JPS6182128A - Measuring method of drawing tension of optical fiber - Google Patents
Measuring method of drawing tension of optical fiberInfo
- Publication number
- JPS6182128A JPS6182128A JP59205366A JP20536684A JPS6182128A JP S6182128 A JPS6182128 A JP S6182128A JP 59205366 A JP59205366 A JP 59205366A JP 20536684 A JP20536684 A JP 20536684A JP S6182128 A JPS6182128 A JP S6182128A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- tension
- measuring machine
- frequency
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/0253—Controlling or regulating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/04—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
- G01L5/042—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands by measuring vibrational characteristics of the flexible member
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/40—Monitoring or regulating the draw tension or draw rate
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は線引加工中の光ファイバの張力をこれと非接触
の状態で測定する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the tension of an optical fiber during drawing without contacting the optical fiber.
光ファイバの強度はその線引加工時の張力と密接な関係
にあり、通常は張力が大きくなると伝送損失は小さくな
るが強度が低下し、逆に張力が小さいと強度は大きくな
るが伝送損失が低下する関係にある。そこで光ファイバ
の線引加工時における適切な張力制御が必要となるが、
それにはプリコート以前の光ファイバの張力を正確に測
定することが前提となる。The strength of an optical fiber is closely related to the tension at the time of drawing it; normally, as the tension increases, the transmission loss decreases but the strength decreases, and conversely, when the tension increases, the strength increases but the transmission loss decreases. There is a declining relationship. Therefore, appropriate tension control is required during the drawing process of optical fiber.
This requires accurate measurement of the tension in the optical fiber before precoating.
しかし光フアイバ自体に測定器具を接触させることは光
ファイバの強度を損なう原因となるため、非接触状態で
の測定が必要とされる。ところが従来にあっては非接触
状態での測定法が確立されておらず母線から線引きし、
プリコートした光ファイバの張力を接触型の張力計で測
定を行っていた。However, since bringing a measuring instrument into contact with the optical fiber itself causes a loss of strength of the optical fiber, measurement in a non-contact state is required. However, in the past, a non-contact measurement method had not been established, so lines were drawn from the busbar.
The tension of the precoated optical fiber was measured using a contact tension meter.
しかしこのような従来の方法ではプライマリ−コートダ
イ、バッファコードダイ等が夫々光ファイバに外力を作
用させているため、これらの補正が必要であり、測定精
度も充分でなく張力制御は経験に依らざるを得ない部分
が多かった。However, in such conventional methods, the primary coat die, buffer code die, etc. each apply external forces to the optical fiber, so corrections for these are necessary, measurement accuracy is not sufficient, and tension control does not depend on experience. There were many parts where I didn't get anything.
本発明はかかる事情に鑑みてなされたものであり、その
目的とするところは線引中の光ファイバにおける拘束端
間の振動は張力を付与した糸の振動と擬制し得ることに
着目し、糸の振動式を用いてその張力を簡単に測定し得
るようにした光ファイバの線引張力測定方法を提供する
にある。The present invention has been made in view of the above circumstances, and its purpose is to focus on the fact that the vibration between the bound ends of an optical fiber during drawing can be simulated as the vibration of the thread to which tension is applied. An object of the present invention is to provide a method for measuring the drawing tension of an optical fiber, which allows the tension to be easily measured using the vibration method.
本発明に係る光ファイバの線引張力測定方法は母材を加
熱熔融させつつ線引して光ファイバに加工する過程にお
いて、光ファイバの拘束端間における振動周波数fを非
接触的に測定し、予め求めた光ファイバの拘束端間距離
l、光ファイバの単位長さ当りの重量γに基づき下式に
従って光ファイバの張力5−t−測定することを特徴と
する。The method for measuring the drawing tension of an optical fiber according to the present invention non-contactly measures the vibration frequency f between the restrained ends of the optical fiber during the process of heating and melting a base material and drawing it into an optical fiber. The method is characterized in that the tension 5-t of the optical fiber is measured according to the following formula based on the predetermined distance l between the restrained ends of the optical fiber and the weight γ per unit length of the optical fiber.
g n
但し g:重力加速度
rL:振動の次数
〔実施例〕
以下本発明の実施状態を図面に基づき具体的に説明する
。g n where g: gravitational acceleration rL: order of vibration [Example] The implementation state of the present invention will be specifically described below based on the drawings.
