[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS618102A - Conductive microfilter - Google Patents

Conductive microfilter

Info

Publication number
JPS618102A
JPS618102A JP12643584A JP12643584A JPS618102A JP S618102 A JPS618102 A JP S618102A JP 12643584 A JP12643584 A JP 12643584A JP 12643584 A JP12643584 A JP 12643584A JP S618102 A JPS618102 A JP S618102A
Authority
JP
Japan
Prior art keywords
microfilter
carbon black
weight
conductive
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12643584A
Other languages
Japanese (ja)
Inventor
Yoshihiko Muto
武藤 善比古
Morikazu Miura
司和 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12643584A priority Critical patent/JPS618102A/en
Publication of JPS618102A publication Critical patent/JPS618102A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/50Means for dissipating electrostatic charges

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To prevent the danger of fire or electric shock caused by the generation of static electricity when a non-conductive substance such as oil is filtered, by using a conductive microfilter consisting of an olefin resin or a fluorocarbon resin and carbon black and having a specific range of apparent volume resistivity and an average pore size. CONSTITUTION:An olefin resin such as polyethylene or a fluorocarbon resin such as polychlorotrifluoroethylene, to which carbon black was added, is formed into a hollow yarn like membrane to form a microfilter. At this time, the amount to be added of carbon black is regulated so as to adjust apparent volume resistivity to 10<4>-10<-1>OMEGA.cm and an average pore size to 0.01-1mum. By this method, a conductive microfilter is obtained and the generation of static electricity by friction between the microfilter and a liquid at the time of filtering is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、膜分離技術に関するものであり、さらに詳し
くは油等の非導電性液体の精密濾過用フィルターに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to membrane separation technology, and more particularly to a filter for precision filtration of non-conductive liquids such as oil.

〔従来の技術〕[Conventional technology]

従来、油のp過精製工程においてプレコートフィルター
が一般に用いられていたが、最近、疎水性樹脂よりなる
ミクロフィルターを用いることにより効率よい油の精製
が可能となった。C%開昭55−79011号公報、特
開昭58−93798号公報、特開昭58−17929
7号公報) 〔発明が解決しようとする問題点〕 しかし、このミクロフィルターを用いる方法において、
外気の湿度の低い例えば冬季でのV過操作中に、ミクロ
フィルターと油との間の摩擦によって静電気が発生し、
著しい場合は、火花が生じて火災の危険性や作業者が接
触した際の感電による危険性のあることが明らかになっ
た。
Conventionally, pre-coat filters have been generally used in oil purification processes, but recently it has become possible to efficiently purify oil by using microfilters made of hydrophobic resins. C% JP-A-55-79011, JP-A-58-93798, JP-A-58-17929
(Publication No. 7) [Problems to be solved by the invention] However, in the method using this microfilter,
During V over-operation when the outside air humidity is low, for example in winter, static electricity is generated due to friction between the microfilter and the oil.
In severe cases, it has become clear that sparks may be generated, posing a risk of fire or electric shock if workers come into contact with the product.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の問題点について鋭意検討の結果、
以下に示す導電性ミクロフィルターを用いることにより
、ミクロフィルターと油等の非導電性液体とのjlll
lKよる静電気の発生がなく、その結果、火災や感電の
危険性がなく、かつ油等の非導電性液体を効率よく高精
度に精製することが可能となった。
As a result of intensive study on the above problems, the present inventors found that
By using the conductive micro filter shown below, it is possible to mix the micro filter with non-conductive liquid such as oil.
There is no generation of static electricity due to lK, and as a result, there is no risk of fire or electric shock, and it has become possible to efficiently and precisely purify non-conductive liquids such as oil.

すなわち、本発明は、オレフィン樹脂またはフッ素樹脂
と、カーボンブラックからなり、見かけの体積固有抵抗
が104〜10−”Ω・傭、平均孔径が0.01〜1μ
なる導電性ミクロフィルターである。
That is, the present invention is made of an olefin resin or a fluororesin and carbon black, has an apparent volume resistivity of 104 to 10-''Ω·m, and has an average pore diameter of 0.01 to 1 μm.
It is a conductive micro filter.

