relationship of the fuel nozzle in a combustor with a conventional structure. , Fig. 11 is an enlarged view of the vicinity of the fuel nozzle in Fig. 10, and Fig. 12 is an enlarged view of the vicinity of the fuel nozzle in Fig. 10.
The figure is a store-to-store arrow view in Figure 9, showing the arrangement of multiple fuel nozzles. - Interstitial injection hole, 5... Combustion wall, 6... Upstream plate, 7... Annular combustion chamber, 8... Combustion chamber outer wall, 9...
Combustion chamber wall, 10... Front cover, 11... Fuel nozzle,
12... Machining/Dokaper, 13... Nozzle insertion hole, 1
4... Air passage gap, 15... Nozzle root, 1
6... Nozzle core, 17... Outer pipe, 18... Nozzle core tip, 19... Outer'u tip, 20... Fuel inlet hole, 21... Core outer wall, 22... Channel , 23...
・Gap, 24...Fuel injection hole, 25...Spacer,
26... Air chamber, 27... Pore, 28... Jet flow,
29...Tip portion spherical inner wall, 30...Air chamber, 31...
... Upstream branch road, 32... Downstream branch road, 33...
・Disk, 34... Heat transfer fin, 35... Air chamber, 3
6... Ejection hole, 37... Air chamber, 38... Injection disk, 39... Pore.
Claims (1)
料噴射装置において、 この燃料噴射装置は、内部支柱コアと、この内部支柱コ
アを覆い、内部に環状空隙を形成するように設置された
薄肉の外管とから成り、前記空隙に前記燃料噴射装置に
供給される冷温度の燃料を循環させ前記燃料噴射装置を
内部より冷却する手段を設けたことを特徴とする燃料噴
射装置。 2、特許請求の範囲第1項において、前記燃料噴射装置
のうち前記燃焼室内に挿入される部分には前記環状空隙
に燃料を循環させ、かつ前記燃料噴射装置の先端部では
、前記燃料を複数の噴流に分散し、前記先端部の内面部
はインピンジメント冷却を行なわせるように流路を形成
したことを特徴とする燃料噴射装置。[Claims] 1. A fuel injection device installed protruding inside a gas turbine combustion chamber, the fuel injection device including an inner support core and an annular gap formed inside the inner support core, covering the inner support core. and a thin-walled outer tube installed as shown in FIG. Injection device. 2. Claim 1, wherein a portion of the fuel injection device inserted into the combustion chamber circulates fuel in the annular gap, and a tip portion of the fuel injection device circulates a plurality of the fuels. 2. A fuel injection device, characterized in that a flow path is formed in an inner surface of the tip to perform impingement cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20172184A JPS6183813A (en) | 1984-09-28 | 1984-09-28 | Fuel injecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20172184A JPS6183813A (en) | 1984-09-28 | 1984-09-28 | Fuel injecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6183813A true JPS6183813A (en) | 1986-04-28 |
Family
ID=16445827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20172184A Pending JPS6183813A (en) | 1984-09-28 | 1984-09-28 | Fuel injecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6183813A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0628296U (en) * | 1992-09-14 | 1994-04-15 | 新明和工業株式会社 | Pump device |
JP2006509988A (en) * | 2002-12-17 | 2006-03-23 | プラット アンド ホイットニー カナダ コーポレイション | Vortex fuel nozzles reduce noise levels and improve mixing |
JP2006234377A (en) * | 2005-02-25 | 2006-09-07 | General Electric Co <Ge> | Method and device for cooling fuel nozzle of gas turbine |
US7412833B2 (en) * | 2004-06-03 | 2008-08-19 | General Electric Company | Method of cooling centerbody of premixing burner |
JP2011080753A (en) * | 2009-10-08 | 2011-04-21 | General Electric Co <Ge> | Device and method for cooling nozzle |
WO2019188012A1 (en) * | 2018-03-28 | 2019-10-03 | 株式会社Ihi | Combustion device and gas turbine |
-
1984
- 1984-09-28 JP JP20172184A patent/JPS6183813A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0628296U (en) * | 1992-09-14 | 1994-04-15 | 新明和工業株式会社 | Pump device |
JP2006509988A (en) * | 2002-12-17 | 2006-03-23 | プラット アンド ホイットニー カナダ コーポレイション | Vortex fuel nozzles reduce noise levels and improve mixing |
US7412833B2 (en) * | 2004-06-03 | 2008-08-19 | General Electric Company | Method of cooling centerbody of premixing burner |
JP2006234377A (en) * | 2005-02-25 | 2006-09-07 | General Electric Co <Ge> | Method and device for cooling fuel nozzle of gas turbine |
JP2011080753A (en) * | 2009-10-08 | 2011-04-21 | General Electric Co <Ge> | Device and method for cooling nozzle |
WO2019188012A1 (en) * | 2018-03-28 | 2019-10-03 | 株式会社Ihi | Combustion device and gas turbine |
JPWO2019188012A1 (en) * | 2018-03-28 | 2021-02-25 | 株式会社Ihi | Combustion equipment and gas turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5411467B2 (en) | Fuel nozzle and diffusion tip for the fuel nozzle | |
CN103185353B (en) | Burner assembly in turbogenerator and assemble method thereof | |
JP4164195B2 (en) | Premixed fuel injector and its center body | |
US8127553B2 (en) | Zero-cross-flow impingement via an array of differing length, extended ports | |
JP6240327B2 (en) | Fuel nozzle having fluid lock and purge device | |
JP3110338B2 (en) | Combustor cooling structure with steam | |
JP3977454B2 (en) | Combustion chamber | |
JP2002243154A (en) | Gas turbine combustor and tail cylinder outlet structure thereof | |
JP2001524643A (en) | Combustor and its steam cooling method | |
JP2009019869A (en) | Apparatus/method for cooling combustion chamber/venturi in low nox combustor | |
US20060016192A1 (en) | Turbojet with protection means for a fuel injection device, an injection device and a protective plate for the turbojet | |
CN106322436B (en) | The micro combustions room of microchannel re-generatively cooled | |
CN110207147B (en) | Dry-type low-nitrogen combustion chamber | |
JP3590666B2 (en) | Gas turbine combustor | |
JPS6183813A (en) | Fuel injecting device | |
JPS621174B2 (en) | ||
JP2003214185A (en) | Gas turbine combustor cooling structure and gas turbine | |
JPS63143422A (en) | Gas turbine combustor | |
JPH0343535B2 (en) | ||
CN210891765U (en) | Dry-type low-nitrogen combustion chamber | |
JPH09268946A (en) | Frame holder for jet engine | |
JP2002242702A (en) | Cooling structure for wall surface of gas turbine combustor | |
JPS5960127A (en) | Combustor for gas turbine | |
JP3626862B2 (en) | Gas turbine combustor pilot cone cooling structure | |
JP3143270B2 (en) | Combustion equipment |