第1図は本発明方法の実施状態を示す模式図であり、図
中1は光フアイバ線引機、2は張力測定を兼ねる外径測
定装置、Mは線引用の光フアイバ母材、Fは光ファイバ
を示している。光フアイバ線引8M■は電気炉11、プ
ライマリ−コートダイ12、バッファコートダイ13及
びキャプスタンI4がこの順序で上、下方向に配置して
構成されている。母材Mはその下端部を電気炉11にて
高温に加熱熔融され、所要径の線状、即ち光ファイバに
線引加工され、プライマリ−コートダイ12を経る過程
で合成樹脂製のプライマリ−コートが、またバッフ1コ
ートダイ13を経る過程で合7jI2樹脂製のバッフ1
コートが夫々光ファイバFの周囲に積層形成され、キャ
プスタン14を経て図示しないリール等に巻き取られる
こととなる。FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention, in which 1 is an optical fiber drawing machine, 2 is an outer diameter measuring device that also serves as a tension measurement, M is an optical fiber base material for drawing, and F is a drawing machine. Optical fiber is shown. The optical fiber drawing machine 8M-1 is composed of an electric furnace 11, a primary coat die 12, a buffer coat die 13, and a capstan I4 arranged in this order upwardly and downwardly. The lower end of the base material M is heated and melted at a high temperature in an electric furnace 11, and drawn into a linear shape of a required diameter, that is, an optical fiber.In the process of passing through a primary coat die 12, a primary coat made of synthetic resin is formed. In addition, in the process of passing through the buff 1 coat die 13, the buff 1 made of 7j I2 resin is
The coats are formed in layers around the optical fibers F, and are wound up on a reel or the like (not shown) through the capstan 14.
上述の如き線引過程において、電気炉11とプライマリ
−コートダイ12との間で外径測定機2を用いて光ファ
イバFの直径並びに光ファイバFに付与している張力の
測定が行われる。外径測定機2はセンサ一部21、測定
機本体22、周波数解析器23、演算器24及びレコー
ダ25等(例えばセンサ一部21、測定機本体22は安
立電気株式会社製M551 A)を備えており、センサ
一部21を電気炉11とプライマリ−コートダイ12と
の間における光ファイバFの移動域に臨ませである。In the above-described drawing process, the diameter of the optical fiber F and the tension applied to the optical fiber F are measured using the outer diameter measuring device 2 between the electric furnace 11 and the primary coat die 12. The outer diameter measuring machine 2 includes a sensor part 21, a measuring machine main body 22, a frequency analyzer 23, a computing unit 24, a recorder 25, etc. (for example, the sensor part 21 and the measuring machine main body 22 are M551A manufactured by Anritsu Electric Co., Ltd.). The sensor part 21 is arranged to face the movement area of the optical fiber F between the electric furnace 11 and the primary coat die 12.
第2図はセンサ一部の模式図であり、レーザ発生!21
a (He−Neガスレーザ)から発射したレーザビ
ームBをミラーM1電磁石21bにて振動される音叉2
1cに取り付けたミラーM2で反射させる。Figure 2 is a schematic diagram of a part of the sensor, and laser generation! 21
The tuning fork 2 vibrates the laser beam B emitted from a (He-Ne gas laser) by the mirror M1 electromagnet 21b.
It is reflected by mirror M2 attached to 1c.
反射した光は一部がハーフミラ−HM、を透過して光フ
ァイバFを横断する態様で光ファイバFに投射され、ま
たハーフミラHM、で反射された光は互にハーフミラH
M2に入射され、ここで反射された光は受光器21gで
捉えて音叉21cの振動に同期した正弦波信号を発生さ
せるのに用いられ、また透過した光は同じ(受光器に捉
えられて電磁石21bに音叉駆動信号を出力するように
なっている。A part of the reflected light passes through the half mirror HM and is projected onto the optical fiber F in such a manner that it crosses the optical fiber F, and the light reflected by the half mirror HM mutually passes through the half mirror H.