本発明に用いられる樹脂は、オレフィン樹脂またはフッ
素樹脂であることが必要である。具体的には、ポリエチ
レン、ポリプロピレン、ポリブテン、ポリ4−メチルペ
ンテン−1などのポリオレフィン;フッ素原子を一つ以
上含むこれらポリオレフィンのハロゲン化物、4−フッ
化エチレン−パーフルオロアルキルビニルエーテル共重
合体、さらに、エチレン、プロピレン、ブテン、イソブ
チレン、ペンテン、ヘキサン、1−7ツ化エチレン、フ
ッ化ビニリデン、3−フッ化エチレン、4−フッ化エチ
レン、3−フッ化塩化エチレン、6−フツ化プpピレン
などのエチレン系炭化水素またはフッ素原子を一つ以上
含むノ・ロダン置換エチレン系炭化水素の組合せからな
る共重合体、および、これら重合体のブレンドポリマー
が使用される。
The resin used in the present invention needs to be an olefin resin or a fluororesin. Specifically, polyolefins such as polyethylene, polypropylene, polybutene, and poly-4-methylpentene-1; halides of these polyolefins containing one or more fluorine atoms, 4-fluorinated ethylene-perfluoroalkyl vinyl ether copolymers, and , ethylene, propylene, butene, isobutylene, pentene, hexane, 1-7-fluorinated ethylene, vinylidene fluoride, 3-fluorinated ethylene, 4-fluorinated ethylene, 3-fluorinated chloroethylene, 6-fluorinated propylene Copolymers consisting of a combination of ethylene hydrocarbons such as ethylene hydrocarbons or rhodane-substituted ethylene hydrocarbons containing one or more fluorine atoms, and blend polymers of these polymers are used.

本発明に用いられるカーボンブラックは、ミクロフィル
ターに導電性を付与してミクロフィルターと液体との摩
擦による静電気発生を少なくする為に必要である。導電
性付与の為の添加剤として金属粉等種々の導電性微粉末
が考えられるが、粒子径が小さくかつ疎水性樹脂(オレ
フィン樹脂またはフッ素樹脂)との親和性′がよいので
、均一に樹脂中に分散して孔径分布が均一でかつ高い導
電性のミクロフィルターの得られることから、カーボン
ブラックが好ましい。
The carbon black used in the present invention is necessary in order to impart electrical conductivity to the microfilter and to reduce generation of static electricity due to friction between the microfilter and the liquid. Various conductive fine powders such as metal powders can be considered as additives for imparting conductivity, but since the particle size is small and has good affinity with hydrophobic resins (olefin resins or fluorine resins), they can be applied uniformly to the resin. Carbon black is preferred because it can be dispersed throughout the filter to provide a microfilter with a uniform pore size distribution and high conductivity.

本発明のミクロフィルターは、濾過の際のミクロフィル
ターと液体の摩擦による静電気発生を実質的になくシ、
かつフィルターとして十分な強度を与える。ために カ
ーボンブラック添加量を調整して見かけの体積固有抵抗
を104〜10−10・m にすることが必要である。
The microfilter of the present invention substantially eliminates static electricity generation due to friction between the microfilter and liquid during filtration.
It also provides sufficient strength as a filter. Therefore, it is necessary to adjust the amount of carbon black added to make the apparent volume resistivity 104 to 10-10 m2.

io’を越えると静電気防止効果が実質的になく、又、
io−’未満ではカーボンブラック添加量を非常に多く
する必要がありその結果フィルターの強度が低下して使
用中に破壊しやすくなり好ましくない。平均孔径は0.
01〜1μが好ましい。0.01μ未満では透過量が小
さくて濾過効果が悪く、1μを越えると異物の除去が十
分でなく、いずれもミクロフィルターとして好ましくな
い。また、ミクロ2イルターの形状は、プリーツ状、平
膜状、チューブ状、中空糸状のいずれも可能であるが、
モジュール化したときの装置のコンパクト性、構造の簡
素化等の理由で中空糸状が好ましい。
If it exceeds io', there is virtually no antistatic effect;
If it is less than io-', it is necessary to add a very large amount of carbon black, and as a result, the strength of the filter decreases and it becomes easy to break during use, which is not preferable. The average pore diameter is 0.
01-1μ is preferable. If it is less than 0.01μ, the amount of permeation will be small and the filtration effect will be poor, and if it exceeds 1μ, removal of foreign matter will not be sufficient, and both are not preferred as microfilters. In addition, the shape of the micro 2 filter can be pleated, flat membrane, tube, or hollow fiber.
A hollow fiber shape is preferable for reasons such as compactness of the device when modularized and simplification of the structure.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、本発明の実施例に示された諸物性は次の測定法に
よった。
The physical properties shown in the examples of the present invention were determined by the following measurement method.

