[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6181664A - Mos field effect transistor - Google Patents

Mos field effect transistor

Info

Publication number
JPS6181664A
JPS6181664A JP20320584A JP20320584A JPS6181664A JP S6181664 A JPS6181664 A JP S6181664A JP 20320584 A JP20320584 A JP 20320584A JP 20320584 A JP20320584 A JP 20320584A JP S6181664 A JPS6181664 A JP S6181664A
Authority
JP
Japan
Prior art keywords
oxide film
layer
film
dry etching
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20320584A
Other languages
Japanese (ja)
Inventor
Toru Yamazaki
亨 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20320584A priority Critical patent/JPS6181664A/en
Publication of JPS6181664A publication Critical patent/JPS6181664A/en
Pending legal-status Critical Current

Links

Classifications

    • H01L29/78

Abstract

PURPOSE:To prevent deterioration of Tr characteristic even when overetching is carried out to RIE by providing an insulating film which shows very low dry etching rate than that of oxide film to the upper surface and side surface of gate electrode and the source drain regions. CONSTITUTION:A field oxide film 8, a polycrystalline silicon layer 3, an n<-> layer 5 are formed on a silicon substrate 1. A silicon-added silicon nitride film 2 which is an insulating film showing very low dry etching rate than that of oxide film is formed on the upper surface and side surface of such polycrystalline silicon layer 3 (gate electrode) and the source drain region. Next, after forming a CVD oxide film, side wall 4 is formed by etching of entire part at RIE, an n<+> layer 6 is formed by the ion implantation and a contact through hole is formed by dry etching after forming an interlayer film 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 するMOS集積回路装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a MOS integrated circuit device.

〔従来の技術〕[Conventional technology]

1viO8電界効果トランジスタの短チャンネル化に伴
なってドレイン電界が高まるため、ゲート酸化膜中ヘホ
、トキャリアが注入され、経時的な特性劣化を生じる。
As the channel of the 1viO8 field effect transistor becomes shorter, the drain electric field increases, and carriers are injected into the gate oxide film, causing characteristic deterioration over time.

特に、ホットエレクトロン注入によるNチャンネルトラ
ンジスタの開直電圧2gm等の特性変動は著しい、デバ
イス構造でドレイン電界を緩和し、ホットキャリアーの
注入を少なくする方法の代表的なものに、第2図1b)
に示すようなLDD(Lightly Doped D
rain)構造がある。
In particular, changes in characteristics such as the open-direction voltage of 2 gm of N-channel transistors due to hot electron injection are significant.This is a typical method for reducing the injection of hot carriers by relaxing the drain electric field in the device structure.
LDD (Lightly Doped D) as shown in
rain) structure.

gE2図(a)、 (b)はLDD構造を有するMOS
型電界効果トランジスタの構造並びにその製造方法を説
明する次めに、工程順に示した断面図である。
gE2 diagrams (a) and (b) are MOS with LDD structure.
2A and 2B are cross-sectional views illustrating the structure of a type field effect transistor and a method for manufacturing the same.

先ず、第2図(a)に示すように、従来知られている方
法で、シリコン基板10表面にフィールド酸化1x8.
ゲート酸化膜、ゲートである多結晶シリコン層3を形成
する6次いでn一層5を形成する。
First, as shown in FIG. 2(a), field oxidation 1x8.
A gate oxide film, a 6th and n layer 5 for forming a polycrystalline silicon layer 3 serving as a gate, is formed.

その後CVD(Chemical  Vapor De
pos −1tion)  とRIE(Reactiv
e  Ion  Etc−hing)を用いてゲート電
極側面に酸化膜5または多結晶シリコン層等金残こす(
通常これをサイドウオールと呼ぶ)。
After that, CVD (Chemical Vapor De
pos-1tion) and RIE (Reactive
Leave a gold layer (such as an oxide film 5 or a polycrystalline silicon layer) on the side surface of the gate electrode using
(This is usually called a sidewall).

次に、第2図(b)に示すように、n+層6を形成する
。しかるときは、n一層が実質的なソース・ドレイン間
の電圧を低くシ、ゲート酸化膜へのホ、トキャリアの注
入を抑える従来のLDD構造のMOa型電界効果トラン
ジスタが得られる。
Next, as shown in FIG. 2(b), an n+ layer 6 is formed. In this case, a conventional MOa field effect transistor with an LDD structure can be obtained in which the n-layer lowers the substantial source-drain voltage and suppresses the injection of photocarriers into the gate oxide film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したLDD構造のMOS型電界効果トランジスタに
おいては、サイドウオールの形成は量産上のCVD酸化
膜の膜厚のばらつき、R,IEのウェーハ内工、チング
ばらつき等を考慮し、BIE金どうしても余分に行なわ
なければならない。しかし、このオーバーエツチングの
際、ソース・ドレイン領域のシリコン基板がエツチング
され、ソース・ドレインのジャンクシ、ンリークの原因
となる。MOS型電界効果トランジスタの短チャンネル
化が更に進みジャンクション深さが浅くなる程、ジャン
クシ、ンリークは発生し易くなるという問題点があった
In the above-mentioned LDD structure MOS field effect transistor, the formation of sidewalls takes into account variations in the thickness of the CVD oxide film during mass production, in-wafer processing of R and IE, variations in chipping, etc., and it is necessary to use extra BIE gold. must be done. However, during this over-etching, the silicon substrate in the source/drain regions is etched, causing source/drain junctions and leaks. There has been a problem in that as the channel length of MOS type field effect transistors becomes further shortened and the junction depth becomes shallower, jumps and leakage become more likely to occur.