The light incident on M2 and reflected here is captured by the light receiver 21g and used to generate a sine wave signal synchronized with the vibration of the tuning fork 21c. A tuning fork drive signal is output to 21b.
一方光ファイバFに対するレーザビームの投射側と反対
側では光ファイバF及びその周辺近傍からの光をハーフ
ミラHM3に入射させ、これを透過した光は受光器21
dにて、また反射した光は受光器21e 、 21fに
て捉え、夫々測定機本体22へ出力するようにしである
。On the other hand, on the opposite side of the optical fiber F to the laser beam projection side, the light from the optical fiber F and its surroundings is input to the half mirror HM3, and the light transmitted through this is sent to the light receiver 21.
d, the reflected light is captured by light receivers 21e and 21f, and output to the measuring instrument main body 22, respectively.
第3図(イ)は、光ファイバFとこれに投射するレーザ
ビームの振動軸跡を模擬する正弦波B′との関係を示す
説明図、第3図(ロ)は受光器21dが捉えた信号の2
値化信号の波形図、第3図(ハ)。Fig. 3 (a) is an explanatory diagram showing the relationship between the optical fiber F and a sine wave B' that simulates the vibration axis trace of the laser beam projected onto it, and Fig. 3 (b) is an explanatory diagram showing the relationship between the optical fiber F and the sine wave B' that simulates the vibration axis trace of the laser beam projected onto it. Signal 2
Waveform diagram of valued signal, Fig. 3 (c).
(ニ)は受光器21e 、 214が捉えた信号の2値
化信号の波形図を示している。いま光ファイバFに対し
レーザビームBを投射すると、光ファイバFの直径方向
における一側縁(同紙上では上側縁)とはa(、a2.
a3・・・で、また他側縁(同紙上の下側縁)とはす、
、b2.b3で夫々交叉し、光ファイバFの反対側から
見た場合はa1〜b1゜b2〜a2.a3〜b3の間で
はレーザビームBが光ファイバFに遮断されて暗く、他
の部分では明となる。(D) shows a waveform diagram of a binary signal captured by the light receivers 21e and 214. Now, when the laser beam B is projected onto the optical fiber F, one edge of the optical fiber F in the diametrical direction (the upper edge in the same paper) is a(, a2, .
a3..., and the other side edge (lower edge on the same paper) and lotus,
, b2. b3, and when viewed from the opposite side of the optical fiber F, a1~b1° b2~a2. Between a3 and b3, the laser beam B is blocked by the optical fiber F and becomes dark, and in other parts it becomes bright.
従って受光器21dの受光信号を2値化すると第3図(
ロ)に示す如(al、b2.d3で立下り、bl、a2
.blで立上がるパルス信号となる。Therefore, when the light reception signal of the light receiver 21d is binarized, it is shown in Fig. 3 (
B) As shown in (al, falling at b2.d3, bl, a2
.. It becomes a pulse signal that rises at bl.
測定機本体22はこの信号をサンプリング指令パルスと
して利用し、各立下がり、立上がり時に受光器21gの
検出正弦波B′のal + a2 + al ”’
、bl + b2 + bl ”’の各電極VI、
V2をサンプリングし、その差V2−Mlを算出する。The measuring instrument main body 22 uses this signal as a sampling command pulse, and at each falling and rising edge, al + a2 + al '' of the detected sine wave B' of the light receiver 21g.
, bl + b2 + bl "' each electrode VI,
Sample V2 and calculate the difference V2-Ml.
このようにして得られた電圧差V 2 V 1は光フ
ァイバFの直径が小さいときは当然小さく、また直径が
大きいときは大きくなって直径と比例関係を有しており
、この電圧差と直径との関係に基づき光ファイバFの直
径が算出され、レコーダ25に記録される。The voltage difference V 2 V 1 obtained in this way is naturally small when the diameter of the optical fiber F is small, and becomes large when the diameter is large, and has a proportional relationship with the diameter. The diameter of the optical fiber F is calculated based on the relationship, and recorded on the recorder 25.