くみかけの体積固有抵抗〉 空孔を含んだ体積固有抵抗であり、新実験化学講座19
高分子化学I[日本化学会編(1978)、p、943
に示された4探針法に準じて実施。
Constructed volume resistivity〉 It is a volume resistivity that includes pores, and New Experimental Chemistry Course 19
Polymer Chemistry I [edited by the Chemical Society of Japan (1978), p. 943
Performed according to the four-probe method shown in .

く平均孔径〉 水銀ポロシメーターによる。average pore diameter〉 By mercury porosimeter.

く空孔率〉 空孔率=(空孔容積/膜容積) X Zo。Porosity Porosity = (pore volume/membrane volume) X Zo.

空孔容積=含水重量−絶乾重量 く滞電圧〉 静電気測定器(商品名;スタチロンM■穴戸商会製)に
よる。
Pore volume = Water content weight - Absolute dry weight - Stagnation voltage> Based on a static electricity meter (trade name: Statylon M ■ manufactured by Anato Shokai).

実施例1〜3及び比較例1〜3 ミクロフィルターとして以下に示すA−F膜を用いてナ
タネ油のp過テストを実施した。
Examples 1 to 3 and Comparative Examples 1 to 3 A rapeseed oil p-permeability test was conducted using the A-F membrane shown below as a microfilter.

A膜:高密度ポリエチレン(商品名;サンチックS −
360P ) 23.0重量%、ジー(2−エチルヘキ
シル)7タレー) 53.5 fit %、微粉シリカ
23.5重量%を混練後、二軸押出機および中空ノズル
にて溶融押出した後、’)−(2−エチルヘキシル)フ
タレート、微粉シリカを除去して高密度ポリエチレンか
らなる中空糸状多孔膜を得た。
A membrane: High-density polyethylene (product name: Santic S-
After kneading 23.0% by weight of 360P), 53.5 fit% of di-(2-ethylhexyl)7 thale, and 23.5% by weight of finely divided silica, the mixture was melt-extruded using a twin-screw extruder and a hollow nozzle. -(2-Ethylhexyl) phthalate and finely divided silica were removed to obtain a hollow fiber porous membrane made of high-density polyethylene.

この膜は、平均孔径0.12μ、空孔率7゜チ、みかけ
の体積固有抵抗)xg15Ω゛副であった。
This membrane had an average pore diameter of 0.12 μm, a porosity of 7°, and an apparent volume resistivity of 15Ω.

B膜:ポリクロロトリフルオロエチレン(商品名;ダイ
フロンM−300) 32.3重量%、クロロトリフル
オロエチレンオリゴマー (商品名;ダイフロイルナ20 ) 33.9重量%、
トリー(2−エチルヘキシル)トリメリテー) ’17
.0重量%、微粉シリカ16.8重量%を混線後、A膜
と同様にしてポリクロロトリフルオロエチレンからなる
中杢糸状多孔膜を得た。この膜は、平均孔径0.11μ
、空孔率72%、みかけの体積固有抵抗)1015Ω・
副であった。
B membrane: polychlorotrifluoroethylene (trade name: Daiflon M-300) 32.3% by weight, chlorotrifluoroethylene oligomer (trade name: Daiflo Luna 20) 33.9% by weight,
tri(2-ethylhexyl)trimerite) '17
.. After mixing 0% by weight and 16.8% by weight of fine powder silica, a hollow thread-like porous membrane made of polychlorotrifluoroethylene was obtained in the same manner as membrane A. This membrane has an average pore size of 0.11μ
, porosity 72%, apparent volume resistivity) 1015Ω・
He was a deputy.