本発明はゲート電極にサイドウオール全形成する際に、
RIEiオーバーエ、チングしてもトランジスタ特性を
劣化させないMOS型電界効果トランジスタ金提供する
ことを目的とする。
In the present invention, when forming the entire sidewall on the gate electrode,
An object of the present invention is to provide a MOS type field effect transistor whose transistor characteristics do not deteriorate even when subjected to RIEi over-etching.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のMOS型電界効果トランジスタは、少なくとも
ゲート電極上面および側面ならびにソース・ドレイン領
域に酸化膜エフもドライエ、チング速度が極めて逐一絶
縁膜を有することを特徴として構成される。
The MOS type field effect transistor of the present invention is characterized in that it has an insulating film on at least the upper surface and side surfaces of the gate electrode and the source/drain regions as well as the oxide film layer and the dry layer, which has a very high etching rate.

〔実施例〕〔Example〕

次に、本発明について、図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)、 (b)は本発明の一実施例の構造及び
その製造方法を説明するために工程順に示しt断面図で
ある。
FIGS. 1(a) and 1(b) are t-sectional views shown in order of steps to explain the structure and manufacturing method of one embodiment of the present invention.

先ず、第1図Fa)に示すように、従来例の第2図(a
)、 (b)と同様の方法で形成されたゲート電極例え
ば多結晶シリコン層3おLびソース・ドレイン領域のn
一層5上に酸化膜よフもドライエ、チング速度が極めて
遅い絶縁膜例えばシリコンを添加し几窒化ケイ素膜2を
設ける0次いで、CVD膜例えばCVD酸化膜を形成し
た後、几IEで全面をエツチングし、サイドウオール4
t−形成する。
First, as shown in FIG. 1Fa), the conventional example shown in FIG.
), the gate electrode formed by the same method as in (b), for example, the polycrystalline silicon layer 3 and the source/drain region n.
An oxide film or a silicon nitride film 2 is formed on the layer 5 by adding an insulating film, such as silicon, which has an extremely slow etching rate.Next, after forming a CVD film, such as a CVD oxide film, the entire surface is etched using a dry etching method. and side wall 4
t-form.

このサイドウオール形成するとき、ドライエツチング金
オーバーエツチングしても絶縁膜2は酸化膜よりもドラ
イエツチング速度が極端に遅いため、シリコン基板面1
が露出することはない。
When forming this sidewall, even if dry etching gold is overetched, the dry etching speed of the insulating film 2 is extremely slower than that of the oxide film, so the silicon substrate surface 1
is never exposed.

次に、第2図(b)に示すように、絶縁膜2を介してn
 層6をイオン注入で形成しt後、眉間膜7例、tばP
SGgを形成し、次いでホトレジストヲマスクとしてコ
ンタクトスルーホールをドライエ、チングで形成する。
Next, as shown in FIG. 2(b), n
After forming layer 6 by ion implantation, 7 cases of glabellar membrane, tbP
SGg is formed, and then a contact through hole is formed using a photoresist mask by dry etching and etching.

この場合もエツチングでオーバーエツチングしても絶縁
膜2がある為、シリコン基板面はエツチングされず、従
ってジャンクシ、ンリークの原因とはならない。次にウ
ェットエッチにエフ、コンタクト部の絶縁膜2t″除去
し、シリコン基板面’を露出させ念後、電極を形成する
In this case as well, even if over-etching occurs, the silicon substrate surface will not be etched because of the presence of the insulating film 2, and therefore will not cause any defects or leaks. Next, the insulating film 2t'' of the contact portion is removed by wet etching to expose the silicon substrate surface, and then electrodes are formed.

以上にエフ少なくともゲート電極3の上面及び側面なら
びにソース・ドレイン領域5.6上に酸化膜エフもドラ
イエツチング速度が極めて遅い絶縁膜2を有するLLD
構造構造金石MOS型電界効果トランジスタが得られる
As described above, the LLD has an insulating film 2 whose dry etching rate is extremely slow, and the oxide film F is formed on at least the top and side surfaces of the gate electrode 3 and the source/drain regions 5.6.
A goldstone MOS type field effect transistor is obtained.