一方受光器21e 、 2Hは第2図に示すごとく光軸
に対して夫々位置がずれた状態に配設されている結果、
これらによる受光信号は第3図(ハ)。On the other hand, as shown in FIG. 2, the light receivers 21e and 2H are disposed at different positions with respect to the optical axis.
The received light signals from these are shown in Figure 3 (c).
(ニ)に示す如く受光器21e 、 21fの位置ずれ
に相応した位相のずれΔTが生じるが、この位相のずれ
ΔTは光ファイバFの一側縁の位置又は軸ずれの程度に
依って変化する。従ってΔTの経時的な変化は光ファイ
バFの振動周波数の変化に対応しており、光ファイバF
の振動周波数rが求め得ることとなる。周波数解析器2
3は受光器21e。As shown in (d), a phase shift ΔT corresponding to the positional shift of the light receivers 21e and 21f occurs, but this phase shift ΔT changes depending on the position of one side edge of the optical fiber F or the degree of axis shift. . Therefore, the change in ΔT over time corresponds to the change in the vibration frequency of the optical fiber F.
The vibration frequency r can be found. Frequency analyzer 2
3 is a light receiver 21e.
21f出力によりこの振動周波数fを算出する。This vibration frequency f is calculated from the 21f output.
算出された光ファイバFの振動周波数fは演算器24に
入力され、予め入力されている光ファイバの拘束端間の
長さ、光ファイバの単位長当りの重量、振動次数、重力
加速度等に基づき次式に従って光ファイバFの張力を算
出し、必要な張力制御信号を出力するようになっている
。The calculated vibration frequency f of the optical fiber F is input to the calculator 24, and is calculated based on the length between the restrained ends of the optical fiber, the weight per unit length of the optical fiber, the vibration order, the gravitational acceleration, etc. that have been input in advance. The tension of the optical fiber F is calculated according to the following equation, and a necessary tension control signal is output.
g n
但し g:重力加速度((J/秒2)
It:光ファイバの拘束端間の長さくC11)γ:光フ
ァイバの単位長当りの重量
(kg / c+n )
n:振動の次数(1,2,3・・・)
f:光ファイバの振動周波数
光ファイバの拘束端間の長さlは母材Mの下端からプラ
イマリ−コートダイ12との間の距離であり、この長さ
z、g動の次数nは線引機の仕様から定まる。なお光フ
ァイバの単位長当りの重量γは光ファイバの外針測定機
で得た直径に基づき算出される。g n However, g: Gravitational acceleration ((J/sec2) It: Length between the restrained ends of the optical fiber C11) γ: Weight per unit length of the optical fiber (kg/c+n) n: Order of vibration (1, 2, 3...) f: Vibration frequency of optical fiber The length l between the restrained ends of the optical fiber is the distance from the lower end of the base material M to the primary coat die 12, and this length z, g The order n is determined from the specifications of the drawing machine. Note that the weight γ per unit length of the optical fiber is calculated based on the diameter obtained with an optical fiber outer needle measuring device.
以上述べた如く本発明方法にあっては光ファイバの張力
を光ファイバと非接触で求めることが出来るため、光フ
ァイバに対し品質上の影響を与えることがないことは勿
論、張力にも影響を与えないからそれだけ張力の測定精
度が高く、張力制御精度も向上するなど、本発明は優れ
た効果を奏するものである。As mentioned above, in the method of the present invention, the tension of an optical fiber can be determined without contacting the optical fiber, so it does not affect the quality of the optical fiber, and it also does not affect the tension. The present invention has excellent effects, such as improved tension measurement accuracy and improved tension control accuracy because the tension is not applied.