C膜:ポリクロロトリフルオロエチレン(商品名;ダイ
フロンM−300) 32.4重量%、クロロトリフル
オロエチレンオリゴマー(商品名;ダイフロイル÷20
 ) 16.0重量%、トリー(2−エチルヘキシル)
トリメリテート16.0重量%、微粉シリカ15.8重
量%、カーボンブラック(商品名;ケッチェンブラック
EC) 3.8重量%を混練後、二軸押出機および中空
ノズルにて溶融押出した後、クロロトリフルオロエチレ
ンオリゴマー、トリー(2−エチルヘキシル)トリメリ
テート、微粉シリカを除去して、ポリクロロトリフルオ
ロエチレンとカーボンブラックからなる中空糸状多孔膜
を得た。この膜は、平均孔径 0.09μ、空孔率68チ、みかけの体積固有抵抗1.
5 X 10’Ω・αであった。
C membrane: Polychlorotrifluoroethylene (trade name: Daiflon M-300) 32.4% by weight, chlorotrifluoroethylene oligomer (trade name: Daifloil ÷20)
) 16.0% by weight, tri(2-ethylhexyl)
After kneading 16.0% by weight of trimellitate, 15.8% by weight of finely divided silica, and 3.8% by weight of carbon black (trade name: Ketjenblack EC), the mixture was melt-extruded using a twin-screw extruder and a hollow nozzle, and then chloro Trifluoroethylene oligomer, tri(2-ethylhexyl) trimellitate, and finely divided silica were removed to obtain a hollow fiber porous membrane made of polychlorotrifluoroethylene and carbon black. This membrane has an average pore diameter of 0.09μ, a porosity of 68μ, and an apparent volume resistivity of 1.
It was 5×10'Ω·α.

D膜:高密度ポリエチレン(商品名;サンチックS −
360P ) 25.2重量%、ジイソデシルフタレー
) 57.8重量%、カーボンブラック(商品名;ケッ
チェンブラックEC)17.1重量%を混練後、二軸押
出機および中空ノズルにて溶融押出した後、ジインデー
ジJし7タレートを除去して、高密度ポリエチレンとカ
ーボンブラックからなる中空糸状多孔膜を得た。この膜
は、平均孔径0.30μ、空孔率60チ、みかけの体積
固有抵抗1.I X 10°Ω・副であった。
D membrane: High-density polyethylene (product name: Santic S-
After kneading 25.2% by weight of 360P, 57.8% by weight of diisodecyl phthalate and 17.1% by weight of carbon black (trade name: Ketjenblack EC), the mixture was melt-extruded using a twin-screw extruder and a hollow nozzle. Thereafter, the 7-talate was removed using DiIndage J to obtain a hollow fiber-like porous membrane consisting of high-density polyethylene and carbon black. This membrane has an average pore diameter of 0.30μ, a porosity of 60μ, and an apparent volume resistivity of 1. I x 10°Ω・sub.

E膜:ポリクロロトリフルオロエチレン(商品名;ダイ
ア0ンM−300) 34.5重量%、クロロトリフル
オロエチレンオリゴマー(商品名;ダイア0イルナ20
 ) 36.6重量%、トリー(2−エチルヘキシル)
トリメリテート18.2重量%、カーボンブラック(商
品名;ケッチェンブラックEC)10.6重量%を混線
後、D膜と同様にしてポリクロロトリフ0オロエチレン
とカーボンブラックから々る多孔膜を得た。この膜は、
平均孔径0.05μ、空孔率46%、みかけの体積固有
抵抗3.2 X 10°Ω・mであった。
E membrane: 34.5% by weight of polychlorotrifluoroethylene (product name: Dia 0 Iruna 20), chlorotrifluoroethylene oligomer (product name: Dia 0 Iruna 20)
) 36.6% by weight, tri(2-ethylhexyl)
After mixing 18.2% by weight of trimellitate and 10.6% by weight of carbon black (trade name: Ketjenblack EC), a porous film made of polychlorotrifluoroethylene and carbon black was obtained in the same manner as film D. This membrane is
The average pore diameter was 0.05 μm, the porosity was 46%, and the apparent volume resistivity was 3.2×10°Ω·m.