〔発明の効果〕 1 以上説明したように、本発明はLLD構造を有し、かつ
ジャンクシ、ンリークの発生かなく、高歩留り、高信頼
度が得られ、非常に憂れt半導体装置である。
[Effects of the Invention] 1. As explained above, the present invention is a very promising semiconductor device that has an LLD structure, does not generate junk or leakage, has a high yield, and has high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図13)、 [b)Fi本発明の一実施例並びにそ
の製造方法を説明する几めに工程順に示した断面図、第
2図(a)、 (b)は従来のMOS型電界効果トラン
ジスタの構造並びにその製造方法全説明するために工程
順に示した断面図である。 1・・・・・・シリコン基板、2・・・・・・絶縁膜、
3・・・・・・多結晶シリコン層、4・・・・・サイド
ウオール、5・・・・・・n一層、 6・・・・・・n
 層、7・・・・・・PEG層間膜、8・・・・・・フ
ィールド酸化膜。 窮 l 囚 毛 2 図
13), [b) Fi A sectional view showing an embodiment of the present invention and its manufacturing method in order of steps, and FIGS. 2(a) and 2(b) show a conventional MOS field effect 1A and 1B are cross-sectional views shown in the order of steps to fully explain the structure of a transistor and its manufacturing method. 1... Silicon substrate, 2... Insulating film,
3...Polycrystalline silicon layer, 4...Side wall, 5...n single layer, 6...n
Layer 7...PEG interlayer film, 8...Field oxide film. Kyu l prison hair 2 figure

Claims (1)

【特許請求の範囲】[Claims]  少なくともゲート電極上面および側面ならびにソース
・ドレイン領域に酸化膜よりもドライエッチング速度が
極めて遅い絶縁膜を有することを特徴とするMOS型電
界効果トランジスタ。
1. A MOS field effect transistor comprising an insulating film whose dry etching rate is much slower than that of an oxide film on at least the upper and side surfaces of the gate electrode and the source/drain regions.
JP20320584A 1984-09-28 1984-09-28 Mos field effect transistor Pending JPS6181664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20320584A JPS6181664A (en) 1984-09-28 1984-09-28 Mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20320584A JPS6181664A (en) 1984-09-28 1984-09-28 Mos field effect transistor

Publications (1)

Publication Number Publication Date
JPS6181664A true JPS6181664A (en) 1986-04-25

Family

ID=16470203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20320584A Pending JPS6181664A (en) 1984-09-28 1984-09-28 Mos field effect transistor

Country Status (1)

Country Link
JP (1) JPS6181664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324974A (en) * 1990-09-04 1994-06-28 Industrial Technology Research Institute Nitride capped MOSFET for integrated circuits
US5780896A (en) * 1995-12-21 1998-07-14 Nec Corporation Semiconductor device having shallow impurity region without short-circuit between gate electrode and source and drain regions and process of fabrication thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324974A (en) * 1990-09-04 1994-06-28 Industrial Technology Research Institute Nitride capped MOSFET for integrated circuits
US5780896A (en) * 1995-12-21 1998-07-14 Nec Corporation Semiconductor device having shallow impurity region without short-circuit between gate electrode and source and drain regions and process of fabrication thereof

Similar Documents

Publication Publication Date Title
US20020195626A1 (en) Double LDD devices for improved DRAM refresh
US6136674A (en) Mosfet with gate plug using differential oxide growth
US3943542A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
JPH06350090A (en) Manufacture of semiconductor device
JPH1126597A (en) Fabrication of semiconductor device
JPH06204469A (en) Field-effect transistor and manufacture thereof
KR970009054B1 (en) Planar structured mos transistor device and its manufacturing method
JPS60254659A (en) Field effect transistor element and method of producing same
JP2816192B2 (en) Method for manufacturing semiconductor device
US5925909A (en) Three-dimensional complementary field effect transistor process and structures
KR950008257B1 (en) Mos fet and its making method
US4054989A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
JP2519284B2 (en) Method of manufacturing embedded gate type MOSFET
JPS6181664A (en) Mos field effect transistor
JPH0818042A (en) Method for manufacturing mos transistor
KR940004415B1 (en) Making method and structure of mosfet
KR100189727B1 (en) Method for expanding active-region and isolation of semiconductor device
KR930009479B1 (en) Manufacturing method of insulated gate type fet
KR100459930B1 (en) Method of making partial self-aligned salicide contact
KR100266635B1 (en) Method for fabricating semiconductor oxide
KR940010926B1 (en) Mosfet and manufacturing method thereof
JP2705583B2 (en) Method for manufacturing semiconductor device
KR0130626B1 (en) Structure and fabrication of mosfet
JPH0595113A (en) Semiconductor device and its manufacture
KR0142875B1 (en) Fabrication method of mosfet