第1図は本発明方法の実施状態を示す模式図、第2図は
外径測定機の模式図、第3図(イ)〜(ニ)は外径測定
機本体で処理した信号の波形図である。
1・・・線引機 2・・・外径測定機 11・・・電気
炉12・・・ダイ 13・・・ダイ 14・・・キャプ
スタン 21・・・センサ一部 22・・・測定機本体
23・・・周波数解析器24・・・演1を器25・・
・レコーダ B・・・レーザビームB′・・・正弦波
特 許 出願人 大日日本電線株式会社代理人 弁理
士 河 野 登 夫21g 箋2 図
手続補正書(方式)
%式%
2、発明の名称
光ファイバの線引張力測定方法
3、補正をする者
事件との関係 特許出願人
所在地 兵庫県尼崎市東向島西之町8番地名 称 (3
26)大日日本電線株式会社代表者青山幸雄
4、代理人
住 所 ■543大阪市天王寺区四天王寺1丁目14番
22号 日進ビル207号河野特許事務所(電話06−
779−3088)昭和60年1月9日 (発送日60
.1.29)6、補正の対象
明細書の「図面の簡単な説明」の欄
7、補正の内容
明細書の第9頁15行目乃至16行目に「第3図(イ)
〜(ニ)は外径測定機本体Jとあるを、「第3図は外径
測定機本体」と訂正する。
以上Fig. 1 is a schematic diagram showing the implementation state of the method of the present invention, Fig. 2 is a schematic diagram of the outer diameter measuring machine, and Figs. 3 (a) to (d) are waveform diagrams of signals processed by the outer diameter measuring machine main body. It is. 1... Wire drawing machine 2... Outer diameter measuring machine 11... Electric furnace 12... Die 13... Die 14... Capstan 21... Sensor part 22... Measuring machine Main body 23...Frequency analyzer 24...Performance 1 device 25...
・Recorder B...Laser beam B'...Sine wave patent Applicant Dainichi Nippon Cable Co., Ltd. Agent Patent attorney Noboru Kono 21g Note 2 Drawing procedure amendment (method) % formula % 2. Invention Name: Optical fiber drawing tension measurement method 3, relationship with the case of the person making the amendment Patent applicant location: 8, Higashimukojima Nishinocho, Amagasaki City, Hyogo Prefecture Name (3)
26) Dainichi Nippon Electric Cable Co., Ltd. Representative Yukio Aoyama 4, Agent Address ■543 Kono Patent Office, 207 Nisshin Building, 1-14-22 Shitennoji, Tennoji-ku, Osaka (Telephone: 06-
779-3088) January 9, 1985 (Shipping date 60
.. 1.29) 6. In column 7 of “Brief explanation of drawings” of the specification to be amended, “Fig. 3 (a)
~(d) is corrected to read "Outside diameter measuring machine main body J" as ``Figure 3 is the outside diameter measuring machine main body.''that's all
Claims (1)
する過程において、光ファイバの拘束端間における振動
周波数fを非接触的に測定し、予め求めた光ファイバの
拘束端間距離l、光ファイバの単位長さ当りの重量rに
基づき下式に従って光ファイバの張力Sを測定すること
を特徴とする光ファイバの線引張力測定方法。 S=r/g[(2fl)/n]^2 但しg:重力加速度 n:振動の次数[Claims] 1. In the process of heating and melting the base material and drawing it into an optical fiber, the vibration frequency f between the restrained ends of the optical fiber is measured in a non-contact manner, and the predetermined optical fiber is A method for measuring the drawing tension of an optical fiber, characterized in that the tension S of the optical fiber is measured according to the following formula based on the distance l between the restrained ends and the weight r per unit length of the optical fiber. S=r/g[(2fl)/n]^2 where g: gravitational acceleration n: order of vibration
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59205366A JPS6182128A (en) | 1984-09-28 | 1984-09-28 | Measuring method of drawing tension of optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59205366A JPS6182128A (en) | 1984-09-28 | 1984-09-28 | Measuring method of drawing tension of optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6182128A true JPS6182128A (en) | 1986-04-25 |
Family
ID=16505657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59205366A Pending JPS6182128A (en) | 1984-09-28 | 1984-09-28 | Measuring method of drawing tension of optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6182128A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62137531A (en) * | 1985-12-09 | 1987-06-20 | コ−ニング グラス ワ−クス | Method and device for monitoring tension in moving optical waveguide fiber |