F膜:エチレン−テトラフルオロエチレン共重合体(商
品名;アフロンCOP ) 26.4重量%、クロロト
リフルオロエチレンオリゴマー(商品名;ダイフロイル
÷20)51.6重量%、シリコンオイル(商品名;K
F−96) s、s重量%、微粉シリカ11.3重量%
、カーボンブラック(商品名;ケッチェンブラックEC
) 2.2重量%を混合後、C膜と同様にしてエチレン
−テトラフルオロエチレン共重合体とカーポンプビック
からなる中空糸状多孔膜を得た。この膜は、平均孔径0
.17μ、空孔率60%、みかけの体積固有抵抗4.7
 X 10”Ω・副でおった。
F membrane: 26.4% by weight of ethylene-tetrafluoroethylene copolymer (trade name: Aflon COP), 51.6% by weight of chlorotrifluoroethylene oligomer (trade name: Daifloil ÷20), silicone oil (trade name: K
F-96) s, s wt%, fine powder silica 11.3 wt%
, carbon black (product name: Ketjen Black EC
) After mixing 2.2% by weight, a hollow fiber porous membrane made of ethylene-tetrafluoroethylene copolymer and Carpump Vic was obtained in the same manner as the C membrane. This membrane has an average pore size of 0
.. 17μ, porosity 60%, apparent volume resistivity 4.7
X 10”Ω・Vice.

上記6種の膜からなるミクロフィルターを第1図に示す
モジュールにそれぞれ組み込んだ。第1図において、1
はミクロフィルターであり、2は接着剤であってカーボ
ンブラックを15重量%添加した導電性エポキシ樹脂か
らなっており、3はハウジングであってカーボンブラッ
クを15重量%添加した導電性ポリプロピレンからなっ
ており、4はアースである。これらのモジュールを用い
て、冬季(室温2℃、湿度30%)において水分1.2
−重量%を含むナタネ油を涙過圧力IK9/−で濾過し
た。七の結果を表1に示す。
The microfilters made of the six types of membranes described above were each incorporated into the module shown in FIG. In Figure 1, 1
is a microfilter, 2 is an adhesive made of conductive epoxy resin to which 15% by weight of carbon black has been added, and 3 is a housing made of conductive polypropylene to which 15% by weight of carbon black has been added. 4 is ground. Using these modules, moisture content is reduced to 1.2 in winter (room temperature 2°C, humidity 30%).
-% by weight of rapeseed oil was filtered with lacrimal overpressure IK9/-. The results of 7 are shown in Table 1.

以下余白 〔発明の効果〕 本発明により、植物油、動物油、鉱物油、有機溶剤など
の比電導度がlo−70・on”−1以下の非導電性の
液体中の水分、ガム質、ロウ分の除去が濾過中の静電気
発生による火災及び感電の危険性のなく精密ν遇精製が
可能となまた。
Blank space below [Effects of the invention] According to the present invention, moisture, gum, and wax content in non-conductive liquids having a specific conductivity of lo-70·on''-1 or less, such as vegetable oils, animal oils, mineral oils, and organic solvents, can be improved. Precise purification is also possible without the risk of fire or electric shock due to static electricity generated during filtration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例及び比較例に用いたモジュールの一部
切欠正面囚である。図中;1はミクロフィルター、2は
導電性樹脂、3は導電性ポリプロピレンからなるハウジ
ング、4はアースを示す。
FIG. 1 is a partially cutaway front view of the module used in Examples and Comparative Examples. In the figure; 1 is a microfilter, 2 is a conductive resin, 3 is a housing made of conductive polypropylene, and 4 is a ground.

Claims (1)

【特許請求の範囲】[Claims] オレフイン樹脂またはフッ素樹脂と、カーボンブラック
からなり、見かけの体積固有抵抗が10^4〜10^−
^1Ω・cm、平均孔径が0.01〜1μである導電性
ミクロフィルター
It is made of olefin resin or fluororesin and carbon black, and has an apparent volume resistivity of 10^4 to 10^-
^1Ω・cm, conductive microfilter with average pore size of 0.01 to 1μ
JP12643584A 1984-06-21 1984-06-21 Conductive microfilter Pending JPS618102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12643584A JPS618102A (en) 1984-06-21 1984-06-21 Conductive microfilter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12643584A JPS618102A (en) 1984-06-21 1984-06-21 Conductive microfilter

Publications (1)

Publication Number Publication Date
JPS618102A true JPS618102A (en) 1986-01-14

Family

ID=14935124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12643584A Pending JPS618102A (en) 1984-06-21 1984-06-21 Conductive microfilter

Country Status (1)

Country Link
JP (1) JPS618102A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179540A (en) * 1986-02-04 1987-08-06 Asahi Chem Ind Co Ltd Nonadsorptive hydrophilic membrane
JPS6456866U (en) * 1987-09-30 1989-04-10
JPH06503329A (en) * 1990-12-07 1994-04-14 ジ・アップジョン・カンパニー Phosphonic acid derivatives useful as anti-inflammatory agents
WO1996034676A1 (en) * 1995-05-04 1996-11-07 Process Scientific Innovations Limited Conductive filter
US5642718A (en) * 1995-07-18 1997-07-01 Nippondenso Co., Ltd. In-tank fuel pump apparatus having improved structure for dissipating electrostatic charges
EP0847785A1 (en) * 1996-12-12 1998-06-17 Elf Antar France Device for cleaning slightly contaminated water
US6168713B1 (en) 1997-12-19 2001-01-02 Kyosan Denki Co., Ltd. Electrostatic charge removing apparatus
US6171492B1 (en) 1999-02-04 2001-01-09 Purolator Products Company Filter for liquid fuel
US6245231B1 (en) 1998-08-18 2001-06-12 Denso Corporation Fuel filter apparatus with anti-electrostatic function
WO2009133874A1 (en) * 2008-04-30 2009-11-05 日東電工株式会社 Porous sheet, process for production thereof, and heat-insulating sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179540A (en) * 1986-02-04 1987-08-06 Asahi Chem Ind Co Ltd Nonadsorptive hydrophilic membrane
JPS6456866U (en) * 1987-09-30 1989-04-10
JPH06503329A (en) * 1990-12-07 1994-04-14 ジ・アップジョン・カンパニー Phosphonic acid derivatives useful as anti-inflammatory agents
WO1996034676A1 (en) * 1995-05-04 1996-11-07 Process Scientific Innovations Limited Conductive filter
US5642718A (en) * 1995-07-18 1997-07-01 Nippondenso Co., Ltd. In-tank fuel pump apparatus having improved structure for dissipating electrostatic charges
EP0847785A1 (en) * 1996-12-12 1998-06-17 Elf Antar France Device for cleaning slightly contaminated water
FR2757078A1 (en) * 1996-12-12 1998-06-19 Elf Antar France DEVICE FOR PURIFYING LOWLY CHARGED WATER
US6168713B1 (en) 1997-12-19 2001-01-02 Kyosan Denki Co., Ltd. Electrostatic charge removing apparatus
US6245231B1 (en) 1998-08-18 2001-06-12 Denso Corporation Fuel filter apparatus with anti-electrostatic function
US6171492B1 (en) 1999-02-04 2001-01-09 Purolator Products Company Filter for liquid fuel
WO2009133874A1 (en) * 2008-04-30 2009-11-05 日東電工株式会社 Porous sheet, process for production thereof, and heat-insulating sheet
US9017817B2 (en) 2008-04-30 2015-04-28 Nitto Denko Corporation Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles

Similar Documents

Publication Publication Date Title
JP5085581B2 (en) Porous composite with particularly large specific surface area, production method, and electrode made of porous composite film for electrochemical assembly
JPS618102A (en) Conductive microfilter
KR101138581B1 (en) Nonwoven material with particle filler
CN107223147A (en) Polyolefin micro porous polyolefin membrane, its manufacture method and battery separator
US3930886A (en) Porous fluoro-carbon polymer matrices
KR860009505A (en) Battery separator
JPWO2014126079A1 (en) Battery separator and method for producing the battery separator
JPWO2005049318A1 (en) Composite microporous membrane, production method and use thereof
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP2009143060A (en) Multi-layer porous film
WO2018168871A1 (en) Polyolefin microporous membrane
US4331622A (en) Method for manufacturing a microporous film having low electrical resistance and high durability
JP4358324B2 (en) Humidifying membrane
US3627859A (en) Process for forming porous fluorocarbon polymer matrices
WO2018173904A1 (en) Microporous polyolefin membrane and battery including same
JP5164396B2 (en) Polyolefin microporous membrane
JP2008186722A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JPS63276868A (en) Separator for cell
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JPWO2016104791A1 (en) Polyolefin resin composition and method for producing polyolefin microporous membrane
JPS63210144A (en) Production of microporous film
JPH0753748A (en) Covered microporous film
KR20160063887A (en) Resin composition for preparing of porous membrane of zinc-bromine redox flow battery, preparation method for porous membrane of redox flow battery, and porous membrane of zinc-bromine redox flow battery
JP2951679B2 (en) Microporous membrane for separator of non-aqueous electrolyte battery
JP2013144442A (en) Porous film including both high heat resistance and high transmittance, and method for manufacturing the same