JPS62278352A (en) * | 1986-05-26 | 1987-12-03 | Mitsubishi Motors Corp | Belt tension monitoring device |
EP0479120A2 (en) * | 1990-10-05 | 1992-04-08 | Corning Incorporated | Method for monitoring fiber tension |
JPH08131318A (en) * | 1994-11-11 | 1996-05-28 | Kawaguchi Giken:Kk | Support device |
JPH08140820A (en) * | 1994-11-15 | 1996-06-04 | Kawaguchi Giken:Kk | Supporting device |
US5624239A (en) * | 1994-12-14 | 1997-04-29 | Osika; Thomas W. | Portable pneumatic vacuum source apparatus and method |
-
1984
- 1984-09-28 JP JP59205366A patent/JPS6182128A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62137531A (en) * | 1985-12-09 | 1987-06-20 | コ−ニング グラス ワ−クス | Method and device for monitoring tension in moving optical waveguide fiber |
EP0226396A2 (en) * | 1985-12-09 | 1987-06-24 | Corning Glass Works | Apparatus and method for monitoring fiber tension |
JPS62278352A (en) * | 1986-05-26 | 1987-12-03 | Mitsubishi Motors Corp | Belt tension monitoring device |
EP0479120A2 (en) * | 1990-10-05 | 1992-04-08 | Corning Incorporated | Method for monitoring fiber tension |
JPH08131318A (en) * | 1994-11-11 | 1996-05-28 | Kawaguchi Giken:Kk | Support device |
JPH08140820A (en) * | 1994-11-15 | 1996-06-04 | Kawaguchi Giken:Kk | Supporting device |
US5624239A (en) * | 1994-12-14 | 1997-04-29 | Osika; Thomas W. | Portable pneumatic vacuum source apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5889901A (en) | Strain measuring apparatus/method having a sensor and a reference optical fiber grating | |
US4671659A (en) | Fiber optic displacement sensor | |
CN106124028B (en) | A kind of micro-nano fiber vibrating sensor based on femtosecond laser parallel micromachining | |
JP3187840B2 (en) | Fiber optic strain sensor and its manufacture | |
CN104374410B (en) | The measurement apparatus and method of fiber optic loop welding point reflection in a kind of photon band-gap optical fiber gyro | |
CN106802190B (en) | A highly sensitive optical fiber torsion sensor without temperature cross-interference | |
JPS6182128A (en) | Measuring method of drawing tension of optical fiber | |
CN104296964B (en) | A kind of fiber optic loop reciprocity symmetry is evaluated and compensation method | |
JP2002162211A (en) | Strain measuring device and its installing method | |
CN109709499A (en) | A probe-type vector magnetic field sensor based on fiber grating and its manufacturing method | |
CN1739007B (en) | Method and apparatus for measuring out-of-plane birefringence of transparent samples | |
Maheshwari et al. | Efficient design of Fiber Optic Polarimetric Sensors for crack location and sizing | |
JPS6219730A (en) | Method and device for measuring damping in splice | |
JP3926801B2 (en) | Optical fiber eccentricity measurement system | |
Habel | Fiber optic sensors for deformation measurements: criteria and method to put them to the best possible use | |
CN118603284B (en) | Optical fiber vibration sensor, preparation method, detection system and application method | |
JP3403778B2 (en) | Light emitting module assembling apparatus and assembling method | |
DK1459044T3 (en) | Online voltage measurement in an optical fiber | |
JPH05272920A (en) | Optical-fiber displacement gage | |
JP3619792B2 (en) | Optical fiber preform refractive index measurement method | |
JPS59203904A (en) | Contactless measuring method of sectional size | |
JPH02184706A (en) | Dimension measuring device | |
SU945648A1 (en) | Method of measuring transparent pipe geometrical dimensions | |
KR100424476B1 (en) | Apparatus for measuring residual stress of optical fiber preform | |
JP2719050B2 (en) | Method for monitoring carbon coating of optical fiber |